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ABSTRACT. In this paper, we propose a modified Forward-Backward splitting 
method for finding a zero of the sum of two operators. A classical modification of 
Forward-Backward method was proposed by Tseng, which is known to converge 
when the forward and the backward operators are monotone and with Lipschitz 
continuity of the backward operator. The algorithm proposed here improves Tseng’s 
method in some instances. The first and main part of our approach, contains an 
explicit Armijo-type search in the spirit of the extragradient-like methods for 
variational inequalities. During the iteration process the search performs only one 
calculation of the forward-backward operator, in each tentative of the step. This 
achieves a considerable computational saving when the forward-backward operator 
is computationally expensive. The second part of the scheme consists in special 
projection steps. The convergence analysis of the proposed scheme is given 
assuming monotonicity on both operators, without Lipschitz continuity assumption 
on the backward operator. 
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1. Introduction 

In this paper, we present a modified method for solving monotone inclusion 
problems for the sum of two operators. Given the monotone operators A : domA ⊆ 
Rn → Rn point-to-point and B : domB ⊆ Rn ⇒ Rn point-to-set, the inclusion 
problem consists in: 

                      (1) 

This problem has recently received a lot attention due to the fact that many 
nonlinear problems, arising within applied areas, are mathematically modeled as 
nonlinear operator equations and/or inclusions, which are decomposed as the sum of 
two operators. We focus our attention in the called splitting method, which is an 
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iterative method, for which each iteration involves only the individual operators, A 
or B, but not the sum, A + B; see [3, 13] and [4]. 

A classical splitting method for solving problem (1) is the so called 
Forward-Backward splitting method as proposed in [14]. Assuming that domB⊆ 
domA, the scheme is given as follows : 

                        (2) 

Where βk > 0 for all k. The iteration defined by (2) converges when the inverse 
of the forward mapping is strongly monotone as well as over other undesired 
assumptions on the stepsize βk and the operator B; see, for instance, [14] and [15]. 
An important and promising modification of Scheme (2) was presented by Tseng in 
[13]. It consists in: 

                        (3) 

               (4) 

Where X is a suitable nonempty, closed and convex set, belonging to dom(A). The 
stepsize βk is chosen to be the largest β ∈ {σ, σθ, σθ2...} satisfying: 

                         (5) 

With θ, δ∈ (0,1) and σ>0. Note that there exists various choices for the set X. 
If dom(B) is closed, then the result of Minty in [9], implies that dom(B) is convex, 
hence we may choose X = dom(B); see [13]. 

The convergence of (3)−(5) was established assuming maximal monotonicity of 
A and B, as well as Lipschitz continuity of A. It is important to say that, in the above 
scheme, in order to compute satisfying (5), the forward-backward operator (3) must 
be calculated, in each tentative of the step. From a computational point of view, this 
represents a considerable drawback. 

In order to overcome these two serious limitations a algorithm has been proposed. 
We show the convergence to a solution of problem (1), assuming only monotonicity 
of both operators however without demands Lipschitz continuity of A. Our approach 
contains two parts. The first being a separating half space, containing the solution 
set of the problem, is found. This procedure employs a new Armijo-type search 
which performs only one calculation of the forward-backward operator instead 
Tseng’s algorithm. 

When B=NX , problem (1) may be written as 0∈A(x) +NX (x); (1) collapses to 
classic variational inequality problems VIP(X, A), i.e. to find a vector x ∈ X such 
that 

                                   (6) 
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This problem is the well studied variational inequality problem with numerous 
applicationsin optimization theory; see [7, 11]. An excellent survey of projection 
methods for variational inequality problems can be found in [5]. 

This work is organized as follows. The next section provides some preliminary 
results that will be used in the remainder of this paper. Section 3 introduces the 
algorithm and proves its convergence. 

2. Preliminaries 

First of all, we introduce the notation. Let Rn be a n-dimensional Euclidean 
space and X be a nonempty closed convex subset of Rn. (·, ·) denotes the usual inner 
product in Rn. The solution set is denoted by S∗ := {x ∈ Rn : 0 ∈ (A + B)(x)}. 

The distance from a point x ∈ Rn to X denoted by dist(x, X). The projection 
from a point 

x onto X denoted by PX (x). Since X is a nonempty closed and convex set, we 
have 

 

Recall that an operator T: Rn ⇉ Rn is monotone if, for all (x, u), (y, v)∈ GrT:= 
{(x, u)∈ Rn × Rn: u∈ T (x)}, we have (x − y, u − v) ≥ 0, and it is maximal if T has no 
proper monotone extension in the graph inclusion sense. 

In this section, we present some definitions and results needed for the 
convergence analysis of the proposed methods. First, we state two well-know facts 
on orthogonal projections. 

Proposition 2.1. Let X ⊂ Rn be a nonempty closed convex set. Then we have 

 
Proof. (i) and (ii) See Lemma 1.1 and 1.2 in [18]. (iii) See Proposition 2.3 in [1]. 

In the following we state some useful results on maximal monotone operators. 

Lemma 2.2. Let T: dom(T ) ⊆ Rn⇒ Rn be a maximal monotone operator. Then 

(i) Gr(T ) is closed. 

(ii) T is bounded on bounded subsets of the interior of its domain. 

Proof. (i) See Proposition 4.2.1 in [20].  
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(ii) See Lemma 5 in [19]. 

Proposition 2.3. Let T: domT ⊆ Rn ⇒ Rn be a point-to-set and maximal 
monotone operator.  Given β > 0 then the operator (I + βT) −1: Rn→ domT is 
single valued and maximal monotone. 

Proof. See Theorem 4 in [10]. 
Proposition 2.4. Given β > 0 and A: dom(A) ⊆ Rn → Rn and B: domB ⊆ 

Rn ⇒ Rn two maximal monotone operators, then 

 

If and only if, 0∈ (A + B) (x) 

Proof.  See Proposition 3.13 in [3]. 

Now, we define the so-called Fej´er convergence. 

Definition 2.5. Let S be a nonempty subset of Rn. A sequence {xk } ⊂ Rn is 
said to be convergent Fejér to S, if and only if, for all x ∈ S there exists k0 ≥ 0, 
such that ||xk+1 − x||≤ ||xk − x|| for all k ≥ k0. 

This definition was introduced in [17] and has been elaborated further in [6] and 
[8]. A useful result on Fej´er sequences is the following. 

Proposition 2.6. If {xk } is Fejér convergent to S. Then 

(i) the sequence {xk } is bounded; 

(ii) the sequence {||xk − x||} is convergent for all x ∈ S. 

(iii) if a cluster point x∗ belongs to S, then the sequence {xk } converges to x∗. 

Proof. (i) and (ii) See Proposition 5.4 in [21]. (iii) See Theorem 5.5 in [21]. 

3. Algorithm 

Let A: domA⊆ Rn → Rn and B: domB ⊆ Rn ⇒ Rn be two maximal 
monotone operators, with A point-to-point and B point-to-set. Assume that 
domB ⊆ domA. Choose any nonempty, closed and convex set, X ⊆ domB, 
satisfying X ∩ S∗ ∅. Thus, from now on, the solution set, S∗ is nonempty. Also we 
assume that the operator B satisfies, that for each bounded subset V of domB there 
exists R > 0, such that B(x) ∩ B[0, R]  ∅, for all x ∈ V . 

Let  be a sequence such that  with . 

Algorithm 1. Choose parameters δ and θ ∈ (0, 1). Take x0 ∈ X. Set k = 0. 
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Step 1. Given βk  and xk , compute the forward-backward operator at xk , 

                    (7) 

If xk = J (xk, βk), stop. Otherwise, go to Step 2. 

Step 2. (Armijo-type search) Otherwise, begin the inner loop over j. 

Put j = 0 and chose any . If 

      (8) 

Then j(k) = j and stop. Else, j = j + 1. 

Step 3. Compute ,where  is a half-space and 
defined by the function 

                            (9) 

                                                 (10) 

                                                (11) 

                              (12) 

Step 4. Let k = k + 1 and return to Step 1. 

4. Convergence analysis 

In this section we analyze the convergence of the algorithms presented in the 
previous section. First, we present some general properties as well as prove the 
well-definition of the algorithm. 

Lemma 4.1. For all (x, u) ∈ Gr(B), S∗ ⊆ H(x, u). 

Proof. Take x∗ ∈ S∗. Using the definition of the solution, there exists v∗ ∈ 
B(x∗), such that 0 = A(x∗) + v∗. By the monotonicity of A + B, we have 

 
for all (x, u)∈ Gr(B). Hence,  

and by (9),  x∗∈H(x, u).  

From now on, {xk } is the sequence generated by the algorithm. 

Proposition 4.2. The algorithm is well-defined 
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Proof. By Proposition 2.4, Stop Step 1 is well-defined. The proof of the well 
definition of j(k) is by contradiction. Assume that for all j ≥ 0 having chosen 

u𝑗𝑗𝑘𝑘∈B(θj J (xk, βk ) + (1 − θj )xk) ∩ B[0, R] 

             (13) 

It follows from (7) that 

 

For some vk∈B(J (xk , βk )).Now, the above equality together with (13) lead to 

 

Using the monotonicity of B for the first inequality. So, 

 

Which contradicts Step 1. Thus, the algorithm is well defined. 

Proposition 4.3. xk∈H(x̄k , ūk ) for x̄k  and ūk  as in (12) and (11), 
respectively, if and only if, xk ∈ S∗. 

Proof. Since xk∈ H(x̄k , ūk ), (A(x̄k ) + ūk , xk − x̄k ≤ 0. Using the Armijo-type 
search, given in 

(8) and (12), we obtain 

 

which implies that xk = J (xk , βk ). So, by Proposition 2.4, xk ∈  S∗. 
Conversely, if xk ∈ S∗, using Lemma 4.1, xk∈ H(x̄k , ūk ). 

Lemma 4.4.  Let xk and {αk } be sequences generated by the algorithm.  With δ 
and β̂ as in the algorithm. 

             (14) 

for all k.  

Proposition 4.5.  If Algorithm stops, then xk ∈ S∗ 

Proof. If Step 3 is satisfied, xk+1=PH (xk ) = xk . implying that xk∈Hk and 
by Proposition 4.3, xk∈S∗. 
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From now on assume that Algorithm does not stop. Note that by Lemma Hk is 
nonempty for all k. Then the projection step is well defined, i.e. if Algorithm does 
not stop, it generates an infinite sequence {xk }. 

Proposition 4.6. 

  

 

Proof. (i) Take x∗ ∈ S∗ ∩ X. 

Note that, by definition (x̄k , ūk ) ∈ Gr(B). Using Proposition 2.1 and Lemma 
4.1, we  have 

                       (15) 

SO,  

(ii) Follows immediately from the previous item. 

(iii) Take x∗ ∈ S∗ ∩ X. Using (11) and 

                 (16) 

Combining with (15), yields 

 

Reordering the above inequality, we get 

              (17) 

By Proposition 2.3 and the continuity of A, we have that J is continuous. Since 
{xk} and {βk} are bounded then {J (xk, βk)} and {x̄k} are bounded, implying the 
boundedness of {A(x̄k )+ūk }. Using Proposition 2.6, the right side of (17) goes to 0, 
when k goes to ∞, establishing the result.  

Next, we establish our main convergence result on Algorithm. 

Theorem 4.7. The sequence {xk} converges to some element belonging to S∗ ∩ X. 
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Proof. We claim that there exists a cluster point of {xk} belonging to S∗. The 
existence of the cluster points follows from Proposition. Let {xik} be a convergent 
subsequence of {xk} such that,  

are convergent, and set . Using Proposition 4.6 and taking limits 
in (14) over the subsequence , we have 

    (18) 

Therefore, 

 

Now, consider the two possible cases. 

Let  Two cases are be considered. 

Case A: If , then  for all . We deduce that 

.                               (19) 

Taking a subsequence, if necessary, we may assume that .  
Such that  and since J is continuous, by the continuity of A and 

 and by Proposition 2.3, (19) becomes ,  

which implies that .  Establishing the claim.  

Case B: If  , then there exists an index set  such that  

 

We have that, for θ ∈ (0, 1), defined in the algorithm  

 

Define 

 

Then,  

                                                (20) 

Using the definition of   and (10),  does not satisfy (8), implying 

        (21) 
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For  and for all . 

Redefining the subsequence  , if necessary, we may assume that  
converges to some  such that  and   converges to  . By the 
maximality of B,   belongs to  . Using the continuity of J,  
converges to . Using (20) and (21) taking limit in over the subsequence , 
we have  

.                        (22) 

Using (7) and multiplying by  on both sides of (22) we get 

. 

Where v˜ ∈ B(J (x˜, β˜)). Applying the monotonicity of B, we obtain 

, 

implying that  . Thus,  and hence, x˜∈ S∗. 

This completes the proof.  

5. Conclusion 

In this paper, we have presented and studied a half-space projection method for 
finding a zero of the sum of two operators. Comparing with the known methods, this 
method can reduce one projection onto the strategy set per iteration. The global 
convergence is proved under the assumption of S∗ I= ∅.  In fact, to sure this 
assumption is difficult.  So, how to replace this assumption or how to weaken it 
could be the subject of a future research.  
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