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Abstract: Dynamics performance is a crucial mechanical performance indicator for stiffened plates. 
Therefore, this paper investigates the topology optimization design for minimizing dynamic compliance 
of stiffened plates under time-domain loads. Based on the SIMP (Simple isotropic material with 
penalization), an interpolation model for stiffened plates is established. To enhance the accuracy of 
sensitivity calculations, a sensitivity analysis strategy that discretizes before differentiating is employed. 
By introducing adjoint variables, the cost of computing the gradient of the function is made linearly 
dependent on the number of state variables, significantly improving computational efficiency. With the 
constraint of the stiffener volume fraction, the topology optimization problem for minimizing dynamic 
compliance of stiffened plates under half-wave sinusoidal loads is solved. Finally, through a comparison 
of numerical results from example cases with the dynamic response of traditional unidirectional stiffened 
plates, it is found that the maximum displacement of the optimized stiffened plate is approximately 30.5% 
of the maximum displacement of the unidirectional stiffened plate. This verifies that the optimized 
stiffened plate exhibits superior dynamics performance. 
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1. Introduction  

Stiffened plate structures, with their excellent specific stiffness and specific strength, are widely used 
in aerospace, shipbuilding, submarine, and other fields [1]. In ship structural design, stiffened plates play 
a crucial role in enhancing the overall rigidity and strength of the structure, significantly improving the 
wave-resistant performance and carrying capacity of ships. D. Quinn and A. Murphy [2] conducted 
research on stiffened plates in vehicles, demonstrating that the initial buckling performance can be 
enhanced while ensuring the lightweight of the vehicle. Xu [3] studied the ultimate strength of stiffened 
plates under combined transverse and longitudinal loads and derived empirical formulas to predict the 
collapse behavior of ship structures. Goel et al. [4] explored the dynamic response of stiffened plates under 
airblast loads, providing a reference for safe structural design. As an important supporting structure of 
submarines, the ring-stiffened cylindrical shell has also been studied by Yang et al. [5] regarding its 
strength and buckling performance under mechanical and thermal loads. 

Stiffened plates, as a lightweight structure, have garnered widespread attention for their design 
methodology. Quinn et al. [6] introduced a secondary stiffener design to traditional stiffened plates and 
experimentally demonstrated that this secondary reinforcement design increased the initial buckling 
strength by 89% compared to stiffened plates of equivalent mass design. Omidali and Khedmati [7], for 
the first time, integrated reliability methods into the design of ship stiffened plates, taking into account 
the uncertainties in local load patterns caused by environmental and internal forces, thereby enhancing 
the safety of ship structures. Yang et al. [8] employed the nonlinear finite element method to investigate 
the dynamic ultimate strength of stiffened plates in the bottom of ships under uniaxial compression and 
lateral pressure, taking into account both material and geometric nonlinearities. Amaral et al. [9] proposed 
a new computational procedure for the structural design of stiffened plates with symmetric boundary 
conditions. This procedure always finds an appropriate geometry to transform the reference plate into 
stiffeners, significantly improving mechanical performance. Li et al. [10] introduced the design concept of 
material addition and mathematically explained the adaptive growth behavior of this branching pattern 
based on the Kuhn-Tucker conditions, providing a topologically optimized solution for the layout of 
stiffened plate/shell structures. 

In the geometric optimization study of elastoplastic buckling plates with stiffeners, Lima et al. [11] 
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employed a structural design approach combining exhaustive search techniques with the finite element 
method. They found that adjusting parameters such as the volume fraction of stiffeners, their quantity, 
and the ratio of stiffener height to thickness significantly affects the performance of stiffened plates under 
buckling. Farkas[12] improved the original Snyman-Fatti (SF) [13] global continuous optimization 
algorithm and applied it to the optimal design of welded square stiffened plates. By optimizing plate 
thickness and stiffener dimensions using a cost calculation method, while considering stress and 
deflection constraints, he demonstrated the effectiveness and accuracy of the SF algorithm in this 
structural optimization problem. Soares and Gordo [14] evaluated the performance of three designs of 
stiffened plates subjected to in-plane uniaxial compression loads through a comparative analysis of 
numerical and experimental results. They reduced deviations and uncertainties in the dataset by 
predicting stiffener trip phenomena. Zhao et al. [15] proposed a method combining modal superposition 
and model reduction techniques for the topological optimization of large structures with proportional 
damping under harmonic excitation. This approach effectively reduces computation time while ensuring 
the accuracy of optimization results. Sasikumar et al. [16] utilized topological optimization methods to 
explore the maximum damping capacity of passive constrained layer damping treatments, successfully 
identifying the optimal combination of layer thicknesses and treatment coverage areas. Similarly, Ma et 
al. [17] developed a generative design method and equivalent model based on the homogenization 
approach to optimize stiffened plates. 

Despite numerous positive and significant research achievements in the field of stiffened structure 
design, the consideration of dynamic load scenarios is often overlooked in the critical stages of detailed 
design. In view of this, this paper focuses on the performance of stiffened plates under time-domain 
dynamic loads and innovatively proposes a dynamic topological optimization method for such complex 
working conditions. By combining the discretize-then-differentiate method with the adjoint method, the 
accuracy of sensitivity calculations is improved while reducing computational costs. Through 
verification with optimization design examples, the optimized stiffened plate structure significantly 
improves its dynamic performance under time-domain loads. The optimization scheme effectively 
enhances the stability of the stiffened plate when subjected to dynamic loads, with the maximum 
displacement in the force direction being only 30.5% of that of traditional stiffened plates. This provides 
a new approach for the optimal design of stiffened structures in practical engineering. 

2. Topology Optimization for Minimizing Dynamic Compliance Under Volume Constraints 

2.1. Material Interpolation Model 

The density-based SIMP [18] method is adopted in this study, where the interpolation relationship 
between relative element density and element elastic modulus is 

0( ) ( ), [0,1]p
i i i min i min iD zD z D z D D= = + − ∈                     (1) 

where 0D is the material elastic modulus matrix, iD is the interpolated element elastic modulus matrix,

minD is the elastic modulus of the void material, put to a small non-zero value to avoid singularity in the 

finite element stiffness matrix, and p is the penalty index ( )1p > . 

To address issues such as checkerboarding and local minima in topology optimization, filters are 
often used. The basic filtering function is defined as 
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Where iN is the neighborhood of the element iz with volume iv , ij N∈ , ijQ
is the filter weight 

coefficient, and ijQ
is defined as 

{ }minmin 0, ijijQ r r= −                                (3) 
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Where
( , )ijr dist i j=

, minr is the size of the neighborhood of the unit. Replace the filter function into 
the SIMP interpolation model 

0( ) ( ),   z [0,1]p
i i min i min iD z D z D E= + − ∈                         (4) 

2.2. Formulation for Minimizing Dynamic Compliance under Volume Constraints 

To solve the dynamic response problem of stiffened plates, this paper employs the finite element 
method as a foundation to determine the response of stiffened plates under time-domain loads. The 
structural motion equation under external dynamic load excitation is expressed as follows 

, 0, , tM C K f Nς ς ς+ + = = …
  

 
                          (5) 

where M , C , and K are the mass, damping, and stiffness matrices, respectively, and ς  , ς  , andς 

are the displacement, velocity, and acceleration vectors, respectively. tN is the number of time steps. The 
mass and stiffness matrices are calculated as 
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im and ik are the mass matrix and stiffness matrix of the thi element, respectively. In order to satisfy 

the finite element method, im and ik are defined as follows 
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N and B are shape function and strain-displacement matrix, 0D and 0ρ are material modulus matrix 
and density, respectively. 

To establish the relationship between the volume fraction and density of individual elements, a 
volume interpolation function [19] is defined based on a threshold projection function.  

min min(1 )i iV o o v= + −                               (10) 
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This approach allows us to accurately interpolate the volume fractions and corresponding densities 

across the elements. In order to prevent the numerical singularity minu from being set to a positive number 

approaching 0, this article min 0.0001o = . β is the projection intensity,η is the threshold density. The 
material interpolation function is 

min min(1 ))( ) (i iE v o veo −= +                           (12) 

The stiffness interpolation function based on the RAMP function is 
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Where p is the RAMP punishment index. For proportional damping systems, the Rayleigh damping 
method is adopted to calculate the damping matrix. 

r rC K Mβ α= +                                  (14) 

Where rα and rβ are Rayleigh damping parameters. 

In order to reduce the vibration of the stiffened plate under the external dynamic load, the optimization 
objective is to minimize the dynamic compliance of the structure and the material volume of the stiffened 
plate is taken as the constraint. The mathematical model is 
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Where jN
is the number of volume limits and jv

is the specified number of volume parts. 

2.3. Sensitivity Analysis 

To enhance the exactness of sensitivity analysis, a "discretize-then-differentiate" strategy is employed. 

Using the chain rule, the relationship between the objective function f and the design variable z is 
expressed as 
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The adjoint variable method can significantly reduce the computational load during the solution 

process, thereby improving efficiency. Introducing three adjoint variables, , ,τ µ λ
   , revise the formula 

(16) to 
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From (18), we know that both / z∂ ∂P
 and / ei z∂ ∂Q are 0. Assuming that the initial conditions are 

independent of the design variables, thus 0 / 0zς∂ ∂ = and 0 / 0zς∂ ∂ =

, (17) can be rewritten in the 
following form 
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Finally, the sensitivity of the objective function is obtained. 
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Based on the sensitivity of the topological optimization for minimizing dynamic compliance of 
stiffened plates mentioned above, the flowchart of the optimization process is shown in Figure1. 

 
Figure 1: Topological Optimization Flowchart 

3. Random Forest model training 

The square plate structure with inflexible constraints on four border is selected as the optimization 
arrangement. As shown in figure 2, the square plate is divided into optimization region and non-
optimization region in the direction of thickness, and the optimization area is divided into 19200 8-node 
hexahedral elements. The non-optimization area as the skin of the stiffened plate does not participate in 
the optimization. The center point O of the upper free surface is subjected to half-wave sinusoidal load

tF ,specific size parameters: 400a mm= , 400b mm= , 5h mm= , 0 50F N= .The material of the 
stiffened plate is steel, the elastic modulus and Poisson's ratio of the material are 200Gpa and 0.3 

respectively, and the mass density is 7800kg/m3. In response to the number of sampling points 50tN = , 
solving the optimization result of minimizing the dynamic compliance of stiffened plates under the initial 
condition of zero, with the constraint that the volume of stiffeners does not exceed 0.15 of the 
optimization area volume fraction. 
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(a) Plate structure model         (b) Optimized region            (c) Load 

Figure 2: Problem setting of stiffened plate 

The iterative process and results of topology optimization of stiffened plates with four fixed edges 

with loading time
0.05ft s=

, as shown in figures 3 and 4. In the initial 20 iterations, the dynamic 
compliance index underwent a significant downward trajectory, indicating efficient performance 
improvement achieved in the early stage of structural optimization. This demonstrates the algorithm's 
rapid response and initial optimization capabilities for the problem. As the iterations progressed, 
especially after the 50th iteration, the optimization process entered a relatively stable convergence phase. 
Although there were occasional slight fluctuations in the objective function value during this stage, these 
minor changes did not substantially affect the optimization path. Instead, they reflected the high 
flexibility and robustness of the optimization algorithm during fine-tuning of the structural layout. This 
dynamic balance not only verifies the robustness of the optimization process but also ensures the 
reliability and accuracy of the final optimization results. The use of adjoint variables in sensitivity 
calculations significantly reduced the computational effort of the entire optimization process. The entire 
optimization was completed efficiently and accurately in just 102 iterations, achieving the expected goals. 

 
Figure 3: Iterative process               Figure 4: Optimization result 

The optimization results shown in Figure 4 reveal that the distribution of stiffeners takes on a "+" 
shape. Since the semi-sinusoidal time-domain dynamic load is concentrated at the center of the stiffened 
plate, most of the stiffeners are concentrated in the middle of the plate to reduce the vibration caused by 
dynamic forces on the plate structure. Moreover, the intersections of the stiffeners are smoothly 
transitioned, which can prevent stress concentration, aligning with practical engineering design principles. 

Figure 5 shows a common unidirectional stiffened panel, whose skin dimensions and stiffener volume 
are the same as those of the optimized stiffened panel. Dynamic analysis is conducted on this panel after 
subjecting to the same time-domain loads and constraints as the optimized stiffened panel. 

 
Figure 5: Unidirectional stiffened panel 

The time-domain dynamic responses at the load application points of the optimized stiffened panel 
and the common unidirectional stiffened panel are shown in Figures 6 and 7. From Figures 6 and 7, it is 
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evident that the displacement response, velocity response, and acceleration response of the topologically 
optimized stiffened panel under time-domain dynamic loading are significantly smaller than those of the 
unidirectional stiffened panel. Compared to the unidirectional stiffened panel, the maximum 
displacement of the optimized stiffened panel is reduced by 69.5%, the maximum velocity is reduced by 
63.6%, and the maximum acceleration is reduced by 68.5%. This indicates that the stiffened panel 
designed in this paper demonstrates superior dynamic performance and more significant vibration 
reduction effects compared to common unidirectional stiffened panels when subjected to time-domain 
dynamic loads. 

 
(a) Displacement            (b) Velocity                 (c) Acceleration 

Figure 6: Dynamic response of the optimized stiffened panel 

 
(a) Displacement            (b) Velocity                 (c) Acceleration 

Figure 7: Dynamic response of the unidirectional stiffened panel 

4. Conclusion 

In this study, an efficient optimization design algorithm for stiffened panels under time-domain loads 
is proposed, aiming to design the stiffener distribution that minimizes the dynamic compliance of the 
stiffened panels. We hope that the optimized stiffened panels will have better vibration reduction effects. 
By comparing the optimized example of a four-edge fixed stiffened panel with a regular stiffened panel, 
we can draw the following conclusions: 

(1) Employing a sensitivity analysis strategy that involves discretization followed by differentiation, 
combined with the adjoint variable method, can significantly reduce computation time and enhance 
optimization efficiency. This strategy enables the rapid derivation of optimization results with fewer 
iteration steps, thereby greatly improving the convenience and practicality of computations. 

(2) Under time-domain loads, the stiffened panel designed in this paper demonstrates significantly 
reduced vibration response in the direction of force application compared to common unidirectional 
stiffened panels, exhibiting superior dynamic performance. 

(3) The optimized stiffened panel designed in this paper features rounded corners for smooth 
transitions at the intersections of stiffeners in different directions. This not only enhances the vibration 
reduction effect of the stiffened structure but also effectively reduces local stress concentration. This 
innovative design is more suitable for practical engineering applications and provides a certain guiding 
significance.  
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