Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

Application of Improved Genetic Algorithm Based on
Gene Duplication Rate in Flexible Job Shop
Scheduling Problem

Bin Li
School of Intelligent Transportation Modern Industry, Anhui Sanlian University, Hefei, 230601, China

Abstract: Genetic algorithms often tend to exhibit premature convergence in solving the Flexible
Job-shop Scheduling Problem (FJSP). To overcome this, we propose an improved genetic algorithm
guided by gene repetition rates and formulate a mathematical model for dynamic adjustment of genetic
operation parameters. The algorithm employs a two-layer chromosome encoding for operation
sequences and machine assignments, integrating a gene repetition feedback mechanism to adaptively
regulate crossover and mutation probabilities, thereby enhancing population diversity and global
search capability. Experiments on benchmark datasets show that the proposed method achieves
superior optimization accuracy and faster convergence compared to traditional genetic algorithms,
providing an effective approach for solving FJISP.

Keywords: Flexible Job-Shop Scheduling Problem, Genetic Algorithm, Gene Repetition Rate, Adaptive
Optimization, Chromosome Diversity

1. Introduction

With the rise of intelligent manufacturing, the Flexible Job-Shop Scheduling Problem (FJSP) has
become key to optimizing resource allocation in production systemstt, directly affecting efficiency.
The advent of Industry 4.0, personalized customization, and lean production has broadened FJSP's
solution space. Traditional rule-based scheduling struggles to achieve global optima under dynamic
tasks and constraints. FJSP's flexibility in machine selection overcomes fixed-path limitations,
coordinating heterogeneous devices, multi-step processes, and diverse tasks, making it a focal point in
both research and industrial applications 21,

Genetic algorithm-based optimization has long been a primary focus in FJSP research. Researchers
have proposed various strategies to enhance performance. Lif®! introduced elitism retention and
dynamic crossover operators to improve genetic algorithm (GA). Long et al.*l applied reinforcement
learning to boost global search ability, while Jia et al.[® combined adaptive parameters and chaotic local
search for enhanced accuracy and speed. Other optimization approaches, such as knowledge-based ant
colony optimization and hybrid particle swarm—tabu search, have also made significant advancements.

Despite these developments, a gap exists in the quantitative analysis of population gene distribution.
A systematic adaptive mechanism based on gene diversity has yet to be established, presenting an
opportunity for further research.

This study aims to optimize FIJSP using GA, focusing on minimizing makespan. We introduce a
novel metric, the "gene repetition rate,” to quantify gene distribution in the population and develop a
dynamic adaptive adjustment model. Based on this, an adaptive GA guided by gene repetition rate
(GAGR) is introduced. This model dynamically optimizes genetic operation parameters, including
crossover and mutation probabilities, according to the degree of gene repetition, enabling intelligent
adjustment of the search strategy during iterations. By addressing the limitations of fixed genetic
parameters, this approach offers an effective method for exploring FJSP's complex solution space,
improving production efficiency, and advancing intelligent manufacturing.

2. Problem Description

The FJSP is a complex production optimization problem involving multiple jobs and machine types.
The goal is to determine the optimal operation sequence and assign each operation to the most suitable

Published by Francis Academic Press, UK
-0-

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

machine.

Formally, there are n mutually independent jobs {Ji,],...,Jn} to be processed on m different

machines {M;,M,,...,M,}. Each job J; consists of a sequence of operations u (u=12,..,3) ,
each with a strictly positive and predetermined processing time.For every operation, there is at least
one machine capable of performing it.

The model is subject to strict constraints: each machine handles only one operation at a time,
operations are non-preemptive, and transfer times between machines are ignored. The primary
objective is to minimize the makespan of all jobs to achieve systematic and quantifiable scheduling
optimization. The constraints and objective of the model are shown in Formula 1.

n U
f = min Z Z Si,j,k + ti,j,k (1)

i=1 j=1

Where, S;jxrepresents the start time of operation Oj;; when processed on machine k. ti;x represents
the processing time required for operation Oj;; on machine k.

3. Algorithm Design
3.1 Chromosome Representation

Solving FJSP requires coordinated optimization of the operation sequence (OS) and machine
selection (MS)[l, A two-layer chromosome encoding is effective for this. In the OS layer, each number
represents a specific operation of a job, and the chromosome length equals the total number of
operations, ensuring a one-to-one mapping. For example, the sequence ‘3-1-2-2-1” shown in Figure 1,
‘3’ represents the first operation of the third job O3y, ‘1’ the first operation of the first job Oy, and 2’
the first operation of the second job Oj;. The next 2” and ‘1’ correspond to Oz and Oi, respectively.
Thus, the sequence ‘3-1-2-2-1' can be decoded as the operation order ‘O3z;1-O11-O21-O2-012’. Each
number uniquely maps to an operation, and the chromosome length equals the total number of
operations, providing an intuitive numerical representation for optimization.

The chromosome construction logic of the MS layer is similar to that of the OS layer, with its
length equal to the total number of operations. For example, in the MS coding shown in Figure 1, the
gene corresponding to operation Oz, is ‘3°, indicating that this operation is assigned to the third
machine capable of processing it. It should be noted that the total number of actually available
machines is determined by the equipment configuration in specific problem scenarios. Based on this
rule, each value in the MS segment is endowed with a clear semantic meaning, exclusively referring to
the machine number that executes the corresponding operation, thereby establishing an accurate
mapping between operations and processing equipment.

mmT o mm—m————————————————o Js N b J3 4
31]2]2]1] oSpart
O3 Oy On O Op

Ou Oz O O Oy
--= 24|13 |2]| MSpart

A chromosome

Figure 1: Example of a double-layered chromosome.

Published by Francis Academic Press, UK
-10-

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902
3.2 Population Initialization and Evolution Operator

3.2.1 MS initialization

Traditional GA for FJSP typically initialize the population by randomly generating chromosomes,
which can result in uneven gene distribution and excessive repetition, thereby limiting the algorithm’s
global search capability. A widely adopted strategy for MS initialization is the global-local selection
method proposed by Zhang!™, which is also employed in this study. Beyond this approach, we propose
a new strategy based on the gene repetition rate metric ‘hierarchical encoding — repetition rate
evaluation — dynamic adjustment’ to dynamically regulate population initialization. This method
improves the initial population’s coverage of the solution space, providing a high-quality starting point
for subsequent iterations. The specific process is as follows:

(1) Based on the determined operation layer coding, available machines are randomly assigned to
each operation. It is ensured that the assigned machines support the processing requirements of the
corresponding operations, generating legal machine layer coding to form the MS segment of the initial
population.

(2) MS layer repetition rate evaluation and grouping: Calculate the gene repetition rate of the
machine layer, and count the proportion of chromosomes with identical machine coding combinations.
Group by operation layer coding, compare the repetition of machine layer coding within each group,
and mark groups with high repetition rates.

(3) For groups with high repetition rates, retain 1-2 chromosomes with the optimal machine layer
coding (evaluated by initial fitness). For the remaining chromosomes, perform "machine reallocation"
by randomly selecting unused machines to replace the original coding; or generate new machine layer
coding chromosomes and add them to the population until the machine layer repetition rate drops
below the threshold.

Table 1: Operational procedures based on gene duplication rate indicators.

Phase Operation process Details

1.Initialization | Randomly assign compatible machines to each | Ensure that machine
operation assignments meet production
requirement constraints and

generate valid MS encoding.

2.Evaluate Calculate the proportion of chromosomes that | Chromosomes sharing the
repetition rate | share the same MS encoding (gene repetition rate | same OS encoding are
= number of duplicate chromosomes / population | grouped into the same set.

size). Group by the OS and flag groups whose

repetition rate exceeds the threshold.

3.Adaptive Within each group, preserve the 1-2 | Fitness evaluation criteria:
adjustment chromosomes with the highest fitness. For the | makespan and degree of
remaining chromosomes whose repetition rate is | machine load balance.

below the threshold, apply:
(O machine reassignment;

@ generation of additional new MS encodings.

3.2.2 OS initialization

Due to the lack of a comprehensive OS initialization scheme, this study adopts the Remaining
Operations Prioritized Initialization (ROPI) method. Two arrays are maintained: one tracks the

Published by Francis Academic Press, UK
-11-

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

selection count of each job, and the other records the remaining operations. Iteratively, the job with the
most remaining operations is selected (randomly if tied), recorded, and its remaining operations
decremented. This process repeats until all operations are assigned, producing a complete OS sequence
for the chromosome.

3.2.3 Evolutionary Operator

The core of a GA lies in simulating natural selection, with the ternary tournament selection strategy
serving as a key mechanism. In this strategy, three individuals are randomly chosen from the
population for fitness comparison, and the superior individuals are selected for inclusion in the gene
pool. This enables directional retention of high-quality genetic information. Over multiple generations
of reproduction and iteration, the accumulation of superior genes provides an efficient genetic
foundation for subsequent evolutionary processes, guiding the population toward higher adaptability.

In view of the characteristics of OS and MS modules in the double-layer chromosome structure, a
differentiated crossover operation strategy is adopted. In the OS module processing, the improved
precedence order crossover (IPOX)E! is adopted.

In the MS layer, each gene represents a machine assigned to a specific operation. A two-point
crossover is applied, exchanging gene segments between two positions while ensuring machine
compatibility and operation timing constraints. This expands the search space while maintaining
feasibility. To prevent premature convergence, a two-point mutation is applied in the OS layer,
swapping two genes to enhance exploration of the solution space.

3.3 Evolutionary algorithm guided by gene repetition rate

To prevent premature convergence of the GA, this study introduces the gene repetition rate as an
important indicator of population diversity. The flowchart of evolution guided by gene duplication rate
is shown in Figure 2. The gene repetition rate reflects the degree of gene repetition within the
population, and when the repetition rate is too high, it indicates insufficient diversity, potentially
causing the algorithm to get trapped in a local optimum. The gene repetition rate R is calculated using
the following formula:

21 2]2i11(8(0S(C, 0S(€)) + 8(MS(C), MS(C)))

k= NN —1)/2

(2)

Where:

d(0s(c;),0s(c;)) = 1 if the operation sequence part (o0s) of individual ¢; and c; are the same,
otherwise 8(os(c;), 0s(c;)) = 0;

d(ms(c;), ms(c;)) =1 if the machine selection part (ms) of individual ¢; and c; are the same,
otherwise &(ms(c;), ms(cj)) = 0;

-n is the number of individuals in the population;
1 is the length of each chromosome, representing the total number of operations in the tasks.

Equations (3) and (4) present the specific calculation processes for the crossover and mutation
probabilities of the algorithm.

R _'Rnﬂn
P.=P Xexp(l——))
¢ <0 Rmax_Rmin
R — Ry
P, = x(1+—m‘“) 4)
" mo anx _'Rnﬂn

Where, P, = 0.8,P,0 = 0.1 represent the initial replication rate and initial crossover rate.
Rumin, Rmaxindicating the historical minimum/maximum gene duplication rate (R) in the current
evolutionary stage. This mechanism ensures that when the R exceeds the threshold, the algorithm
triggers enhanced mutation operations to jump out of local optima. When this situation persists for 10
generations, the algorithm activates the "gene recombination™ mechanism;

(1) Retain the top 10% of elite chromosomes.

(2) Replace 30% of the population with new chromosomes generated by the Gene Diversity

Published by Francis Academic Press, UK
-12-

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

Injection (GDI) operator, which introduces random gene segments from historically optimal solutions.

Input N

Initialize part of the
chromosomes

v

Chromosome
replacement

v

New generation of the
population

as the gene repetition rate
surpassed the threshold?

‘ Genetic Operation !

Reconfigure the
search space

| Subsequent Operations]

Figure 2: Flowchart of evolution guided by gene repetition rate.
3.4 The framework of Improved GA
Figure 3 presents the framework of the algorithm derived from the preceding discussion.

Start

Y

Encoding
Population initialization

Y
Population |
evaluation

Y
‘ Genetic operations ‘

A 4
New

population

- Population
Decodin, e . <
5 [— initialization |
chromosomes
Y v
] Add to the
Best solution | mating pool

Solution quality
improvement?

Reached the limit?

Figure 3: Framework diagram of the algorithm.

4. Simulation Experiments and Performance Analysis

The algorithm presented in this study is implemented using Matlab 2020a, and the experimental

Published by Francis Academic Press, UK
-13-

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

environment is configured with an Intel Core i5 processor, 12GB of RAM, and a Windows 10
operating system. To validate the effectiveness of the algorithm, two widely recognized FJSP
benchmark datasets are selected. One set is the relatively small-scale Kacem datasets®], while the other
is the more complex Brandimarte datasets!*®. For each test instance, 20 experimental runs are
conducted. The population size of the algorithm is set to 5>m>n (where m,n represent the instance size),
and the maximum number of iterations is set to 10>m>n.

To evaluate the overall performance of GAGR, this section compares it with three other algorithms:
SAGAM SLGA™I and edPSO [*¥, Table 1 presents the comparison results of these algorithms on the
Kacem dataset, where "-" indicates that the result was not reported in the literature. Due to the lack of
the original Kacem05, GAGR was able to achieve the lower bound (LB) results for the remaining four
instances. This indicates that GAGR demonstrates better performance when handling smaller-scale
problems.

Table 2: Best makespan of each algorithm on the Kacem datasets.

Instances LB SAGA edPSO SLGA GAGR
Kcaem01 11 11 n 11 n
Kcaem02 14 14 17 14 14
KcaemO03 11 11 - 11 n
Kcaem04 7 8 8 - 7
Kcaem05 11 - - - -

Table 2 presents the experimental results of several algorithms on 10 medium- to large-scale BR
datasets. As can be seen from the data in this table, each algorithm can generally achieve the theoretical
optimal value on the slightly simpler MK03 and MKO08 instances. Although it does not achieve the best
results on the smaller MK instances, the proposed GAGR algorithm demonstrates significant
superiority on the more complex MK09 and 10 instances. These experimental results demonstrate that
GAGR exhibits greater adaptability when handling large-scale problems.

Table 3: Best makespan of each algorithm on the BR datasets.

Instances LB SAGR edPSO SLGA GAGR
MKO1 36 40 41 40 41
MKO02 24 29 26 27 27
MKO03 204 204 207 204 204
MKO04 48 60 65 60 60
MKO05 168 176 171 172 172
MKO06 33 67 61 69 69
MKO7 133 144 173 144 144
MKO08 523 523 523 523 523
MKO09 299 312 307 320 312
MK10 165 209 312 254 204

The Actual Relative Percentage Deviation (ARPD) is a metric used to further assess the
performance of an algorithm by comparing its solution with the optimal solution or known lower bound.

Published by Francis Academic Press, UK

-14-

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

Table 3 provides a detailed presentation of the actual number of solved instances (ASI) by each
algorithm along with the ARPD values for each algorithm. The specific calculation method involves
first determining the difference between the algorithm's solution and the lower bound, then dividing by
the optimal solution or lower bound, and finally multiplying the resulting ratio by 100 to express the
deviation of the algorithm's solution from the theoretical value. The formula is as follows:

susy (Best = LB) x 100

LB
ARPD = Y)
Where, ‘Best’ denotes the optimal result achieved over 20 runs for each instance by the respective
algorithms. For the same instance, the ARPD value of GAGR is denoted as 'GAGR’ s ARPD'. The
‘Improvement’ column specifically refers to the performance improvement in ARPD achieved by the
GAGR algorithm compared to other algorithms tested on the two datasets. The higher the value, the
more significant the improvement.

The results of each algorithm are presented in Table 4. From the data, it is evident that GAGR
achieved varying degrees of improvement in ARPD. Although GAGR did not find the optimal solution
for smaller-scale instances, it reduced the ARPD values in the more complex MK09 and MK10
instances. These results confirm that GAGR outperforms other methods in optimizing the makespan of
FJSP.

Table 4: Comparison of ARPD values for each algorithm.

Algorithms | ASI | ARPD (%) GAGR’s ARPD (%) Improvement (%)
SAGA 14 15.6 14.2 14
edPSO 13 17.7 15.3 2.4
SLGA 13 17.6 15.3 2.3

5. Conclusions

To solve the FJSP, we proposed an adaptive GA based on gene repetition rate (GAGR). During
implementation, the algorithm detects the repetition rate of genes in different chromosomes and uses it
to guide the evolutionary process. Furthermore, a two-layer gene chain chromosome representation and
adaptive evolutionary operators are used for genetic manipulation to increase chromosome diversity
and enrich the population's gene pool.

Finally, GAGR was tested on selected benchmarks. Experimental validation showed that GAGR
demonstrated good performance in solving the FJSP. This research not only provides a new and
effective approach for solving the FJSP but also offers valuable insights for practical optimization
problems in production scheduling. However, this algorithm may occasionally converge to local optima
on small-scale problems, which will be our future research direction.

Acknowledgements

Funded Project: Anhui Sanlian University 2024 School-level Research Platform General Project:
Research on Solving Flexible Job Shop Scheduling Problems Based on Evolutionary Algorithms
(Project No: KJYB2024011)

References

[1] Tu J. Research on mechanical design, manufacturing and automation technology in the era of
intelligent manufacturing[J]. New Technology in Engineering Construction, 2022, 1(2): 153-155.

[2] Wei W, Tan J, Feng Y, et al. Research on multi-objective optimization method for flexible job shop
scheduling problem [J]. Computer Integrated Manufacturing Systems, 2009, 15(8): 1592-1598.

[3] Li X, Gao L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling

Published by Francis Academic Press, UK
-15-

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

problem[J]. International Journal of Production Economics, 2016, 174: 93-110.

[4] Long X, Zhang J, Qi X, et al. A self-learning artificial bee colony algorithm based on reinforcement
learning for a flexible job-shop scheduling problem[J]. Concurrency and Computation: Practice and
Experience, 2022, 34(4): e6658.

[5] Jia Z, Chen H, Tang J. An improved particle swarm optimization for multi-objective flexible
job-shop scheduling problem[C], 2007 IEEE international conference on grey systems and intelligent
services. IEEE, 2007: 1587-1592.

[6] Li B, Xia X. A Self-Adjusting Search Domain Method-Based Genetic Algorithm for Solving Flexible
Job Shop Scheduling Problem. Computational Intelligence and Neuroscience. 2022 Oct 10;2022:
4212556. doi: 10.1155/2022/4212556. PMID: 36262613; PMCID: PMC9576347.

[7] Zhang G, Shao X, Li P, et al. An effective hybrid particle swarm optimization algorithm for
multi-objective flexible job-shop scheduling problem[J]. Computers & Industrial Engineering, 2009,
56(4): 1309-1318.

[8] Zhang C, Rao Y, Liu X, et al. Genetic algorithm based on POX crossover for solving job-shop
scheduling problem[J]. China Mechanical Engineering, 2004, 15(23): 2149-2153.

[9] Kacem |, Hammadi S, Borne P. Approach by localization and multiobjective evolutionary
optimization for flexible job-shop scheduling problems[J]. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 2002, 32(1): 1-13.

[10] Brandimarte P. Routing and scheduling in a flexible job shop by tabu search[J]. Annals of
Operations research, 1993, 41(3): 157-183.

[11] Li B. Improved genetic algorithm for solving flexible job shop scheduling problem[J]. Computer
Knowledge and Technology, 2024, 20(27):79-82.

[12] Chen R, Yang B, Li S, et al. A self-learning genetic algorithm based on reinforcement learning for
flexible job-shop scheduling problem[J]. Computers & Industrial Engineering, 2020, 149: 106778.

[13] Jiang T, Zhang C. Application of grey wolf optimization for solving combinatorial problems: Job
shop and flexible job shop scheduling cases[J]. IEEE Access, 2018, 6: 26231-26240.

Published by Francis Academic Press, UK
-16-

