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Abstract: Temperature data inside the granary is a crucial indicator for safe storage and quality 
preservation of grain. Currently, temperature measurement relies on temperature cables installed inside 
the grain piles. However, the sensors on the cables can only acquire temperature data at specific 
measurement points and cannot provide a complete overview of the entire grain pile. Most current 
temperature field generation methods based on conventional spatial interpolation techniques often suffer 
from significant errors. To achieve a more intuitive and accurate monitoring of temperature distribution 
in granary environments, this study proposes a high-resolution reconstruction model for grain 
temperature fields based on the 3DSRCNN_Resnet. The model firstly improves the SRCNN in 3D to 
obtain the 3DSRCNN model, so as to apply the SRCNN super-resolution reconstruction algorithm, which 
deals with 2D images, to the task of reconstructing the temperature field of a three-dimensional granary. 
Secondly, a nonlinear mapping module based on 3D residual blocks and a residual reconstruction 
module based on 3D deconvolution are proposed to adjust the network structure of the 3DSRCNN model. 
The experimental results show that compared with the traditional spatial interpolation method, the grain 
temperature data reconstructed by this model achieves better performance under MSE, MAE, PSNR and 
SSIM metrics. This model provides a novel approach for comprehensive and accurate understanding of 
temperature distribution within grain piles. 
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1. Introduction 

Grain temperature is an important indicator for monitoring and analyzing the safety status of stored 
grain, and accurate temperature control is crucial for granary management[1-3]. Currently, temperature 
measurement in granary mainly relies on temperature cables installed inside the grain piles[4]. However, 
the sensors on the cables can only provide temperature data at specific measurement points, failing to 
capture the complete temperature distribution within the grain pile. Therefore, to visually and accurately 
monitor the temperature distribution in granary, specific three-dimensional visualization methods are 
required to obtain spatial temperature distribution information and variations within the grain pile[5]. 

Spatial interpolation techniques[6] play a key role in visualizing grain temperature distribution. These 
techniques utilize spatial correlations to interpolate temperature data, thereby obtaining denser 
temperature information and providing more detailed temperature spatial distribution. Currently, 
common spatial interpolation methods include Linear interpolation, Nearest-neighbor interpolation, 
Kriging interpolation, Radial basis function interpolation, Inverse distance weighting interpolation, and 
others. With the rise of neural networks, researchers have started to incorporate neural networks into the 
field of spatial interpolation. For example, in 2021, Wang et al.[7] combined BP neural network with 
Kriging interpolation to develop a temperature field prediction model. Li[8] proposed a grain temperature 
spatial interpolation algorithm using BP neural networks, ordinary Kriging interpolation, and inverse 
distance weighting interpolation. 

Traditional high-resolution image reconstruction algorithms[9] aim to establish the feature relationship 
between low-resolution (LR) images and high-resolution (HR) images based on known image 
information. Currently, most existing high-resolution reconstruction algorithms are based on two-
dimensional (2D) images, with limited research on high-resolution reconstruction of three-dimensional 
(3D) spatial data. In this study, we propose a high-resolution reconstruction model for spatial temperature 
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distribution in granary based on 3DSRCNN_Resnet. Specifically, we abstract the temperature field in 
granary as a 3D volume, with each voxel representing a discrete temperature measurement point. The 
sparse temperature field is treated as 3DLR data, and the interpolated temperature field serves as 3DHR 
data. The 3DLR data is fed into the 3DSRCNN_Resnet model, which is trained to learn and generate 
corresponding 3DHR data, i.e. the reconstructed temperature field. This model leverages the sparsely 
measured temperature data from sensors inside the grain pile to generate a more detailed temperature 
field matrix, providing a new approach for visually and accurately monitoring the temperature 
distribution in granary. Compared to traditional linear interpolation, the trained model in this study 
demonstrates superior performance in terms of MSE, MAE, PSNR, and SSIM metrics, thereby showing 
potential for practical applications. 

2. Overview of SRCNN High-Resolution Reconstruction Algorithm 

The SRCNN network model is a pioneering work in deep learning-based image super-resolution 
reconstruction. In 2014, Dong et al.[10] from The Chinese University of Hong Kong first used a three-
layer convolutional neural network to model the nonlinear relationship between high-resolution images 
and low-resolution images, making it the first deep learning-based end-to-end image super-resolution 
algorithm. The SRCNN network model has proven that the application of deep learning in the super-
resolution field can surpass traditional methods, such as interpolation methods and reconstruction 
methods, achieving better results and performance. The network structure of the SRCNN network model 
is shown in Figure 1. 

 
Figure 1: SRCNN Network Structure.  

SRCNN preprocesses the input low-resolution images using Bicubic interpolation method. The 
interpolated low-resolution images are denoted as X, while the original high-resolution images are 
denoted as Y. The function representing the network mapping is denoted as ( )F ⋅ . The network mapping 
is divided into three modules: Patch extraction and representation, Non-linear mapping, and 
Reconstruction. The patch extraction and representation operation is achieved by obtaining the desired 
feature maps from the input image, i.e. extracting the image features through CNN and storing them 
vectors. The non-linear mapping operation corresponds to the "convolution + activation" operation, i.e., 
further processing the feature map from the previous layer with non-linear mapping to increase the 
network depth, which is more conducive to learning. The reconstruction operation uses convolution 
without an activation function, borrowing from the pure interpolation method of traditional super-
resolution, i.e. the idea of averaging the local image. The formula for the three modules are expressed as 
follows:  

( )1 1 1( ) max 0, *F X W X B= + ; ( )2 2 1 2( ) max 0, * ( )F X W F X B= + ; 3 2 3( ) * ( )F X W F X B= +        (1) 

1 ( )F X represents patch extraction, 2 ( )F X represents non-linear mapping, and ( )F X represents 

reconstruction. In the above formulas, 21 3WW W and 21 3B B B respectively represent the weights and biases of 
the filter (convolution kernel), and the max function represents the ReLU activation function. 
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3. High-Resolution Reconstruction Model for Grain Temperature Based on 3DSRCNN_Resnet 

3.1. Data Analysis and Processing 

In granary, the layout of cable temperature measurement points is typically as shown in Figure 2. In 
this study, the temperature field of the granary is treated as a three-dimensional (3D) spatial dataset with 
dimensions (N, C, D, H, W), where N represents the number of samples, C represents the number of 
channels in the 3D spatial data. Since the sensors in this study specifically measure temperature, C=1. If 
the sensors are capable of simultaneously measuring multiple parameters such as temperature and 
humidity, the value of C would correspondingly be determined based on the number of measured 
indicators. Additionally, H, W, and D represent the total number of temperature measurement points in 
the height, width, and depth dimensions of the granary, respectively. 

 
Figure 2: SRCNN Network Structure.  

The dataset for this study comprises temperature measurements from various granaries sites in Hubei, 
China. Each data represents a three-dimensional spatial sample, which consists of all the temperature 
measurement point data of a grain depot in a granary company under one point in time. The data format 
of each temperature measurement point is (Temp, x, y, z), with Temp being the point's temperature and 
x, y, z its coordinates. The dataset combines data from multiple companies and grain depots, the total 
number of temperature measurement points in each sample and the number of them in the three 
dimensions of width, height and depth are not fixed. In addition, missing values may occur due to 
incomplete data. In order to better reconstruct the 3D data, the grain temperature dataset needs to be 
preprocessed first. The main steps are shown in Figure 3 below:  
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Figure 3: Data Processing Flowchart. 

Step 1: Fixing the dimensions of the three-dimensional spatial dataset. 

In the context of grain temperature interpolation and reconstruction in this study, the three-
dimensional grain temperature spatial data before interpolation is referred to as three-dimensional low-
resolution (3DLR) data, while the interpolated and reconstructed grain temperature data is referred to as 
three-dimensional high-resolution (3DHR) data. To facilitate the subsequent model training, the height, 
width, and depth of the pre-reconstructed samples are set to 4×6×6, and the size of the reconstructed 
grain temperature spatial samples is set to 8×12×12. 

Step 2: Generating the three-dimensional temperature spatial dataset. 

First, data filtering, delete the following kinds of data that do not conform to the temperature pattern 
of the grain store: 1) The overall fluctuation range of the temperature of all the temperature measurement 
points in a certain data is not more than 0.1°C or more than 40°C. 2) The temperature of some temperature 
measurement points in a data record is lower than -10°C or higher than 40°C. 3) The spatial dimensions 
of the data are smaller than 4×6×6. 
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Second, the three-dimensional temperature spatial dataset is constructed based on the recorded 
temperature measurement points (Temp, x, y, z) in each data record. The temperature value (Temp) of 
each measurement point corresponds to the value of a spatial point in the temperature spatial dataset, 
which is determined by its coordinates (x, y, z) in the three-dimensional space. By filling each 
temperature value at the corresponding position, a three-dimensional temperature spatial dataset 
representing the temperature distribution inside the granary facility is formed. For missing temperature 
measurement points in the dataset, spatially weighted average interpolation is applied to generate a 
complete three-dimensional temperature spatial dataset. 

Step 3: Generating the input dataset and the target dataset. 

In practical applications, it is difficult for cable temperature measurement points to cover a range of 
8×12×12 due to factors such as cost constraints. To overcome this challenge, this study adopts a series 
of measures to address the data scarcity issue. 

First, the target dataset is generated. The three-dimensional spatial dataset generated in Step 2 is 
divided into fixed-sized samples of 4×6×6 with a step size of 3. These small samples form a new fixed-
sized set of three-dimensional temperature spatial samples. They are then expanded to the scale of 
8×12×12 using the Nearest neighbor interpolation method. To simulate real-world conditions, Gaussian-
distributed noise is added to each sample, resulting in a high-resolution reconstructed dataset, which is 
the target dataset. 

Second, the input dataset is generated. A sampled dataset of 4×6×6 size is obtained by downsampling 
against this newly generated 8×12×12 target dataset, which is used as the input dataset. This data 
processing method based on interpolation and sampling aims to address the issue of data scarcity in 
practical scenarios. It effectively utilizes the original data to provide rich information for model training 
while ensuring data quality and reliability. This research approach not only effectively addresses 
challenges in real-world environments but also provides valuable insights and references for data 
processing and modeling in related fields. 

3.2. Model Construction 

In order to successfully apply the SRCNN model to the task of spatial high-resolution reconstruction 
of grain temperature, the temperature field in the grain depot is first treated as a three-dimensional spatial 
data. Secondly, the SRCNN model is adjusted and optimized to meet the requirements of grain 
temperature spatial interpolation tasks, and to ensure that the model can effectively handle the spatial 
features of three-dimensional data, thus achieving accurate reconstruction of 3DLR grain temperature 
data. The key step is to extend the SRCNN model from processing two-dimensional image data to 
processing three-dimensional volumetric data, and setting up the inner 3D convolution residual block 
and the outer 3D deconvolution residual block to adjust the network structure, enabling it to perform 
better when processing volumetric data. The structure of the 3DSRCNN_Resnet model proposed in this 
article is shown in Figure 4: 
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Figure 4: 3DSRCNN_Resnet Model. 

The input and output data of this algorithm are both five-dimensional matrices, where the input data 
has dimensions of [B, C, D, H, W], and the output data has dimensions of [B, C, 2D, 2H, 2W]. Here, B 
represents the number of data batches and is set to 64; C represents the number of channels and is set to 
1, specifically the temperature channel in this context; H represents the height and is set to 4; W represents 
the width and is set to 6; D represents the depth and is set to 6. The model structure mainly consists of 
three modules: Patch extraction and representation, Non-linear mapping based on internal residuals, and 
Reconstruction based on external residuals. The following is a description of each operation: 

(1) Patch extraction and representation layer. 
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This paper first preprocesses the data, that is, amplifies the spatial dimension of the 3DLR data 
through Trilinear interpolation method, and obtains three-dimensional low-resolution spatial data with 
the same spatial dimension as the 3DHR data. Secondly, with the transformation of image data into three-
dimensional spatial voxel data, a three-dimensional convolutional neural network is introduced to replace 
the traditional convolutional neural network, capturing all features along the depth, width, and height 
directions to extract and represent the features of the data in three-dimensional space. 

(2) Non-linear mapping based on 3D residual blocks. 

The non-linear mapping layer is constructed by stacking three 3D residual convolutional blocks. The 
structure of each residual convolutional block is shown in Figure 5: The input data first goes through a 
3D convolutional layer and a 3D batch normalization layer to obtain intermediate feature representations. 
It then undergoes a non-linear mapping through the ReLU activation function, followed by another round 
of 3D convolutional layer and 3D batch normalization layer. Finally, the processed result is added to the 
original input data, and the final output is obtained through the ReLU activation function again. The 
combination of these residual connections and multi-layer convolutional structures strengthens the 
model's spatial modeling ability for the three-dimensional data, allowing the network to more fully utilize 
the information in the input data and reduce the problem of vanishing gradients, further enhancing the 
feature representation capability. 

OutputInput
ReLU Conv3d_2 BatchNorm3d_2BatchNorm3d_1Conv3d_1 ReLU

 
Figure 5: Residual Block. 

(3) Residual reconstruction module based on 3D deconvolution. 

First, the original input data undergoes deconvolution operations to extend its spatial dimensions, 
thereby increasing the spatial range of features. This helps better preserve the information from the 
original input during the reconstruction process. Second, the results obtained after the patch extraction 
and representation layer and the non-linear mapping layer are convolved to further extraction and 
dimensionality reduction of the spatial features of the data. Finally, the results of these two parts are 
added together to fuse the information from different stages, ensuring a comprehensive consideration of 
both global and local features of the original input data during the reconstruction process, thereby 
obtaining the reconstructed results of the grain temperature data. 

3.3. Experimental Validation and Analysis 

In the experiments, the dataset is divided into training and testing sets in a 7:3 ratio. The model is 
trained with a learning rate of 0.001, 100 epochs, Adam optimizer, and MSE loss function. In this paper, 
the SRCNN model, originally used for image super-resolution reconstruction tasks, is adapted to three-
dimensional grain temperature high-resolution reconstruction tasks by making 3D improvements, two 
models are obtained: 3DSRCNN and 3DSRCNN_Resnet. The 3DSRCNN model removes both the inner 
and outer residuals of 3DSRCNN_Resnet, which means removing the external residuals based on 3D 
deconvolution and the internal residuals in the non-linear mapping layer based on 3D residual blocks. 
During the training of both models, it is observed that the initial few epochs have relatively high loss 
values. The MSE loss values for the first three epochs of 3DSRCNN are: 3.096, 1.156, and 0.945, while 
for 3DSRCNN_Resnet, they are: 9.162, 0.558, and 0.399. Therefore, to clearly show the loss trends in 
the subsequent training process, the loss curves for both models start from the fourth epoch, as shown in 
Figure 6. It can be observed that the 3DSRCNN_Resnet model has lower loss values compared to 
3DSRCNN in the same epochs, indicating that the improvement of the internal and external residuals 
based on 3DSRCNN has a more significant impact on the model performance. 

 
Figure 6: Loss Curve Graph. 
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To comprehensively evaluate the accuracy of the experimental results, this paper utilizes both 
traditional metrics and commonly used image reconstruction evaluation indices, namely Mean Absolute 
Error (MAE), Mean Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity 
Index (SSIM). In order to adapt to the spatial temperature data reconstruction task of this paper, the PSNR 
and SSIM formulas are optimized and adjusted, as shown in Formula (2) and (3): 

2

1010 log [ , ] max( ) min( ), ,pred true pred truePSNR m n R Y Y Y Y
R
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= ⋅ ∈ = −

 
 
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In the above context, trueY and predY represent the true 3D high-resolution (3DHR) grain temperature data 
and the predicted 3DHR grain temperature data, respectively. m and n are constants, typically with m>20 

and n>50. R refers to the dynamic range of the data. predYµ and trueYµ are the mean values of trueY and predY , 

respectively.
2

trueYσ and
2

predYσ are their variances, and pred trueY Yσ
is their covariance. 1C and 2C are constants used to 

stabilize the terms in the denominator. MAE indicates the model's prediction accuracy, with a smaller 
value denoting higher accuracy. MSE assesses the error impact in predictions, with a lower value 
indicating greater accuracy. PSNR measures the overall error between the interpolation result and the 
actual temperature field, with a higher value indicating a closer match. SSIM evaluates structural 
similarity, including spatial distribution and continuity, with a value closer to 1 signifying a closer match 
to the real data in spatial terms. 

To verify the effectiveness of the proposed 3DSRCNN-based inner-outer residual model, this study 
conducted a series of comparative experiments on the Testing Set with different interpolation methods, 
including Trilinear interpolation(Trilinear), Nearest Neighbor interpolation (Nearest), Ordinary Kriging 
interpolation (OK), and Radial Basis Function interpolation (RBF). Additionally, this study evaluated the 
performance of the 3DSRCNN model and the 3DSRCNN_Resnet model on the Testing Set separately. 
The experimental comparison results are shown in Table 1: 

Table 1: Comparison of Model Results 

Model MSE MAE SSIM PSNR 
OK3D 2.815 0.976 0.483 28.855 
Nearest 1.965 0.796 0.756 30.416 
Trilinear 1.270 0.712 0.790 32.311 

RBF 0.754 0.512 0.833 34.795 
3DSRCNN 0.047 0.166 0.924 46.694 

3DSRCNN_Resnet 0.023 0.112 0.934 49.787 
To demonstrate the comparison of model performance, the results under the MSE scoring criterion 

are divided by 3, and the results under the PSNR scoring criterion are divided by 50. The graph is shown 
below in Figure 7: 

 
Figure 7: Model Results Comparison Chart 

Based on the observations from Table 1 and Figure 7, the values of MSE and MAE show a clear 
downward trend, while the values of SSIM and PSNR show a clear upward trend. This indicates that the 
performance of the models, under all scoring criteria, ranks from worst to best as follows: OK3D < 
Nearest < Trilinear < RBF < 3DSRCNN < 3DSRCNN_Resnet. Particularly, compared to the worst 
interpolation algorithm OK3D, the 3DSRCNN_Resnet model has reduced MSE and MAE by 
approximately 99.18% and 88.52%, respectively, and has increased SSIM and PSNR by approximately 
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93.37% and 72.74%, respectively. This demonstrates that the model proposed in this paper successfully 
adapts the two-dimensional image super-resolution algorithm to the three-dimensional grain temperature 
spatial measurement point reconstruction task, and exhibits superior performance compared to traditional 
interpolation algorithms. Specifically, the 3DSRCNN_Resnet model performs the best under all scoring 
criteria, reducing MSE and MAE by approximately 51.06% and 32.53%, respectively, and increasing 
SSIM and PSNR by approximately 1.08% and 6.62%, respectively, compared to the 3DSRCNN model. 
Therefore, the improvements based on the Non-linear mapping based on 3D residual blocks and the outer 
residual layer based on 3D deconvolution for the reconstruction module significantly enhance the 
effectiveness of the 3DSRCNN model. 

 
a) 3DLR(n=1700)      b) 3DHR(n=1700)         c) OK3D             d) Nearest 

 
e) Trilinear              f) RBF            g) 3DSRCNN       h) 3DSRCNN_Resnet 

Figure 8: 3D Scatter Plot of the 17000th Sample in Three-Dimensional Space 

 
a) 3DLR(n=1700)      b) 3DHR(n=1700)         c) OK3D             d) Nearest 

 
e) Trilinear              f) RBF            g) 3DSRCNN       h) 3DSRCNN_Resnet 

Figure 9: 2D Cross-Sectional View of the 17000th Sample 

By analyzing the sub-figures in Figure 8, firstly, it can be seen from sub-figure b) that the temperature 
range of the 17000th sample is approximately between 7.5°C and 28°C. From sub-figures c), d), e), and 
f), it can be observed that the temperature range of the temperature field reconstructed using traditional 
spatial interpolation algorithms is approximately between 11°C and 23°C. From sub-figure g), it can be 
seen that the temperature range of the temperature field reconstructed using the 3DSRCNN model is 
approximately between 8°C and 27°C. From sub-figure h), it can be observed that the temperature range 
of the temperature field reconstructed using the 3DSRCNN_Resnet model is approximately between 8°C 
and 28°C. Based on the temperature range, the temperature field reconstructed using the 
3DSRCNN_Resnet model is more consistent with the actual temperature field. By observing at the places 
circled with black dashed lines in Fig. b) of the actual temperature field, it can be seen that these positions 
belong to high-temperature blocks. Compared to other sub-figures, the deep learning-based 3DSRCNN 
and 3DSRCNN_Resnet models can better reconstruct these high-temperature blocks simultaneously. By 
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analyzing the temperature and contour lines in each sub-figure of Figure 9, it can be seen that the 
3DSRCNN and 3DSRCNN_Resnet models can better reconstruct the temperature distribution of the 
original temperature field. Moreover, compared to 3DSRCNN, 3DSRCNN_Resnet can better reconstruct 
the low-temperature and medium-high temperature areas in the cross-section. Therefore, by observing 
the 3D scatter plot of the 17000th sample under different methods and the temperature change graph of 
a certain layer's 2D cross-section of the sample, it is once again verified that the proposed 
3DSRCNN_Resnet model can achieve better results in the high-resolution reconstruction of storage grain 
temperature. 

4. Summary  

For the high-resolution reconstruction task of grain temperature in storage spaces addressed in this 
paper, the commonly used methods are spatial interpolation techniques such as Linear interpolation, 
Nearest neighbor interpolation, Kriging interpolation, Radial basis function interpolation and so on. 
However, these traditional methods struggle to mine the spatial distribution of temperature when the 
temperature measurement points are sparse in the grain storage. Therefore, this study introduces the 
SRCNN image super-resolution reconstruction algorithm and proposes a model based on 
3DSRCNN_Resnet for high-resolution reconstruction of the grain temperature field in three-dimensional 
space. This model leverages scattered temperature data measured by temperature sensors within the grain 
storage to mine the internal temperature variations and generate a more comprehensive temperature field 
with additional temperature points. It provides a new approach for a more comprehensive and accurate 
understanding of the temperature distribution inside grain storages. Compared to traditional Linear 
interpolation, Nearest neighbor interpolation, Kriging interpolation, and Radial basis function 
interpolation, the trained model in this study exhibits superior performance in testing and demonstrates 
potential for practical applications. 
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