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Abstract: This study is based on the random forest fusion algorithm for model prediction of the Boston 
dataset, aiming to explore the application of statistics in biomedical research. Through data visualization 
and a variety of statistical methods, this study provides an in-depth analysis of the characteristics of the 
dataset and variable relationships. The study first introduces the importance of statistics in the 
biomedical field, including the application of descriptive statistics, inferential statistics, Bayesian 
statistics, probability theory, regression analysis, multivariate analysis, and survival analysis. 
Subsequently, this study elaborates on the Random Forest algorithm and constructs a hybrid model to 
improve the prediction accuracy by fusing the Gradient Boosted Tree (GBDT) model. Experimental 
results show that the fusion model performs well in reducing prediction errors and improving model 
stability, especially in the house price prediction task, where the fusion model outperforms the single 
model in terms of mean square error (MSE) and coefficient of determination (R²). By analyzing the 
Boston house price dataset, this study finds that variables such as the average number of rooms per 
dwelling (RM), the percentage of low-income people (LSTAT), and air quality (NOX) have particularly 
significant effects on house prices. This study not only verifies the validity of the fusion model, but also 
provides a scientific basis for urban planning and policy making. Future research can further optimize 
the model, combine deep learning techniques, expand the dataset and variables, and deepen 
interdisciplinary applications to enhance the universality and practicality of the research results.  

Keywords: Random Forest Algorithm, Gradient Boosting Tree, Data Visualization, House Price 
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1. Introduction 

Statistics is a science that focuses on the collection, analysis, interpretation and presentation of data, 
and is widely used and important in the biomedical field[1]. Descriptive statistics summarize patient 
population characteristics, such as age and weight, through metrics such as mean and median, while 
inferential statistics draw conclusions from sample data and generalize to the population for assessing 
drug effectiveness and disease risk[1]. Bayesian statistics combine prior knowledge with new data to 
support drug development and clinical trial design. Probability theory explains random events to help 
understand genetic variation and the probability of disease occurrence; regression analysis explores 
relationships between variables and is used to predict disease risk and assess treatment efficacy. 
Multivariate analysis explores the complex relationship between biomarkers and disease and identifies 
disease subtypes; survival analysis assesses treatment effects and predicts probability of survival. 
Statistics are indispensable in clinical trial design, bioinformatics, and epidemiology, and support 
genomics, proteomics data analysis, and public health policy development. 

In the field of statistics and machine learning, the Random Forest algorithm is widely used in 
classification and regression tasks due to its strong predictive power and robustness. Breiman (2001) first 
proposed the Random Forest algorithm and demonstrated its effectiveness in classification and regression 
tasks[2]. However, despite the many advantages of random forests, such as high accuracy and robustness 
to high-dimensional data, it also has some limitations. 

First, the computational cost of random forests is high, especially when dealing with large-scale 
datasets. Since multiple decision trees need to be trained, the complexity and training time of the 
algorithm increases with the number and depth of trees. In addition, the model complexity of random 
forests is high and difficult to interpret. The “black-box” nature of Random Forests limits them in 
scenarios that require model interpretability compared to single decision trees. Finally, although Random 
Forests reduce the risk of overfitting through integrated learning, they may still face bias and variance 
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problems in some cases if the parameters are not properly tuned. 

To address these limitations, subsequent studies have improved and optimized random forests. For 
example, Liaw and Wiener (2002) experimentally verified the superiority of random forests in dealing 
with high-dimensional data[3], while Antipov and Pokryshevskaya (2012) applied it to house price 
prediction in Moscow and achieved high prediction accuracy[4]. In addition, Gradient Boosting Tree 
(GBDT), as an integrated learning algorithm, significantly improves the predictive ability of the model 
by gradually optimizing the loss function[5]. In summary, although the Random Forest algorithm 
performs well in the prediction task, it still has disadvantages such as high computational complexity and 
poor model interpretability. The existence of these drawbacks is mainly due to its integrated learning-
based nature, which leads to an increase in model complexity and training cost. Therefore, subsequent 
studies have further enhanced the performance and applicability of the model by improving the algorithm 
or fusing it with other algorithms. 

2. Methods 

2.1 Random forests based on decision trees 

Random Forest is an integrated learning algorithm based on Bagging, which is widely used in 
classification and regression tasks. The specific structure is shown in Figure 1, which improves the 
accuracy and robustness of the model by constructing multiple decision trees and synthesizing their 
predictions. The core idea of Random Forest is to utilize the advantage of “integrated learning” to 
combine multiple weak learners (decision trees) into a single model by “majority voting” (classification 
task) or “averaging” (regression task). (decision tree) into one strong learner by means of “majority 
voting” (classification task) or “averaging” (regression task) [6]. 

 
Figure 1 RF random forest structure 

Random forests are based on decision trees, which are simple models that predict a target variable 
through a series of “questions” (features) and “answers” (decision nodes)[7]. However, decision trees 
have some drawbacks, such as being prone to overfitting (performing well on training data but poorly on 
new data) and being sensitive to small changes in the data. Random forest solves these problems by 
constructing multiple decision trees and synthesizing their results[8]. The prediction formula for the 
Random Forest regression model is given in Equation (1). 
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The mean square error (MSE) (Eq. (2)) and the coefficient of determination R2 (Eq. (3)) used by 
Random Forest to evaluate the model performance. 

2.2 The Fusion model 

Assume that the prediction result of the random forest is 
∧

RFy , the prediction result of the gradient 

boosting tree is 
∧

GBDTy , and the prediction result of the fusion model is 
∧

Ensembley [9]. The fusion model 

can be realized by weighted average as shown in equation (4): 

(1 )Ensemble RF GBDTy y yα α
∧ ∧ ∧

= ⋅ + − ⋅                      (4) 

Where α is a weight parameter, usually determined by cross-validation. 
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Correspondingly, the mean square error (MSE) (Equation (5)) and the coefficient of determination 

R2 (Equation (6)) used in the fusion model are shown above, where, yi is the true value, 
∧

iEnsembley , is the 

predicted value of the fusion model, y  is the mean of the true value, and n is the sample size. The 
numerator represents the sum of squared prediction errors of the fusion model, which reflects the 
deviation between the predicted and true values of the model [10-12]. The denominator represents the 
total variance between the true value and the mean, reflecting the variability of the data itself. The closer 
the R2 value is to 1, the better the model explains the data; the closer the value is to 0, the model has little 
or no explanatory power. 

3. Experiments 

3.1 Dataset exploration and visualization 

In order to gain a deeper understanding of the relationships between the features and variables of the 
Boston dataset, this study explores a variety of visualization methods, including correlation heatmaps, 3D 
scatter plots, radar diagrams, network diagrams, chordal plots, and 3D surface plots. These methods reveal 
the structure of the dataset and the complex relationships among variables from different perspectives. 

The correlation heatmap visualizes the strength of correlation between the variables as shown in Figure 
2(1). The results show that the proportion of low-income strata (LSTAT) is significantly negatively 
correlated with the median house price (MEDV), while the average number of rooms per dwelling (RM) 
is significantly positively correlated with the MEDV. 

The 3D scatter plot demonstrated the relationship between LSTAT, RM and MEDV through a three-
dimensional view, as shown in Figure 2(2). The figure shows that an increase in LSTAT is associated with 
a decrease in MEDV, while an increase in RM is associated with an increase in MEDV, revealing an 
interaction between the variables. 

The radar plot shows the characteristics of the top 5 observations in the dataset on multiple variable 
dimensions as shown in Figure 2(3). By comparing the performance of different observations on each 
variable, the radar plot helps to identify outliers and patterns in the data. 

The network graph demonstrates the complex pattern of correlation between variables through the 
connectivity of nodes and edges as in Fig. 2(4). The graph clearly shows the negative correlation of LSTAT 
with several variables, revealing direct and indirect relationships between variables. 

The chord plot demonstrates the strength of the bi-directional correlation between the variables in a 
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circular layout, as in Figure 2(5). The negative correlation between LSTAT and MEDV is particularly 
significant in the plot, indicating that this relationship is more prominent in the data. 

The 3D surface plot visualizes the nonlinear relationship between LSTAT, RM and MEDV through 
the shape of the surface, as shown in Figure 2(6). The figure shows that MEDV peaks when LSTAT is 
lower and RM is higher, revealing a complex interaction between the variables. 

Through the above visualization analyses, this study reveals the characteristics of the Boston house 
price dataset and the relationships among variables from multiple perspectives. These analyses provide an 
important basis for subsequent model construction and help identify the key factors and their interactions 
that affect house price. 

 
(1)                                         (2) 

 
(3)                                      (4) 

 
(5)                                    (6) 

Figure 2 Visualization results graph presentation 
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3.2 Fusion model prediction datasets 

3.2.1 Assessment model indicator selection 

The dynamics of housing prices have always been affected by a variety of factors, with more or less 
fluctuations and ups and downs. In the case of the Boston area reflected in the Boston dataset, housing 
prices are affected by a variety of factors, such as the proportion of students and teachers, the proportion 
of low-income people, the distance of the property to the city center, and the quality of air, etc. The 
complexity of these factors not only adds to the difficulty of urban planning and construction, but also 
brings to the residents of the housing choice uncertainty. In view of this, this study chooses the mean 
square error (MSE) and the coefficient of determination (R2) as the model evaluation indexes, as shown 
in Table 1. 

Since errors are squared when making model predictions, larger prediction errors are magnified, which 
makes the model focus more on reducing those predictions that deviate significantly from the true value. 
MSE addresses exactly this problem, a property that is particularly important in house price prediction, 
where over- or under-estimation of house prices can lead to large economic impacts. In addition, MSE has 
good mathematical properties, especially the derivability, which makes it perform well in gradient descent-
based optimization algorithms and helps the model learn and tune the parameters more efficiently on the 
Boston dataset. 

The coefficient of determination (R²), on the other hand, reflects the model's ability to capture the 
relationship between house prices and characteristics (e.g., education, occupation, socio-economic 
structure).R² is a relative indicator that not only measures the model's forecasting accuracy, but also 
reflects the extent to which the model improves relative to a simple mean forecast. A high R² value 
indicates that the model is better able to explain the variation in house prices, thus providing a scientific 
basis for policy making. Through R², the degree of influence of various factors (e.g., teacher-student ratio, 
proportion of low-income people) on house prices can be visualized, thus providing data support for urban 
planning and policy adjustment. 

Table 1 Selection of Indicators for the Boston House Price Forecasting Model 

Indicator Name Indicator Content 
MSE Mean Square Error 
R2 Coefficient of determination 

3.2.2 Construction of the fusion model 

Calle et al. used random forests in genomics research for disease prediction via the AUC-RF strategy, 
demonstrating its potential in biomedical data analysis. Inspired by this, this study attempts to apply the 
Random Forest algorithm to the analysis of the Boston house price dataset, aiming to explore its 
performance in the task of house price prediction. However, during the experimental process, the 
limitations of Random Forest when used alone gradually appeared, mainly in the form of a greater risk of 
overfitting and the need to improve the prediction accuracy. In view of this, this study introduces the 
gradient boosted tree model (GBDT), which has significant advantages in solving the overfitting problem 
and improving the prediction accuracy. In order to fully utilize the advantages of the two models, this 
study constructs a hybrid model integrating Random Forest and GBDT with the help of R language and 
applies it to the prediction task of Boston house price dataset. By comparing and analyzing the prediction 
results with the single model, the hybrid model achieves a more significant improvement in prediction 
performance, which verifies the effectiveness and superiority of the hybrid model in the field of house 
price prediction. 

3.2.3 Fusion modeling for house price forecasting 

In order to visualize the key factors affecting house prices, this study calculates the feature importance 
with the help of the random forest model and combines it with the gradient boosting tree model for 
correction. As shown in Figure 3, the results of the analysis indicate that among the 13 features included 
in the dataset, the average number of rooms per dwelling (RM), the proportion of low-income strata 
(LSTAT), and the environmental indicator (NOX) have a significant impact on house prices and are almost 
dominant. In addition, distance to the five Boston employment centers (DIS), crime rate (CRIM), and the 
percentage of students who are teachers in the town (PTRATIO) also have a significant impact on house 
prices. 
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Figure 3 Bar chart of feature importance 

The results reflected in Figure 3 are inextricably linked to the socio-economic logic of Boston's urban 
development. In Boston's urban planning, housing prices are influenced by a combination of 
socioeconomic and environmental factors, and there are complex interactions and recursive relationships 
between these factors. First, areas with a higher average number of rooms are usually newly built or 
remodeled residential areas, where developers may lower the threshold for occupancy in order to quickly 
attract tenants, attracting groups with relatively weak economic power and thus pushing up the proportion 
of low-income people in the area. This phenomenon further affects the pattern of functional zoning in 
cities: areas with a higher proportion of low-income people tend to have significant differences in land use 
and infrastructure development from other areas. Due to economic conditions, commercial development 
and residential construction in these areas are constrained, resulting in a weaker correlation with variables 
reflecting the city's economic vitality (e.g., the proportion of commercial land use, the proportion of 
teachers and students), thus providing a unique perspective for studying the interaction between the city's 
economy and other functional segments[4]. 

In addition, the concentrated distribution of industrial land is closely related to environmental pollution. 
Industrial areas usually concentrate a large number of factories with frequent production activities, leading 
to a significant increase in NOX concentrations. This environmental problem not only affects the health of 
residents, but also may further aggravate the concentration of low-income groups, creating a vicious circle. 
Meanwhile, the proximity to the city center directly determines the accessibility and living comfort of the 
area. Areas closer to the city center have easier access to employment opportunities, commercial facilities 
and cultural and recreational resources, which attracts more residents and pushes up property prices, while 
areas farther away from the city center have lower demand for properties and lower property prices due to 
inconvenient transportation and lack of amenities. 

Crime rates, as an important indicator of community safety levels, have a particularly significant 
impact on housing prices. High crime rates not only reduce residents' sense of safety and well-being, but 
may also trigger the loss of educational resources, teachers' reluctance to take up employment, students' 
choice to transfer to other schools, which in turn affects the teacher-student ratio (PTRATIO), creating a 
vicious cycle. The distribution of educational resources also has a profound impact on housing prices. 
Lower PTRs usually mean tighter educational resources, which may reduce the quality of education and 
thus the willingness of families to move in, reducing demand for real estate, while higher-quality 
educational resources can attract families to move in and push up the price of housing in school districts. 

 
Figure 4 Comparison of model prediction performance 
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In order to verify the prediction accuracy of the constructed model, this study conducted a detailed 
comparative analysis of the model's prediction results with the real value of Boston house prices. In the 
comparative analysis, a scatter plot is drawn with the real value of Boston house prices as the horizontal 
coordinate (x-axis) and the predicted value of the model as the vertical coordinate (y-axis). The black 
dotted line in the graph indicates the ideal prediction state, i.e., the case where the true value is exactly the 
same as the predicted value. The closer the scatter points are to this dotted line, the closer the predictive 
effect of the model is to the ideal state and the higher the prediction accuracy. As shown in Figure 4, the 
prediction results of the fusion model present high accuracy and strong robustness, and most of the scatters 
are closely distributed near the dotted line, indicating that the model can effectively and accurately predict 
house prices in Boston. 

 
Figure 5 Prediction error 

Inevitably, all three models have some degree of prediction error. By visualizing the prediction errors 
of the three models, the fusion model still shows significant advantages. As shown in Figure 5, the error 
distribution of the fusion model is the most concentrated and closest to the normal distribution, indicating 
that its prediction results have higher stability and accuracy. 

The residual plot can visualize the difference between the model's predicted value and the real value, 
as shown in Fig. 6, the fusion model performs best in the Boston house price prediction task, with the most 
uniform distribution of the residuals and most of the residuals are close to zero, which indicates that the 
model's predicted value has the smallest deviation from the actual value. 

.  

Figure 6 Residual plot 
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Finally, this study made a quantitative analysis of the assessment of the model's predictive ability by 
calculating the MSE and R2 (to four decimal places), as shown in Table 2. 

Table 2 Quantitative analysis of assessment indicators 

Model MSE R2 
Random forest model 11.4696 0.8720 

Gradient boosted tree model 28.2663 0.8054 
Fusion model 16.4449 0.8568 

The MSE of the fusion model is lower than that of the gradient boosted tree model, but slightly higher 
than that of the random forest model. This suggests that the fusion model is more effective than the gradient 
boosted tree in reducing prediction errors, even though it does not reach the lowest MSE value of the 
random forest. However, this slight increase in MSE may be acceptable considering the advantages that 
the fusion model may have in other aspects, such as better stability and generalization ability. 

The R2 of the fusion model is higher than that of the gradient boosted tree and close to that of the 
random forest. This means that the fusion model is better able to account for variability in the data, i.e., it 
is able to capture more accurately the relationship between house prices and features. 

The fusion model combines the advantages of Random Forest and Gradient Boosted Tree, and reduces 
the bias and variance of individual models through model fusion, thus improving the overall prediction 
performance. 

4. Conclusions 

This study demonstrates the application of statistics in biomedical research using the Boston dataset, 
analyzing variable relationships through various statistical methods and data visualization techniques. For 
instance, correlation heatmaps revealed that the tax rate positively correlates with highway accessibility, 
while the percentage of lower-status individuals negatively correlates with the average number of rooms. 
For model prediction, a fusion model combining Random Forest (RF) and Gradient Boosted Tree (GBDT) 
was developed, outperforming single models by reducing prediction error (MSE) and improving 
explanatory power (R²). Feature importance analysis identified key factors influencing house prices, 
including the average number of rooms (RM), low-income population proportion (LSTAT), air quality 
(NOX), crime rate (CRIM), student-teacher ratio (PTRATIO), and distance to employment centers (DIS). 

Based on these findings, the study proposes policy recommendations to promote real estate market 
development. These include balancing educational resources to attract families, improving living 
conditions for low-income groups, and enhancing air quality, safety, and transportation infrastructure to 
boost housing prices and support sustainable urban growth. Future research could integrate deep learning 
techniques to refine the model, expand datasets with macroeconomic and community factors, and adopt 
interdisciplinary approaches combining statistics with urban planning and sociology. Such efforts would 
provide deeper insights into housing price dynamics and inform comprehensive urban governance 
strategies. 
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