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Abstract: Our study introduces an innovative intelligent fault diagnosis approach employing the 
Rationale Invariance-Domain Adversarial Network (RIDAN). This approach leverages domain 
generalization principles to enhance classification accuracy for data from unknown target domains. The 
process begins by transforming one-dimensional bearing vibration signals, captured through 
acceleration sensors, into two-dimensional gray pixel images. Subsequently, a domain discriminator is 
developed to learn domain-specific features and align domain distributions. Concurrently, a label 
classifier is established, incorporating rationale matrices for different categories. Our research 
rigorously validates this methodology using datasets from Guilin University of Electronic Technology 
and Case Western Reserve University. When compared with contemporary domain generalization 
methods, our approach shows excellent efficacy in bearing fault diagnosis across different operating 
domains. 
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1. Introduction 

The swift advancement of the modern intelligent manufacturing industry has propelled rotating 
machinery within industrial equipment toward a new era of intelligence and ultra-precision. This 
evolution is not only a catalyst for technological innovation but also establishes elevated standards for 
the safety and stability of rotating machinery [1-3]. Rotating machinery plays a pivotal role in numerous 
sectors, including aerospace, transportation, medical devices, and clean energy, proving to be an essential 
component of mechanical systems. Bearings, as a crucial element of rotating machinery, significantly 
influence the operational safety of the entire system [4]. These bearings operate under extremely harsh 
conditions, bearing the responsibility of supporting rotation while often enduring complex forces such as 
shock loads and alternating loads. Consequently, they are among the most failure-prone components in 
equipment. The early detection and prompt addressing of faults in bearings are imperative. Neglect in 
this regard can lead to not only equipment degradation but also pose substantial risks to personal safety 
[5-6]. Despite the industry's widespread acknowledgment of the criticality of bearing fault diagnosis, 
discovering an efficient and reliable method for fault detection remains a formidable challenge that 
urgently demands a solution. 

Traditional fault diagnosis methods predominantly rely on signal processing and fault mechanism 
models. In these methods, researchers utilize signal processing techniques to analyze bearing vibration 
signals. This analysis enables them to extract characteristic fault indicators and ascertain the health status 
of the bearings [2]. Given the typically non-smooth and non-linear nature of bearing vibration signals, the 
application of time-frequency analysis methods capable of handling such complexities becomes crucial[7]. 
Prominent time-frequency analysis methods include wavelet transform[8], Fourier transform[9], empirical 
mode decomposition[10], and the Hilbert-Huang transform[11]. These traditional methods offer an intuitive 
reflection of signal changes, enabling the use of bearing fault characteristic frequencies for precise fault 
localization. They are particularly adept at handling non-smooth and non-linear signals. However, the 
limitations of these methods are also evident. They require complex preprocessing steps like filtering, 
noise reduction, and decomposition. Moreover, the interpretation and judgment of the time-frequency 
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diagrams heavily depend on expert knowledge and experience. This reliance on manual expertise falls 
short of meeting the increasing demands for 'intelligent' in modern diagnostic approaches. 

2. Domain generalization in fault diagnosis 

In recent times, the realm of domain generalization has emerged as a focal point of research, 
particularly due to the challenge posed by the inaccessibility of target domain data. There is often 
confusion between domain generalization and domain adaptation methods, though both fall under the 
umbrella of generalized transfer learning, they possess distinct characteristics. The fundamental 
difference lies in the accessibility of target domain data during network training. Domain adaptation 
methods have the advantage of accessing target domain data (whether labeled or unlabeled) during 
training. In contrast, domain generalization methods operate under the constraint of having no access to 
target domain data throughout the training phase[12]. This distinction sets domain generalization apart 
from traditional machine learning, deep learning, and narrow transfer learning approaches.  

Table 1 succinctly outlines the distinctions among the four methodologies. Domain generalization 
methods, in comparison to the others, operate under more rigorous conditions. They exclusively permit 
model training within the source domain, entirely excluding target domain data from the training process. 
Consequently, domain generalization can be perceived as an advanced iteration of the domain adaptation 
approach. It embodies a heightened level of complexity and challenge, aiming to tackle more intricate 
issues related to data access and the alignment of data distributions. This evolution marks a significant 
leap in the field, pushing the boundaries of what can be achieved in model training and application in 
varied domain settings. 

Table 1:Differences among Methods. 
Methodology Target domain data Training set Test set condition 
Traditional ML/DL available, labeled 𝐷𝐷   𝐷𝐷   I.I.D condition 

Transfer learning available, unlabeled/ 
labeled 𝐷𝐷𝑠𝑠, 𝐷𝐷𝑡𝑡 𝐷𝐷𝑡𝑡  𝑌𝑌𝑠𝑠 ≠ 𝑌𝑌𝑡𝑡  

Domain adaptation available, unlabeled/ 
labeled 𝐷𝐷𝑠𝑠, 𝐷𝐷𝑡𝑡 𝐷𝐷𝑡𝑡  𝑃𝑃(𝑋𝑋𝑠𝑠) ≠ 𝑃𝑃(𝑋𝑋𝑡𝑡)  

Domain generalization unavailable 𝐷𝐷1, … , 𝐷𝐷𝑛𝑛 𝐷𝐷𝑛𝑛+1  𝑃𝑃(𝐷𝐷𝑖𝑖) ≠ 𝑃𝑃(𝐷𝐷𝑗𝑗), 1 ≤ 𝑖𝑖 ≠ 𝑗𝑗 ≤ 𝑛𝑛 + 1 

The ultimate goal of domain generalization is to train a prediction function X Yh →：  with strong 
generalization ability on multiple known source domain datasets such that it minimizes the error on the 
target domain tD  , i.e.: 

( ) ( )( ),min ,
tx y Dh

h x y∈
 Ε  

     
  (1) 

whereΕ  and ( ),⋅ ⋅  are the expectation and loss functions, respectively. 

During the training process, DANN has two goals: one is to minimize the classification error of the 
label classifier yG  on the source domain, and the other is to maximize the domain discriminative error 

of the domain discriminator dG  on both the source and target domains. This approach allows the feature 
distributions of different domains to be as consistent as possible, and if the domain discriminator is unable 
to discriminate between features in the source and target domains, then it means that the feature extractor

fG  learns domain-invariant features that are more conducive to the generalization of the label classifier

yG  over the target domain. DANN adds a domain discriminator with a gradient reversal layer (GRL) 

after the feature extractor. The gradient reversal layer (GRL) does not change the feature vector f  
during forward propagation but multiplies the gradient of the domain discriminator dG  to the feature 

extractor fG  by a negative number λ during backpropagation, which serves to reduce the feature 
extractor's sensitivity to domain-specific features. 

Suppose there exists a sample space X and a corresponding label space Y = {0, 1, ..., L-1}. There 
exists a domain space D  containing several source domains K

SD  and a target domain TD  with 
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different domain distributions. The k-th source domain is denoted as ( ){ }
1

,
knk k k

S i i i
D x y

=
=  , where kn  

denotes the number of samples possessed by the kth source domain, and the total number of source 

domain samples is
1

K
k

k
n n

=

=∑  . Similarly, the unlabeled target domain is denoted by { }N
T i N n

D x
−

=  

and the total number of all samples is N n n′= +  . 

The prediction loss and domain loss of DANN are denoted as respectively: 

( , ) ( ( ( ; ); ), ) i
y f y y y f i f y iG G yθ θ θ θ= x ,              (2) 

( , ) ( ( ( ; ); ), ) i
d f d d d f i f d iG G dθ θ θ θ= x   (3) 

The DANN network is then trained by optimizing the objective function E to obtain the optimal 
parameters: 

1 1 1

1 1 1( , , ) ( , ) ( , ) ( , )  
n n N

i i i
f y d y f y d f d d f d

i i i n
E

n n n
θ θ θ θ θ λ θ θ θ θ

= = = +

 = ∑ − ∑ +
′
∑ 

 
.   (4) 

Maximize d̂θ  while minimizing ˆ ˆ,f yθ θ  , i.e.: 

 ,( , ) argmin ( , , )ˆ ˆ ˆ
f yf y f y dEθ θθ θ θ θ θ= ,                (5) 

 )ˆ ˆargmax ,ˆ( ,
dd f y dEθθ θ θ θ= .                     (6) 

DANN is able to cope with the lack of sufficiently large labeled target domain data by virtue of its 
good distributional alignment property for unlabeled target domain data. However, the prerequisite for 
DANN to work is to obtain enough unlabeled target domain samples for model training. When samples 

from the target domain are not available, 
1

1 ( , )
N

i
d f d

i nn
θ θ

= +′
∑   in Eq. (4) is missing, resulting in the 

inability of the DANN network to align the domain distribution of the data in the target domain, which 
severely reduces the effectiveness of the model on the target domain 

3. Proposed Method 

In exploring methods for domain generalization of bearing fault diagnosis, the main goal is to obtain 
bearing fault characteristics from the source domain that are invariant across different operating 
conditions. As highlighted in Section 2, the efficacy of traditional DANNs for generalization is greatly 
reduced due to the lack of target domain insight when target domain data is not available. To address this 
limitation, our study introduces a novel approach: a domain adversarial network enhanced with rationale 
invariant regularization, specifically tailored for cross-condition bearing fault diagnosis. The strength of 
this method lies in its dual approach.  

During the backpropagation phase of our model's training, we focus on optimizing three pivotal 
objective functions. These include the sample label prediction loss and the rationale invariance loss, both 
pertaining to the label classifier, as well as the domain prediction loss associated with the domain 
discriminator. Each of these objective functions plays a vital role in refining the model's performance. 
The sample label prediction loss is instrumental in enhancing the accuracy of the model's fault type 
predictions, ensuring that the label classifier can correctly interpret and categorize the features extracted 
from the input data. The rationale invariance loss is equally crucial, as it helps in maintaining consistency 
across the rationale matrices for different fault categories, thereby bolstering the model's ability to 
generalize across diverse operational conditions. Lastly, the domain prediction loss is key to the 
effectiveness of the domain discriminator. It guides the discriminator in accurately identifying the 
operational domain of each data sample, a step essential for the model to adapt its learning to the specific 
characteristics of each domain. Together, the meticulous optimization of these three objective functions 
during backpropagation is essential for achieving a high degree of accuracy and generalizability in the 
final fault diagnosis model. 
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The objective function of the label classifier consists of two parts: the sample label prediction loss 
and the rationale invariance loss. Given a sample from the source domain m

sD  and its corresponding 

label ( ){ , }m
i iy kx =  , the label prediction loss can be expressed as: 

 ( , ) ( ( ( ; ); ), ) cla f y cla y f
i

i f y iG G yθ θ θ θ= x ，
                  

(7) 

where fG  and yG  denote the deep feature extractor and label classifier, respectively. 

The loss of rationale invariance, which is used to measure the difference between the rationale matrix 
of a sample and the rationale matrix of its corresponding category as a regularization term of the objective 
function, can be expressed as: 

 2
2i

inv i k
k

= ∑ −R R 
                               (8) 

where 
2
  denotes the l2 paradigm, bN  is the number of samples in the batch in which the sample 

is located, iR  denotes the schema matrix of the i-th sample, and kR  denotes the average matrix of the 

k-th class of schema matrixes. From chapter 2.2.2 it is known that the independent variable iR  of i
inv  

is directly related to the parameter ,f yθ θ  of the feature extractor and label classifier, and kR  is a 

constant matrix updated with iR , so it can be simplified and expressed as: 

 ( ),,i
inv f y kθ θ R

                               
 (9) 

4. Experimental Verification 

In this section, we undertake a rigorous experimental validation of our proposed RIDAN-based cross-
condition fault diagnosis method. This validation process utilizes two distinct bearing fault datasets: one 
from Guilin University of Electronic Technology and the other from Case Western Reserve University. 
These datasets provide a comprehensive platform to test and demonstrate the efficacy of our method 
under varied conditions. To ensure the reliability and reproducibility of our experiments, we have 
meticulously documented the software and hardware environments used. These details are systematically 
presented in Table 2. This table serves as a crucial reference, outlining the specific configurations and 
technical specifications of the environment in which our experiments were conducted. Such thorough 
documentation is essential for enabling other researchers to replicate our experimental setup and validate 
our findings independently. By providing this level of transparency, we aim to contribute to the 
robustness and credibility of the research in the field of fault diagnosis. 

Table 2: Experimental Environment. 
Software & Hardware Version or Model 

Python 3.10.4 
Pytorch 1.13.1+cu117 

Torchvision 0.14.1+cu117 
NumPy 1.24.2 
CUDA 11.7 
CuDNN 8500 

CPU I7-13700KF 
GPUs Nvidia RTX 3090 Ti 

4.1. Contrasting methods and layout details 

To showcase the strengths of our proposed RIDAN-based method, we have selected several cutting-
edge techniques in the field for comparative analysis. 

To ensure a level playing field in our comparative analysis, we uniformly selected the Resnet34 
network as the deep feature extractor for all methods under consideration. This choice facilitates a fair 
and consistent baseline for evaluating each method’s performance. Additionally, for the training of the 
network, we employed the Stochastic Gradient Descent (SGD) optimizer, complemented by momentum 
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and weight decay. This standardized approach to network training across all methods ensures that any 
observed differences in performance can be attributed more accurately to the inherent capabilities of each 
method, rather than variations in the underlying network architecture or optimization strategy. Such 
uniformity is crucial for conducting an unbiased and equitable comparison of these advanced fault 
diagnosis techniques. To ensure fine-tuning at the end of the training, the learning rate was chosen as a 
function of the decrease during learning, which is given by 0.75

0 / (1.0 10* )iα α= +  , where 0α  
denotes the initial learning rate and i  denotes the percentage of iteration steps. The optimizer momentum 
for the proposed method m  is set to 0.9. To be fair, the optimizer parameters for the comparison method 
are set the same as for the proposed method, and the rest of the hyperparameters use the default values 
from the original paper. 

4.2. Case1 Guilin University of Electronic Technology Bearing Dataset 

4.2.1. Introduction to the dataset 

To rigorously validate the effectiveness of our proposed method in generalized fault diagnosis for 
cross-condition bearings, we have established a bearing fault simulation test bed. This setup is 
strategically located in the equipment diagnosis laboratory of Guilin University of Electronic Science 
and Technology. Utilizing this specialized test bed, we have meticulously collected and compiled a 
comprehensive bearing fault dataset. This dataset is instrumental in providing a realistic and controlled 
environment to assess the performance of our fault diagnosis approach, ensuring its applicability and 
reliability in practical, real-world scenarios. 

 
Figure 1:GUET Bearing Test Bench. 

Figure 1 showcases the test rig utilized in our study, which was meticulously crafted by SpectraQuest, 
Inc., based in the United States. This test stand boasts a drive motor, equipped with both a manual speed 
governor and a speed detector. The drive motor is seamlessly connected to the spindle of our experimental 
setup via a flexible coupling. In our experiment's configuration, the faulty bearing was strategically 
mounted on the side adjacent to the drive motor, while the normal bearing was positioned on the opposite 
side. The spindle featured a diameter of 0.75 inches, and the specific faulty bearing model used in our 
experiments was the ER-12K. The motor's capacity was 1 HP. For data acquisition, a DH186 sensor was 
affixed to the test bench. This sensor was linked to a 16-channel portable data collector, the model VQ-
USB16, enabling the transmission of data to the VQ data analysis system on a computer. This data 
collector is characterized by a maximum sampling frequency of 102.4 kHz and a bandwidth of 20 kHz. 
Further, detailed specifications of the ER-12K bearings are provided within the paper for comprehensive 
understanding. 

Table 3: ER-12K Bearing Parameters. 

Inside 
Diameter(mm) 

Outside 
Diameter(mm) 

Pitch 
Diameter(mm) 

Number of 
Rolling 

Elements 

Rolling Element 
Diameter(mm) Contact 

Angle(°) 

25.4 52 33.4772 8 7.9375 0 

The manufacturing of the faults on the bearings, as depicted in Figure 2, was executed using the 
Electrical Discharge Machining (EDM) technique. This allowed for precise fault creation at various 
locations on the bearings. In addition to simulating a normal condition, we meticulously replicated a total 
of five types of bearing faults. These included inner race faults, outer race faults, rolling element faults, 
and composite faults (which encompassed a combination of issues in the inner race, outer race, and 
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rolling elements), offering a robust and diverse set of scenarios for our fault diagnosis study. 

 
Figure 2:Different Fault Types of GUET Dataset. 

Bearing vibration data were collected under three different rotational frequency conditions (20Hz, 
30Hz, 40Hz). The sampling frequency was 12.8 kHz and the acquisition time was 30 seconds. 

4.2.2. Data preprocessing 

For the GUET bearing dataset, we implemented a meticulous data preparation strategy. Each segment 
of the bearing signal was truncated to encompass the initial 153,600 data points. From this data, we 
generated gray-scale pixel images with a resolution of 32×32 pixels. Consequently, each of these images 
encapsulates 1,024 data points, offering a detailed and compact representation of the signal segment. 

To ensure a comprehensive dataset, we converted each segment of the bearing signal into 150 gray-
scale pixel images. These images serve as data samples for our analysis, providing a rich variety of signal 
representations. Figure 3 showcases exemplary images for different fault types, offering a visual insight 
into the diversity and complexity of the fault signatures captured in the dataset. This approach not only 
enhances the robustness of our dataset but also facilitates a more nuanced understanding and analysis of 
the bearing fault types, crucial for the accuracy and effectiveness of our fault diagnosis methodology. 

 
Figure 3:Gray Pixel Images of GUET Dataset. 

4.2.3. Experimental Results and Analysis 

The experiments are set up according to different rotation frequency domains. In each group of 
experiments, the dataset of one specific rotation frequency is set as the target domain, while the datasets 
of the other two rotation frequencies are used as the source domain. To simplify the presentation, G1, G2, 
and G3 are used in this paper to represent the classification tasks with different target rotation frequencies. 
For example, G1 refers to the source domain data with rotation frequencies of 30 Hz and 40 Hz, while 
the target domain data has a rotation frequency of 20 Hz. The number of data samples in the training set 
is calculated by the following formula: the number of gray pixel images for each fault type multiplied by 
the number of fault categories multiplied by the number of source domains. It is worth noting that during 
the model training phase, only the source-domain data are used for training the model, while the target-
domain data are used only for testing the model's effectiveness. Each experiment is trained for 120 epochs. 

1) Results 

The accuracy and mean values of the proposed and compared methods are shown in Table 4. 
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Table 4: Results of GUET Dataset. 
Method G1 G2 G3 average 
Mixup 0.909333 0.978667 0.844 0.910667 

SelfReg 0.912 0.982667 0.830667 0.908444 
CORAL 0.9333 1 0.9027 0.945333 

GroupDRO 0.9147 1 0.896 0.9369 
RSC 0.9493 0.9987 0.9493 0.965767 

ANDMask 0.944 0.9987 0.9187 0.9538 
DIFEX 0.9427 0.9973 0.928 0.956 
RIDAN 0.964 1 0.972 0.978667 

Table 4 show the accuracy of the proposed method and all comparison methods on the G1-G3 task, 
in order to eliminate the influence of random factors, each experiment was repeated three times to take 
the average value as the final results. According to the experimental results, it can be seen that all the 
methods perform best on G2 and relatively poorly on G1 & G3. 

In most of the domain generalization tasks, the proposed method shows superior and stable results 
compared to the other methods. Specifically, the present method outperforms the second-ranked MMD 
method by about 4% on average on all tasks. The results show that data augmentation-based domain 
generalization methods (e.g., Mixup and SelfReg) perform poorly when the domain distribution shift is 
large. We believe this may be due to the fact that data augmentation methods are unable to precisely 
control the direction or degree of augmentation, which leads to a degradation of the model's performance 
in the face of large distributional offsets. In contrast, domain invariant feature learning methods such as 
RSC and CORAL can better adapt to the data distribution of the target domain when the degree of 
distribution shift is large by focusing on learning invariant features within the domain. 

2) Validity analysis:feature visualization and confusion matrix 

 
Figure 4: T-SNE Images of Different Methods in Case 1. 

To evaluate the capability of the proposed methods in this paper in terms of learning features, we 
employ the t-SNE (t-Distributed Stochastic Neighbor Embedding) technique. t-SNE is a popular 
dimensionality reduction technique that effectively presents high-dimensional datasets in a two- or three-
dimensional low-dimensional space, which facilitates visualization and analysis. Figure 4 shows the t-
SNE image results of each method on the G1 task. 

From these t-SNE images, we can observe that most of the methods perform poorly in recognizing 
composite faults, and these methods tend to confuse composite faults with other types of faults (especially 
outer ring faults). In contrast, the method proposed in this paper effectively learns and distinguishes 
features from various types of faults, showing clear classification boundaries between different classes 
of features in high-dimensional space. This result shows that our method excels in fault type identification 
and differentiation ability in high-dimensional feature space. 

To further investigate the classification performance of the proposed methods, the confusion matrixes 
of different methods on task G1 are shown in Figure 5. The real fault types are represented by rows and 
the predicted fault types are represented by columns. The results of the confusion matrix are consistent 
with the t-SNE image, which verifies that the comparison method is less effective in feature learning for 
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composite faults, while the proposed method is optimal in classifying all fault categories. 

 
Figure 5:Confusion Matrix of Different Methods in Case 1. 

5. Conclusion 

To address the challenge of unavailable target operating condition bearing data in real-world 
production settings, we introduce an innovative cross-domain bearing intelligent fault diagnosis method 
based on the RIDAN network. This method leverages the principles of domain adversarial learning and 
domain generalization. It notably addresses the limitation of traditional DANN models, which tend to 
experience a decline in generalization ability in the absence of target-domain bearing fault data. This is 
achieved by incorporating a rationale invariant module within the label classifier. In this research, 
extensive experiments were conducted using both the GUET and CWRU bearing datasets, comparing 
our method against contemporary popular domain generalization approaches. These experiments 
robustly demonstrate the effectiveness and superiority of our proposed method. They confirm that our 
approach can adeptly facilitate intelligent fault diagnosis of bearings under varying degrees of 
distributional deviations, as evidenced across two different datasets. Additionally, the significant 
contribution of the rationale invariant regularization module to enhancing model performance is further 
substantiated through ablation studies. Despite these advancements, our method is not without its 
limitations. A key area of future research will focus on how to enhance the diagnostic model's 
performance in scenarios where multiple source domains may not comprehensively cover the data 
distribution of the target domain. This aspect represents a crucial frontier in our ongoing efforts to refine 
and improve our intelligent fault diagnosis methodologies. 
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