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Abstract: Genetic algorithms often tend to exhibit premature convergence in solving the Flexible 

Job-shop Scheduling Problem (FJSP). To overcome this, we propose an improved genetic algorithm 

guided by gene repetition rates and formulate a mathematical model for dynamic adjustment of genetic 

operation parameters. The algorithm employs a two-layer chromosome encoding for operation 

sequences and machine assignments, integrating a gene repetition feedback mechanism to adaptively 

regulate crossover and mutation probabilities, thereby enhancing population diversity and global 

search capability. Experiments on benchmark datasets show that the proposed method achieves 

superior optimization accuracy and faster convergence compared to traditional genetic algorithms, 

providing an effective approach for solving FJSP. 
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1. Introduction 

With the rise of intelligent manufacturing, the Flexible Job-Shop Scheduling Problem (FJSP) has 

become key to optimizing resource allocation in production systems[1], directly affecting efficiency. 

The advent of Industry 4.0, personalized customization, and lean production has broadened FJSP's 

solution space. Traditional rule-based scheduling struggles to achieve global optima under dynamic 

tasks and constraints. FJSP's flexibility in machine selection overcomes fixed-path limitations, 

coordinating heterogeneous devices, multi-step processes, and diverse tasks, making it a focal point in 

both research and industrial applications [2]. 

Genetic algorithm-based optimization has long been a primary focus in FJSP research. Researchers 

have proposed various strategies to enhance performance. Li[3] introduced elitism retention and 

dynamic crossover operators to improve genetic algorithm (GA). Long et al.[4] applied reinforcement 

learning to boost global search ability, while Jia et al.[5] combined adaptive parameters and chaotic local 

search for enhanced accuracy and speed. Other optimization approaches, such as knowledge-based ant 

colony optimization and hybrid particle swarm–tabu search, have also made significant advancements. 

Despite these developments, a gap exists in the quantitative analysis of population gene distribution. 

A systematic adaptive mechanism based on gene diversity has yet to be established, presenting an 

opportunity for further research. 

This study aims to optimize FJSP using GA, focusing on minimizing makespan. We introduce a 

novel metric, the "gene repetition rate," to quantify gene distribution in the population and develop a 

dynamic adaptive adjustment model. Based on this, an adaptive GA guided by gene repetition rate 

(GAGR) is introduced. This model dynamically optimizes genetic operation parameters, including 

crossover and mutation probabilities, according to the degree of gene repetition, enabling intelligent 

adjustment of the search strategy during iterations. By addressing the limitations of fixed genetic 

parameters, this approach offers an effective method for exploring FJSP's complex solution space, 

improving production efficiency, and advancing intelligent manufacturing. 

2. Problem Description 

The FJSP is a complex production optimization problem involving multiple jobs and machine types. 

The goal is to determine the optimal operation sequence and assign each operation to the most suitable 
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machine.  

Formally, there are n mutually independent jobs {J1, J2, … , Jn} to be processed on m different 

machines {M1, M2, … , Mm}. Each job Ji consists of a sequence of operations u（u = 1,2, … ,3）, 

each with a strictly positive and predetermined processing time.For every operation, there is at least 

one machine capable of performing it. 

The model is subject to strict constraints: each machine handles only one operation at a time, 

operations are non-preemptive, and transfer times between machines are ignored. The primary 

objective is to minimize the makespan of all jobs to achieve systematic and quantifiable scheduling 

optimization. The constraints and objective of the model are shown in Formula 1. 

𝑓 = min (∑ ∑ 𝑠𝑖,𝑗,𝑘

𝑢𝑖

𝑗=1

𝑛

𝑖=1

+ 𝑡𝑖,𝑗,𝑘) (1) 

Where, Si,j,k represents the start time of operation Oij when processed on machine k. ti,j,k represents 

the processing time required for operation Oij on machine k. 

3. Algorithm Design 

3.1 Chromosome Representation 

Solving FJSP requires coordinated optimization of the operation sequence (OS) and machine 

selection (MS)[6]. A two-layer chromosome encoding is effective for this. In the OS layer, each number 

represents a specific operation of a job, and the chromosome length equals the total number of 

operations, ensuring a one-to-one mapping. For example, the sequence ‘3-1-2-2-1’ shown in Figure 1, 

‘3’ represents the first operation of the third job O31, ‘1’ the first operation of the first job O11, and ‘2’ 

the first operation of the second job O21. The next ‘2’ and ‘1’ correspond to O22 and O12, respectively. 

Thus, the sequence ‘3-1-2-2-1' can be decoded as the operation order ‘O31-O11-O21-O22-O12’. Each 

number uniquely maps to an operation, and the chromosome length equals the total number of 

operations, providing an intuitive numerical representation for optimization. 

The chromosome construction logic of the MS layer is similar to that of the OS layer, with its 

length equal to the total number of operations. For example, in the MS coding shown in Figure 1, the 

gene corresponding to operation O22 is ‘3’, indicating that this operation is assigned to the third 

machine capable of processing it. It should be noted that the total number of actually available 

machines is determined by the equipment configuration in specific problem scenarios. Based on this 

rule, each value in the MS segment is endowed with a clear semantic meaning, exclusively referring to 

the machine number that executes the corresponding operation, thereby establishing an accurate 

mapping between operations and processing equipment. 

 

Figure 1: Example of a double-layered chromosome. 
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3.2 Population Initialization and Evolution Operator 

3.2.1 MS initialization 

Traditional GA for FJSP typically initialize the population by randomly generating chromosomes, 

which can result in uneven gene distribution and excessive repetition, thereby limiting the algorithm’s 

global search capability. A widely adopted strategy for MS initialization is the global-local selection 

method proposed by Zhang[7], which is also employed in this study. Beyond this approach, we propose 

a new strategy based on the gene repetition rate metric ‘hierarchical encoding → repetition rate 

evaluation → dynamic adjustment’ to dynamically regulate population initialization. This method 

improves the initial population’s coverage of the solution space, providing a high-quality starting point 

for subsequent iterations. The specific process is as follows: 

(1) Based on the determined operation layer coding, available machines are randomly assigned to 

each operation. It is ensured that the assigned machines support the processing requirements of the 

corresponding operations, generating legal machine layer coding to form the MS segment of the initial 

population. 

(2) MS layer repetition rate evaluation and grouping: Calculate the gene repetition rate of the 

machine layer, and count the proportion of chromosomes with identical machine coding combinations. 

Group by operation layer coding, compare the repetition of machine layer coding within each group, 

and mark groups with high repetition rates. 

(3) For groups with high repetition rates, retain 1-2 chromosomes with the optimal machine layer 

coding (evaluated by initial fitness). For the remaining chromosomes, perform "machine reallocation" 

by randomly selecting unused machines to replace the original coding; or generate new machine layer 

coding chromosomes and add them to the population until the machine layer repetition rate drops 

below the threshold. 

Table 1: Operational procedures based on gene duplication rate indicators. 

Phase Operation process Details 

1.Initialization Randomly assign compatible machines to each 

operation 

Ensure that machine 

assignments meet production 

requirement constraints and 

generate valid MS encoding. 

2.Evaluate 

repetition rate 

Calculate the proportion of chromosomes that 

share the same MS encoding (gene repetition rate 

= number of duplicate chromosomes / population 

size). Group by the OS and flag groups whose 

repetition rate exceeds the threshold. 

Chromosomes sharing the 

same OS encoding are 

grouped into the same set. 

3.Adaptive 

adjustment 

Within each group, preserve the 1–2 

chromosomes with the highest fitness. For the 

remaining chromosomes whose repetition rate is 

below the threshold, apply: 

① machine reassignment; 

② generation of additional new MS encodings. 

Fitness evaluation criteria: 

makespan and degree of 

machine load balance. 

3.2.2 OS initialization 

Due to the lack of a comprehensive OS initialization scheme, this study adopts the Remaining 

Operations Prioritized Initialization (ROPI) method. Two arrays are maintained: one tracks the 
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selection count of each job, and the other records the remaining operations. Iteratively, the job with the 

most remaining operations is selected (randomly if tied), recorded, and its remaining operations 

decremented. This process repeats until all operations are assigned, producing a complete OS sequence 

for the chromosome. 

3.2.3 Evolutionary Operator 

The core of a GA lies in simulating natural selection, with the ternary tournament selection strategy 

serving as a key mechanism. In this strategy, three individuals are randomly chosen from the 

population for fitness comparison, and the superior individuals are selected for inclusion in the gene 

pool. This enables directional retention of high-quality genetic information. Over multiple generations 

of reproduction and iteration, the accumulation of superior genes provides an efficient genetic 

foundation for subsequent evolutionary processes, guiding the population toward higher adaptability. 

In view of the characteristics of OS and MS modules in the double-layer chromosome structure, a 

differentiated crossover operation strategy is adopted. In the OS module processing, the improved 

precedence order crossover (IPOX)[8] is adopted.  

In the MS layer, each gene represents a machine assigned to a specific operation. A two-point 

crossover is applied, exchanging gene segments between two positions while ensuring machine 

compatibility and operation timing constraints. This expands the search space while maintaining 

feasibility. To prevent premature convergence, a two-point mutation is applied in the OS layer, 

swapping two genes to enhance exploration of the solution space. 

3.3 Evolutionary algorithm guided by gene repetition rate 

To prevent premature convergence of the GA, this study introduces the gene repetition rate as an 

important indicator of population diversity. The flowchart of evolution guided by gene duplication rate 

is shown in Figure 2. The gene repetition rate reflects the degree of gene repetition within the 

population, and when the repetition rate is too high, it indicates insufficient diversity, potentially 

causing the algorithm to get trapped in a local optimum. The gene repetition rate R is calculated using 

the following formula:  

𝑅 =
∑ ∑ (𝛿(𝑂𝑆(𝐶𝑖), 𝑂𝑆(𝐶𝑗)) + 𝛿(𝑀𝑆(𝐶𝑖), 𝑀𝑆(𝐶𝑗)))𝑁

𝑗=𝑖+1
𝑁
𝑖=1

𝑁(𝑁 − 1)/2
(2) 

Where: 

·δ(os(ci), os(cj)) = 1 if the operation sequence part (os) of individual ci and cj are the same, 

otherwise δ(os(ci), os(cj)) = 0; 

·δ(ms(ci), ms(cj)) = 1 if the machine selection part (ms) of individual ci and cj are the same, 

otherwise δ(ms(ci), ms(cj)) = 0; 

· n is the number of individuals in the population;  

·l is the length of each chromosome, representing the total number of operations in the tasks. 

Equations (3) and (4) present the specific calculation processes for the crossover and mutation 

probabilities of the algorithm. 

𝑃𝑐 = 𝑃𝑐0 × exp (1 −
𝑅 − 𝑅min

𝑅max − 𝑅min
) (3) 

𝑃𝑚 = 𝑃𝑚0 × (1 +
𝑅 − 𝑅min

𝑅max − 𝑅min
) (4) 

Where, Pc0 = 0.8, Pm0 = 0.1  represent the initial replication rate and initial crossover rate. 

Rmin, Rmax indicating the historical minimum/maximum gene duplication rate (R) in the current 

evolutionary stage. This mechanism ensures that when the R exceeds the threshold, the algorithm 

triggers enhanced mutation operations to jump out of local optima. When this situation persists for 10 

generations, the algorithm activates the "gene recombination" mechanism: 

(1) Retain the top 10% of elite chromosomes. 

(2) Replace 30% of the population with new chromosomes generated by the Gene Diversity 
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Injection (GDI) operator, which introduces random gene segments from historically optimal solutions. 

 

Figure 2: Flowchart of evolution guided by gene repetition rate. 

3.4 The framework of Improved GA 

Figure 3 presents the framework of the algorithm derived from the preceding discussion. 

 

Figure 3: Framework diagram of the algorithm. 

4. Simulation Experiments and Performance Analysis 

The algorithm presented in this study is implemented using Matlab 2020a, and the experimental 
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environment is configured with an Intel Core i5 processor, 12GB of RAM, and a Windows 10 

operating system. To validate the effectiveness of the algorithm, two widely recognized FJSP 

benchmark datasets are selected. One set is the relatively small-scale Kacem datasets[9], while the other 

is the more complex Brandimarte datasets[10]. For each test instance, 20 experimental runs are 

conducted. The population size of the algorithm is set to 5×m×n (where m,n represent the instance size), 

and the maximum number of iterations is set to 10×m×n.  

To evaluate the overall performance of GAGR, this section compares it with three other algorithms: 

SAGA[11], SLGA [12], and edPSO [13]. Table 1 presents the comparison results of these algorithms on the 

Kacem dataset, where "-" indicates that the result was not reported in the literature. Due to the lack of 

the original Kacem05, GAGR was able to achieve the lower bound (LB) results for the remaining four 

instances. This indicates that GAGR demonstrates better performance when handling smaller-scale 

problems. 

Table 2: Best makespan of each algorithm on the Kacem datasets. 

Instances LB SAGA edPSO SLGA GAGR 

Kcaem01 11 11 11 11 11 

Kcaem02 14 14 17 14 14 

Kcaem03 11 11 - 11 11 

Kcaem04 7 8 8 - 7 

Kcaem05 11 - - - - 

Table 2 presents the experimental results of several algorithms on 10 medium- to large-scale BR 

datasets. As can be seen from the data in this table, each algorithm can generally achieve the theoretical 

optimal value on the slightly simpler MK03 and MK08 instances. Although it does not achieve the best 

results on the smaller MK instances, the proposed GAGR algorithm demonstrates significant 

superiority on the more complex MK09 and 10 instances. These experimental results demonstrate that 

GAGR exhibits greater adaptability when handling large-scale problems. 

Table 3: Best makespan of each algorithm on the BR datasets. 

Instances LB SAGR edPSO SLGA GAGR 

MK01 36 40 41 40 41 

MK02 24 29 26 27 27 

MK03 204 204 207 204 204 

MK04 48 60 65 60 60 

MK05 168 176 171 172 172 

MK06 33 67 61 69 69 

MK07 133 144 173 144 144 

MK08 523 523 523 523 523 

MK09 299 312 307 320 312 

MK10 165 209 312 254 204 

The Actual Relative Percentage Deviation (ARPD) is a metric used to further assess the 

performance of an algorithm by comparing its solution with the optimal solution or known lower bound. 
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Table 3 provides a detailed presentation of the actual number of solved instances (ASI) by each 

algorithm along with the ARPD values for each algorithm. The specific calculation method involves 

first determining the difference between the algorithm's solution and the lower bound, then dividing by 

the optimal solution or lower bound, and finally multiplying the resulting ratio by 100 to express the 

deviation of the algorithm's solution from the theoretical value. The formula is as follows: 

𝐴𝑅𝑃𝐷 =
∑

(𝐵𝑒𝑠𝑡 − 𝐿𝐵) × 100
𝐿𝐵

𝐴𝑆𝐼
𝑙=1

𝐴𝑆𝐼
(5)

 

Where, ‘Best’ denotes the optimal result achieved over 20 runs for each instance by the respective 

algorithms. For the same instance, the ARPD value of GAGR is denoted as 'GAGR’ s ARPD'. The 

'Improvement' column specifically refers to the performance improvement in ARPD achieved by the 

GAGR algorithm compared to other algorithms tested on the two datasets. The higher the value, the 

more significant the improvement. 

The results of each algorithm are presented in Table 4. From the data, it is evident that GAGR 

achieved varying degrees of improvement in ARPD. Although GAGR did not find the optimal solution 

for smaller-scale instances, it reduced the ARPD values in the more complex MK09 and MK10 

instances. These results confirm that GAGR outperforms other methods in optimizing the makespan of 

FJSP. 

Table 4: Comparison of ARPD values for each algorithm. 

Algorithms ASI ARPD (%) GAGR’s ARPD (%) Improvement (%) 

SAGA 14 15.6 14.2 1.4 

edPSO 13 17.7 15.3 2.4 

SLGA 13 17.6 15.3 2.3 

5. Conclusions 

To solve the FJSP, we proposed an adaptive GA based on gene repetition rate (GAGR). During 

implementation, the algorithm detects the repetition rate of genes in different chromosomes and uses it 

to guide the evolutionary process. Furthermore, a two-layer gene chain chromosome representation and 

adaptive evolutionary operators are used for genetic manipulation to increase chromosome diversity 

and enrich the population's gene pool. 

Finally, GAGR was tested on selected benchmarks. Experimental validation showed that GAGR 

demonstrated good performance in solving the FJSP. This research not only provides a new and 

effective approach for solving the FJSP but also offers valuable insights for practical optimization 

problems in production scheduling. However, this algorithm may occasionally converge to local optima 

on small-scale problems, which will be our future research direction. 
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