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Abstract: The traditional implementation of mimicry decision-making often adopts majority decision-

making mechanisms such as 2-out-of-3 and 3-out-of-5, where each executor is assigned the same 

decision weight, ignoring the current health status of each executor. It only makes threshold judgments 

based on the cumulative number of decision errors, and triggers the cleaning and recovery mechanism 

only when the threshold is exceeded. This approach cannot effectively respond to short-term, sharply 

deteriorating working conditions and also ignores the guiding significance of historical data for mimicry 

decision-making. Therefore, this paper proposes a situation-aware-based mimicry decision module, 

which utilizes the error frequency of executors as an indicator, assigns different decision weights to CPU 

executors under various working conditions, and fully integrates historical data with current data, 

thereby making the mimicry defense system more robust. At the same time, the relationship between the 

window size and the sensitivity of executors is analyzed through simulation experiments. 
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1. Introduction 

Mimic defense aims to form heterogeneous executors through heterogeneous processors, operating 

systems, and software. It relies on the differences between heterogeneous executors to make up for their 

inherent defects and backdoor vulnerabilities. This ensures that even when the system is subjected to 

backdoor attacks via vulnerabilities or experiences functional failures, it can still maintain overall 

stability, providing dual protection for both network security and the system's functional security [1]. In a 

normally functioning mimic defense system, data to be processed is uploaded to the mimic scheduler via 

data acquisition terminals or communication network cards. The mimic scheduler then distributes the 

pending data to more than three heterogeneous executors for processing. Each heterogeneous executor 

sends its processing result back to the mimic scheduler, which finally performs mimic decision-making 

and uniformly outputs the result to the data execution mechanism or network card [2-4]. 

However, in the traditional mimic defense system, the majority voting method is generally adopted 

for mimic decision-making [5]. This decision-making method, featuring a simple structure and good 

universality, has been applied in various scenarios such as cloud platforms, cloud storage, routing, 

switching, and edge control [6]. Nevertheless, the simple majority decision only utilizes the current output 

information of executors, failing to effectively make use of the historical experience contained in past 

data and ignoring the issue that the reliability of output information from different executors varies under 

different health conditions. As a result, it is prone to causing the phenomenon of common-mode escape 

in certain cases[7-9]. Therefore, this paper proposes a weighted mimic decision method based on historical 

error frequency, conducts simulation analysis, and finally carries out application verification in the 

prototype of the mimic panoramic monitoring terminal. 

2. Mimic judgment system design  

2.1 Simple majority mimic decision-making method 

When the information to be processed is input into the system, the mimic distribution module will 

copy and distribute the input data to three different CPU executors. These three distinct CPU executors 

operate on the data. And then their processing results are sent back to the mimic module. In the mimic 

decision module, a simple majority vote is conducted, and the result that gains majority consensus is 

selected as the trusted result and output to the outside, as shown in Figure 1. 
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Figure 1: Simple majority mimic decision-making method 

However, when some executors are in a sub-healthy state, the simple majority voting mechanism may 

lead to the common-mode escape problem, as illustrated in Figure 2. Currently, CPU1 and CPU2 are in 

a sub-healthy state due to issues such as cyber attacks, device aging, and electromagnetic interference, 

resulting in a 60% probability of outputting incorrect results and a 40% probability of outputting correct 

ones. If the simple majority voting is still adopted, where each CPU executor is assigned the same 

decision weight, the mimic defense system will make a misjudgment when CPU1 and CPU2 output 

incorrect results (with incorrect_out versus correct_out being 2:1), and ultimately output the incorrect 

result. 

 

Figure 2: Common-mode escape when two CPU executors are in a sub-healthy state 

Therefore, it is necessary to analyze historical data and evaluate the current health status of CPU 

executors in combination with historical experience, and finally set dynamically configurable weights 

for them, so as to make mimic decision-making more flexible and applicable to different working 

conditions. 

2.2 Situation-aware-based Mimic Decision-making Method 

 

Figure 3: Time series of monomer attack behaviors targeting CPU1 

Take the scenario where a single executor is attacked as an example: in a 3-module heterogeneous 
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mimic defense system, only CPU1 is under attack. In the first half of the time period, the intervals 

between attacks are relatively long, and the frequency of outputting incorrect results is low. However, 

starting from time t4, the attack intensity increases sharply, leading to a dramatic rise in the frequency of 

incorrect results output and a rapid deterioration in its health status, as shown in Figure 3. Therefore, it 

becomes possible to perceive the current attack situation of different CPU executors, calculate their 

health status, and dynamically assign different decision weights by using the number of breaches per unit 

time, i.e., breach frequency, as an indicator. 

The situation-aware-based mimic decision-making method is shown in Figure 4. With a sliding 

window of size N as the scale, the time spans ∆t₁, ∆t₂, and ∆t₃ for which the three heterogeneous executors 

encounter N breach cases are calculated, respectively, as well as the attack densities d₁, d₂, and d₃ of the 

CPU executors. After normalization, these values serve as the respective decision weights w₁, w₂, and w₃ 

for the three executors. The calculation formula for the decision weights of the three heterogeneous 

executors is given in Equation (1). 

{
 
 

 
 𝑤1 =

𝑑1

max⁡(𝑑1,𝑑2,𝑑3)
× 100%

𝑤2 =
𝑑2

max⁡(𝑑1,𝑑2,𝑑3)
× 100%

𝑤3 =
𝑑3

max⁡(𝑑1,𝑑2,𝑑3)
× 100%

                (1) 

Among them, the attack density d is calculated in Equation (2). 

{
 
 

 
 𝑑1 =

𝑁

∆𝑡1

𝑑2 =
𝑁

∆𝑡1

𝑑3 =
𝑁

∆𝑡1

                     (2) 

 

Figure 4: Weighted Mimic Decision-Making Method 

As shown in Figure 4, after the mimic arbitrator calculates the respective decision weights of CPU1, 

CPU2, and CPU3 based on historical data, it outputs the result after weighted arbitration. This avoids the 

common-mode escape problem when two sub-healthy CPU executors dominate the system in simple 

arbitration, enabling the system to finally output the correct result. 

2.3 Hardware framework of mimic module 

The nodes in current industrial control systems vary greatly in functionality, and the cost of carrying 

out mimic transformation for each specific system service is enormous. For example, a mimic switch is 

generally of a rack-mounted structure, with both the switching chip and CPU executors located on the 

same hardware circuit; a mimic industrial control device is usually in the form of a combination of a 

backplane and plug-in boards, and the two cannot be used interchangeably. Each time the scenario is 

changed, a new set of software and hardware systems needs to be rebuilt, which brings inconvenience to 

the construction of the mimic defense system. Therefore, this paper designs a cascaded universal mimic 

defense module (Scheduler module), which integrates the mimic scheduler and heterogeneous executors 

through a cascaded chassis. In different application scenarios, only the data acquisition unit (IO module) 

needs to be redesigned. The prototype architecture is shown in Figure 5. The situation-aware-based 

mimic decision system is installed on the mimic scheduling plug-in board of the scheduling module. 
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Figure 5: Hardware of Mimic Scheduling System 

The working process of the entire mimic scheduling system is divided into an uplink distribution part 

and a downlink decision part. 

The uplink process is as follows: First, the IO module collects external digital and analog information 

or receives monitoring information from the network through the network interface card (NIC), and then 

sends the data to be processed to the mimic scheduler module through the backplane cascading interface. 

Second, in the mimic scheduling board of the mimic scheduler module, the data to be processed is 

distributed to three heterogeneous executor plug-in boards through a distribution mechanism, namely 

CPU1 (ARM), CPU2 (Loongson), and CPU3 CARD (RISCV). Then, the application programs deployed 

in the heterogeneous executors perform computations. This is shown in Figure 6. 

 

Figure 6: Uplink Data Process 

 

Figure 7: Downlink Data Process 
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The downlink process is as follows: First, the three heterogeneous CPU executors respectively output 

their respective calculation results to the mimic scheduler board. Second, mimic decision-making is 

performed in the mimic scheduler board, and the calculation results that obtain the majority in the same 

batch are output as trusted results to the IO module. Finally, the calculation results are output to the NIC 

or IO board according to the controlled object, and the safe and trusted results are ultimately output to 

the network or digital/analog actuators, thus completing the entire mimic control process. As shown in 

Figure 7. 

2.4 Parameter Analysis 

The situation-aware-based mimic decision-making method can also promptly issue alarm information 

when the system deteriorates sharply, instead of triggering an alarm only when the cumulative output 

failures reach a threshold, which enhances the system's ability to respond to environmental changes. The 

sliding window size N is crucial to the sensitivity of the mimic defense system. A larger N will smooth 

the abrupt system changes with the historical previous values in the window, reducing the slope of the 

attack density curve and thus delaying the alarm time. Meanwhile, a larger N can smooth out minor 

disturbances and prevent false alarms. A smaller N makes the system more sensitive when the system 

deteriorates sharply and the attack density increases drastically, enabling rapid alarms. However, a 

smaller N has relatively poor ability to cope with short-term disturbances and is prone to false alarms. 

As shown in Figure 8, the changes in attack density are detected by the mimic scheduler when the sliding 

window N takes different values; the smaller N is, the more drastic the fluctuations, and the more 

sensitive the system. Figure 9 shows the changes in mimic decision weights when N takes different values. 

When a change occurs at time t3 as shown in Figure 3, a smaller N leads to a faster convergence of the 

mimic decision weight to a lower level, with faster weight updates, allowing the system to adapt to new 

changes in a shorter time and reduce attack escape behaviors. Nevertheless, a smaller N is also prone to 

misjudgment during small-range fluctuations. Therefore, when deploying the weighted mimic decision-

making mechanism, it is necessary to balance the impact between anti-interference and response speed 

to determine an appropriate window size. 

 

Figure 8: Changes in attack density with different values of N when CPU1 is individually under attack 

 

Figure 9: Changes in vote weight with different values of N when CPU1 is individually under attack 

3. Conclusions 

This paper proposes a situation awareness method for mimic defense systems based on historical data. 

Based on situation awareness, the health status of each CPU executor is obtained, and different mimic 

decision weights are assigned to each CPU executor according to their health status. This combines 

historical data with current results to jointly output corresponding results, avoiding the escape of some 

common-mode vulnerability attacks and achieving better robustness. Meanwhile, a universal hardware 

architecture of the mimic scheduling module is proposed, providing new ideas for the deployment and 

implementation of mimic defense. 
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