
Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

Published by Francis Academic Press, UK

-9-

Application of Improved Genetic Algorithm Based on

Gene Duplication Rate in Flexible Job Shop

Scheduling Problem

Bin Li

School of Intelligent Transportation Modern Industry, Anhui Sanlian University, Hefei, 230601, China

Abstract: Genetic algorithms often tend to exhibit premature convergence in solving the Flexible

Job-shop Scheduling Problem (FJSP). To overcome this, we propose an improved genetic algorithm

guided by gene repetition rates and formulate a mathematical model for dynamic adjustment of genetic

operation parameters. The algorithm employs a two-layer chromosome encoding for operation

sequences and machine assignments, integrating a gene repetition feedback mechanism to adaptively

regulate crossover and mutation probabilities, thereby enhancing population diversity and global

search capability. Experiments on benchmark datasets show that the proposed method achieves

superior optimization accuracy and faster convergence compared to traditional genetic algorithms,

providing an effective approach for solving FJSP.

Keywords: Flexible Job-Shop Scheduling Problem, Genetic Algorithm, Gene Repetition Rate, Adaptive

Optimization, Chromosome Diversity

1. Introduction

With the rise of intelligent manufacturing, the Flexible Job-Shop Scheduling Problem (FJSP) has

become key to optimizing resource allocation in production systems[1], directly affecting efficiency.

The advent of Industry 4.0, personalized customization, and lean production has broadened FJSP's

solution space. Traditional rule-based scheduling struggles to achieve global optima under dynamic

tasks and constraints. FJSP's flexibility in machine selection overcomes fixed-path limitations,

coordinating heterogeneous devices, multi-step processes, and diverse tasks, making it a focal point in

both research and industrial applications [2].

Genetic algorithm-based optimization has long been a primary focus in FJSP research. Researchers

have proposed various strategies to enhance performance. Li[3] introduced elitism retention and

dynamic crossover operators to improve genetic algorithm (GA). Long et al.[4] applied reinforcement

learning to boost global search ability, while Jia et al.[5] combined adaptive parameters and chaotic local

search for enhanced accuracy and speed. Other optimization approaches, such as knowledge-based ant

colony optimization and hybrid particle swarm–tabu search, have also made significant advancements.

Despite these developments, a gap exists in the quantitative analysis of population gene distribution.

A systematic adaptive mechanism based on gene diversity has yet to be established, presenting an

opportunity for further research.

This study aims to optimize FJSP using GA, focusing on minimizing makespan. We introduce a

novel metric, the "gene repetition rate," to quantify gene distribution in the population and develop a

dynamic adaptive adjustment model. Based on this, an adaptive GA guided by gene repetition rate

(GAGR) is introduced. This model dynamically optimizes genetic operation parameters, including

crossover and mutation probabilities, according to the degree of gene repetition, enabling intelligent

adjustment of the search strategy during iterations. By addressing the limitations of fixed genetic

parameters, this approach offers an effective method for exploring FJSP's complex solution space,

improving production efficiency, and advancing intelligent manufacturing.

2. Problem Description

The FJSP is a complex production optimization problem involving multiple jobs and machine types.

The goal is to determine the optimal operation sequence and assign each operation to the most suitable

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

Published by Francis Academic Press, UK

-10-

machine.

Formally, there are n mutually independent jobs {J1, J2, … , Jn} to be processed on m different

machines {M1, M2, … , Mm}. Each job Ji consists of a sequence of operations u（u = 1,2, … ,3）,

each with a strictly positive and predetermined processing time.For every operation, there is at least

one machine capable of performing it.

The model is subject to strict constraints: each machine handles only one operation at a time,

operations are non-preemptive, and transfer times between machines are ignored. The primary

objective is to minimize the makespan of all jobs to achieve systematic and quantifiable scheduling

optimization. The constraints and objective of the model are shown in Formula 1.

𝑓 = min (∑ ∑ 𝑠𝑖,𝑗,𝑘

𝑢𝑖

𝑗=1

𝑛

𝑖=1

+ 𝑡𝑖,𝑗,𝑘) (1)

Where, Si,j,k represents the start time of operation Oij when processed on machine k. ti,j,k represents

the processing time required for operation Oij on machine k.

3. Algorithm Design

3.1 Chromosome Representation

Solving FJSP requires coordinated optimization of the operation sequence (OS) and machine

selection (MS)[6]. A two-layer chromosome encoding is effective for this. In the OS layer, each number

represents a specific operation of a job, and the chromosome length equals the total number of

operations, ensuring a one-to-one mapping. For example, the sequence ‘3-1-2-2-1’ shown in Figure 1,

‘3’ represents the first operation of the third job O31, ‘1’ the first operation of the first job O11, and ‘2’

the first operation of the second job O21. The next ‘2’ and ‘1’ correspond to O22 and O12, respectively.

Thus, the sequence ‘3-1-2-2-1' can be decoded as the operation order ‘O31-O11-O21-O22-O12’. Each

number uniquely maps to an operation, and the chromosome length equals the total number of

operations, providing an intuitive numerical representation for optimization.

The chromosome construction logic of the MS layer is similar to that of the OS layer, with its

length equal to the total number of operations. For example, in the MS coding shown in Figure 1, the

gene corresponding to operation O22 is ‘3’, indicating that this operation is assigned to the third

machine capable of processing it. It should be noted that the total number of actually available

machines is determined by the equipment configuration in specific problem scenarios. Based on this

rule, each value in the MS segment is endowed with a clear semantic meaning, exclusively referring to

the machine number that executes the corresponding operation, thereby establishing an accurate

mapping between operations and processing equipment.

Figure 1: Example of a double-layered chromosome.

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

Published by Francis Academic Press, UK

-11-

3.2 Population Initialization and Evolution Operator

3.2.1 MS initialization

Traditional GA for FJSP typically initialize the population by randomly generating chromosomes,

which can result in uneven gene distribution and excessive repetition, thereby limiting the algorithm’s

global search capability. A widely adopted strategy for MS initialization is the global-local selection

method proposed by Zhang[7], which is also employed in this study. Beyond this approach, we propose

a new strategy based on the gene repetition rate metric ‘hierarchical encoding → repetition rate

evaluation → dynamic adjustment’ to dynamically regulate population initialization. This method

improves the initial population’s coverage of the solution space, providing a high-quality starting point

for subsequent iterations. The specific process is as follows:

(1) Based on the determined operation layer coding, available machines are randomly assigned to

each operation. It is ensured that the assigned machines support the processing requirements of the

corresponding operations, generating legal machine layer coding to form the MS segment of the initial

population.

(2) MS layer repetition rate evaluation and grouping: Calculate the gene repetition rate of the

machine layer, and count the proportion of chromosomes with identical machine coding combinations.

Group by operation layer coding, compare the repetition of machine layer coding within each group,

and mark groups with high repetition rates.

(3) For groups with high repetition rates, retain 1-2 chromosomes with the optimal machine layer

coding (evaluated by initial fitness). For the remaining chromosomes, perform "machine reallocation"

by randomly selecting unused machines to replace the original coding; or generate new machine layer

coding chromosomes and add them to the population until the machine layer repetition rate drops

below the threshold.

Table 1: Operational procedures based on gene duplication rate indicators.

Phase Operation process Details

1.Initialization Randomly assign compatible machines to each

operation

Ensure that machine

assignments meet production

requirement constraints and

generate valid MS encoding.

2.Evaluate

repetition rate

Calculate the proportion of chromosomes that

share the same MS encoding (gene repetition rate

= number of duplicate chromosomes / population

size). Group by the OS and flag groups whose

repetition rate exceeds the threshold.

Chromosomes sharing the

same OS encoding are

grouped into the same set.

3.Adaptive

adjustment

Within each group, preserve the 1–2

chromosomes with the highest fitness. For the

remaining chromosomes whose repetition rate is

below the threshold, apply:

① machine reassignment;

② generation of additional new MS encodings.

Fitness evaluation criteria:

makespan and degree of

machine load balance.

3.2.2 OS initialization

Due to the lack of a comprehensive OS initialization scheme, this study adopts the Remaining

Operations Prioritized Initialization (ROPI) method. Two arrays are maintained: one tracks the

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

Published by Francis Academic Press, UK

-12-

selection count of each job, and the other records the remaining operations. Iteratively, the job with the

most remaining operations is selected (randomly if tied), recorded, and its remaining operations

decremented. This process repeats until all operations are assigned, producing a complete OS sequence

for the chromosome.

3.2.3 Evolutionary Operator

The core of a GA lies in simulating natural selection, with the ternary tournament selection strategy

serving as a key mechanism. In this strategy, three individuals are randomly chosen from the

population for fitness comparison, and the superior individuals are selected for inclusion in the gene

pool. This enables directional retention of high-quality genetic information. Over multiple generations

of reproduction and iteration, the accumulation of superior genes provides an efficient genetic

foundation for subsequent evolutionary processes, guiding the population toward higher adaptability.

In view of the characteristics of OS and MS modules in the double-layer chromosome structure, a

differentiated crossover operation strategy is adopted. In the OS module processing, the improved

precedence order crossover (IPOX)[8] is adopted.

In the MS layer, each gene represents a machine assigned to a specific operation. A two-point

crossover is applied, exchanging gene segments between two positions while ensuring machine

compatibility and operation timing constraints. This expands the search space while maintaining

feasibility. To prevent premature convergence, a two-point mutation is applied in the OS layer,

swapping two genes to enhance exploration of the solution space.

3.3 Evolutionary algorithm guided by gene repetition rate

To prevent premature convergence of the GA, this study introduces the gene repetition rate as an

important indicator of population diversity. The flowchart of evolution guided by gene duplication rate

is shown in Figure 2. The gene repetition rate reflects the degree of gene repetition within the

population, and when the repetition rate is too high, it indicates insufficient diversity, potentially

causing the algorithm to get trapped in a local optimum. The gene repetition rate R is calculated using

the following formula:

𝑅 =
∑ ∑ (𝛿(𝑂𝑆(𝐶𝑖), 𝑂𝑆(𝐶𝑗)) + 𝛿(𝑀𝑆(𝐶𝑖), 𝑀𝑆(𝐶𝑗)))𝑁

𝑗=𝑖+1
𝑁
𝑖=1

𝑁(𝑁 − 1)/2
(2)

Where:

·δ(os(ci), os(cj)) = 1 if the operation sequence part (os) of individual ci and cj are the same,

otherwise δ(os(ci), os(cj)) = 0;

·δ(ms(ci), ms(cj)) = 1 if the machine selection part (ms) of individual ci and cj are the same,

otherwise δ(ms(ci), ms(cj)) = 0;

· n is the number of individuals in the population;

·l is the length of each chromosome, representing the total number of operations in the tasks.

Equations (3) and (4) present the specific calculation processes for the crossover and mutation

probabilities of the algorithm.

𝑃𝑐 = 𝑃𝑐0 × exp (1 −
𝑅 − 𝑅min

𝑅max − 𝑅min
) (3)

𝑃𝑚 = 𝑃𝑚0 × (1 +
𝑅 − 𝑅min

𝑅max − 𝑅min
) (4)

Where, Pc0 = 0.8, Pm0 = 0.1 represent the initial replication rate and initial crossover rate.

Rmin, Rmax indicating the historical minimum/maximum gene duplication rate (R) in the current

evolutionary stage. This mechanism ensures that when the R exceeds the threshold, the algorithm

triggers enhanced mutation operations to jump out of local optima. When this situation persists for 10

generations, the algorithm activates the "gene recombination" mechanism:

(1) Retain the top 10% of elite chromosomes.

(2) Replace 30% of the population with new chromosomes generated by the Gene Diversity

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

Published by Francis Academic Press, UK

-13-

Injection (GDI) operator, which introduces random gene segments from historically optimal solutions.

Figure 2: Flowchart of evolution guided by gene repetition rate.

3.4 The framework of Improved GA

Figure 3 presents the framework of the algorithm derived from the preceding discussion.

Figure 3: Framework diagram of the algorithm.

4. Simulation Experiments and Performance Analysis

The algorithm presented in this study is implemented using Matlab 2020a, and the experimental

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

Published by Francis Academic Press, UK

-14-

environment is configured with an Intel Core i5 processor, 12GB of RAM, and a Windows 10

operating system. To validate the effectiveness of the algorithm, two widely recognized FJSP

benchmark datasets are selected. One set is the relatively small-scale Kacem datasets[9], while the other

is the more complex Brandimarte datasets[10]. For each test instance, 20 experimental runs are

conducted. The population size of the algorithm is set to 5×m×n (where m,n represent the instance size),

and the maximum number of iterations is set to 10×m×n.

To evaluate the overall performance of GAGR, this section compares it with three other algorithms:

SAGA[11], SLGA [12], and edPSO [13]. Table 1 presents the comparison results of these algorithms on the

Kacem dataset, where "-" indicates that the result was not reported in the literature. Due to the lack of

the original Kacem05, GAGR was able to achieve the lower bound (LB) results for the remaining four

instances. This indicates that GAGR demonstrates better performance when handling smaller-scale

problems.

Table 2: Best makespan of each algorithm on the Kacem datasets.

Instances LB SAGA edPSO SLGA GAGR

Kcaem01 11 11 11 11 11

Kcaem02 14 14 17 14 14

Kcaem03 11 11 - 11 11

Kcaem04 7 8 8 - 7

Kcaem05 11 - - - -

Table 2 presents the experimental results of several algorithms on 10 medium- to large-scale BR

datasets. As can be seen from the data in this table, each algorithm can generally achieve the theoretical

optimal value on the slightly simpler MK03 and MK08 instances. Although it does not achieve the best

results on the smaller MK instances, the proposed GAGR algorithm demonstrates significant

superiority on the more complex MK09 and 10 instances. These experimental results demonstrate that

GAGR exhibits greater adaptability when handling large-scale problems.

Table 3: Best makespan of each algorithm on the BR datasets.

Instances LB SAGR edPSO SLGA GAGR

MK01 36 40 41 40 41

MK02 24 29 26 27 27

MK03 204 204 207 204 204

MK04 48 60 65 60 60

MK05 168 176 171 172 172

MK06 33 67 61 69 69

MK07 133 144 173 144 144

MK08 523 523 523 523 523

MK09 299 312 307 320 312

MK10 165 209 312 254 204

The Actual Relative Percentage Deviation (ARPD) is a metric used to further assess the

performance of an algorithm by comparing its solution with the optimal solution or known lower bound.

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

Published by Francis Academic Press, UK

-15-

Table 3 provides a detailed presentation of the actual number of solved instances (ASI) by each

algorithm along with the ARPD values for each algorithm. The specific calculation method involves

first determining the difference between the algorithm's solution and the lower bound, then dividing by

the optimal solution or lower bound, and finally multiplying the resulting ratio by 100 to express the

deviation of the algorithm's solution from the theoretical value. The formula is as follows:

𝐴𝑅𝑃𝐷 =
∑

(𝐵𝑒𝑠𝑡 − 𝐿𝐵) × 100
𝐿𝐵

𝐴𝑆𝐼
𝑙=1

𝐴𝑆𝐼
(5)

Where, ‘Best’ denotes the optimal result achieved over 20 runs for each instance by the respective

algorithms. For the same instance, the ARPD value of GAGR is denoted as 'GAGR’ s ARPD'. The

'Improvement' column specifically refers to the performance improvement in ARPD achieved by the

GAGR algorithm compared to other algorithms tested on the two datasets. The higher the value, the

more significant the improvement.

The results of each algorithm are presented in Table 4. From the data, it is evident that GAGR

achieved varying degrees of improvement in ARPD. Although GAGR did not find the optimal solution

for smaller-scale instances, it reduced the ARPD values in the more complex MK09 and MK10

instances. These results confirm that GAGR outperforms other methods in optimizing the makespan of

FJSP.

Table 4: Comparison of ARPD values for each algorithm.

Algorithms ASI ARPD (%) GAGR’s ARPD (%) Improvement (%)

SAGA 14 15.6 14.2 1.4

edPSO 13 17.7 15.3 2.4

SLGA 13 17.6 15.3 2.3

5. Conclusions

To solve the FJSP, we proposed an adaptive GA based on gene repetition rate (GAGR). During

implementation, the algorithm detects the repetition rate of genes in different chromosomes and uses it

to guide the evolutionary process. Furthermore, a two-layer gene chain chromosome representation and

adaptive evolutionary operators are used for genetic manipulation to increase chromosome diversity

and enrich the population's gene pool.

Finally, GAGR was tested on selected benchmarks. Experimental validation showed that GAGR

demonstrated good performance in solving the FJSP. This research not only provides a new and

effective approach for solving the FJSP but also offers valuable insights for practical optimization

problems in production scheduling. However, this algorithm may occasionally converge to local optima

on small-scale problems, which will be our future research direction.

Acknowledgements

Funded Project: Anhui Sanlian University 2024 School-level Research Platform General Project:

Research on Solving Flexible Job Shop Scheduling Problems Based on Evolutionary Algorithms

(Project No: KJYB2024011)

References

[1] Tu J. Research on mechanical design, manufacturing and automation technology in the era of

intelligent manufacturing[J]. New Technology in Engineering Construction, 2022, 1(2): 153-155.

[2] Wei W, Tan J, Feng Y, et al. Research on multi-objective optimization method for flexible job shop

scheduling problem [J]. Computer Integrated Manufacturing Systems, 2009, 15(8): 1592-1598.

[3] Li X, Gao L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 9: 9-16, DOI: 10.25236/AJCIS.2025.080902

Published by Francis Academic Press, UK

-16-

problem[J]. International Journal of Production Economics, 2016, 174: 93-110.

[4] Long X, Zhang J, Qi X, et al. A self‐learning artificial bee colony algorithm based on reinforcement

learning for a flexible job‐shop scheduling problem[J]. Concurrency and Computation: Practice and

Experience, 2022, 34(4): e6658.

[5] Jia Z, Chen H, Tang J. An improved particle swarm optimization for multi-objective flexible

job-shop scheduling problem[C], 2007 IEEE international conference on grey systems and intelligent

services. IEEE, 2007: 1587-1592.

[6] Li B, Xia X. A Self-Adjusting Search Domain Method-Based Genetic Algorithm for Solving Flexible

Job Shop Scheduling Problem. Computational Intelligence and Neuroscience. 2022 Oct 10;2022:

4212556. doi: 10.1155/2022/4212556. PMID: 36262613; PMCID: PMC9576347.

[7] Zhang G, Shao X, Li P, et al. An effective hybrid particle swarm optimization algorithm for

multi-objective flexible job-shop scheduling problem[J]. Computers & Industrial Engineering, 2009,

56(4): 1309-1318.

[8] Zhang C, Rao Y, Liu X, et al. Genetic algorithm based on POX crossover for solving job-shop

scheduling problem[J]. China Mechanical Engineering, 2004, 15(23): 2149-2153.

[9] Kacem I, Hammadi S, Borne P. Approach by localization and multiobjective evolutionary

optimization for flexible job-shop scheduling problems[J]. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 2002, 32(1): 1-13.

[10] Brandimarte P. Routing and scheduling in a flexible job shop by tabu search[J]. Annals of

Operations research, 1993, 41(3): 157-183.

[11] Li B. Improved genetic algorithm for solving flexible job shop scheduling problem[J]. Computer

Knowledge and Technology, 2024, 20(27):79-82.

[12] Chen R, Yang B, Li S, et al. A self-learning genetic algorithm based on reinforcement learning for

flexible job-shop scheduling problem[J]. Computers & Industrial Engineering, 2020, 149: 106778.

[13] Jiang T, Zhang C. Application of grey wolf optimization for solving combinatorial problems: Job

shop and flexible job shop scheduling cases[J]. IEEE Access, 2018, 6: 26231-26240.

