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Abstract: Bridges are crucial infrastructure components in transportation networks. However, as they 

age and traffic loads increase, their safety faces significant challenges. Bridge health monitoring systems 

collect structural data through sensors. However, obtaining sensor failure data is difficult, and 

traditional data generation methods, such as manually adding standard deviations, often lack data 

diversity. As a result, they fail to effectively reflect realistic sensor failures, which impairs the 

generalization ability and accuracy of fault diagnosis models. This paper proposes a bridge sensor fault 

data generation method based on a time series diffusion model, combining control conditions with 

pseudo prompt enhancement techniques. The goal is to improve the diversity and quality of the generated 

data. First, the Variational Autoencoder (VAE) is jointly trained with the inverse denoising process of 

the diffusion model to generate structured noise and enhance the complex characteristics of the noise. 

Then, a control condition module is introduced to regulate the quality of noise generation. To address 

the issue of insufficient data samples or uncertainty in labeling, a Pseudo Prompt Enhancement module 

is proposed, which utilizes a pre-trained autoencoder or self-supervised learning method to generate 

pseudo prompts that provide auxiliary information about the sensor device status. Furthermore, a 

classifier-free guidance mechanism is incorporated into the model training process to further enhance 

the quality and diversity of the generated data. Experimental results demonstrate that the proposed 

method yields significant improvements in generating real bridge sensor data. This approach offers a 

promising solution for generating realistic sensor fault data, advancing bridge health monitoring systems 

and enhancing their diagnostic accuracy. 
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1. Introduction 

Bridges are critical infrastructures in transportation networks, undertaking a large number of 

transportation tasks. Over time, many bridges gradually deteriorate, and traffic loads continue to increase. 

The safety and reliability of bridges have become focal points of societal concern. Damage or collapse 

of bridges can lead to severe traffic disruptions or even safety accidents, causing substantial losses to 

both society and the economy. Therefore, reliably monitoring and assessing bridge health is of utmost 

importance. Bridge health monitoring systems install various types of sensors at key locations of bridges 

to collect structural health data in real-time, enabling the timely detection of potential issues. However, 

in practice, sensor failure data from bridge health monitoring systems can compromise the accuracy of 

monitoring, and obtaining fault data samples is often a significant challenge. Traditional fault data 

generation methods typically rely on manually adding standard deviations to simulate fault data. 

However, such methods often result in a lack of diversity in the generated data, making it difficult to 

adequately reflect the complexity and variety of real-world sensor failures in bridges. This limitation 

hampers the generalization capability of sensor fault diagnosis models and ultimately affects the overall 

accuracy of bridge health monitoring systems. 

In recent years, deep learning technology has been widely applied in various fields [1][2][3]. Among 

them, the high scalability, diversity, and modeling advantages of diffusion models have gradually made 

them a research hotspot in the field of data generation. The framework of generative diffusion models, 

which is called diffusion models in short, provides a flexible and powerful scheme of generative 
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modeling, and it has gained significant attention in recent years due to their impressive performance in 

various areas in the machine learning community [4].Aiming at the problem of lack of diversity in the 

traditional manual generation of generated data for bridge health monitoring sensors, it is proposed to 

combine the generation of control conditions [5] and Pseudo Prompt Enhancement conditions [6] to obtain 

a method for generating fault data for multiple types of bridge sensors for use in time-series diffusion 

models, which improves the diversity of the generation of fault data for bridge health monitoring sensors, 

and thus improves the generalisation ability of the diagnostic model of faults for bridge health monitoring 

sensors. 

Firstly, to improve the quality of the generated samples and enhance the structural properties of the 

noise in the diffusion model, the noise generated by the VAE model is jointly trained with the reverse 

denoising process of the diffusion model. This hybrid noise generation method enables the creation of 

noise with more complex features. Secondly, to effectively control the quality of the noise generated by 

the VAE model, a control condition module is introduced. The control conditions of this module include 

factors such as timestamp and fault type. Additionally, during the network training phase, to address the 

issue of insufficient bridge sensor fault data samples and to handle cases of missed labeling or uncertainty 

regarding whether labeling is necessary, a Pseudo Prompt Enhancement module is introduced. This 

module utilizes a pre-trained autoencoder or self-supervised learning method to extract latent 

representations from the sensor data. The latent representations, combined with auxiliary information 

related to the sensor data, are used to generate pseudo prompts through a generative model, which can 

roughly reflect the state of the sensor device. Finally, to further enhance the quality and diversity of the 

generated data, a classifier-free guidance mechanism is incorporated to optimize the model. In the 

experimental section, we collected a large amount of sensor data from real bridge monitoring systems 

and constructed a simulated dataset. To evaluate the effectiveness of the proposed method, 

comprehensive experiments were conducted, and several mainstream diffusion models were selected for 

comparison. The main contributions of this paper are summarized as follows: 

(1) A time series diffusion model based on the fusion of control conditions and Pseudo Prompt 

Enhancement is proposed. The control conditions and pseudo prompt conditions are combined to form 

the final condition inputs, which are then fed into the denoising network of the diffusion model. Through 

the inverse diffusion process, time series data of sensor faults that conform to the specified conditions 

are generated. 

(2) A hybrid noise generation method is proposed to generate bridge sensor fault data using the noise 

generated by the VAE model and the inverse denoising process of the diffusion model for joint training 

to improve the structure of the noise in the diffusion model. 

(3) It is proposed to introduce a control condition module for noise generation control to effectively 

control the quality of noise generated by the VAE model. 

(4) The introduction of a Pseudo Prompt Enhancement module is proposed to reflect the state of the 

sensor device and address the issue of insufficient bridge sensor fault data samples. This module also 

resolves the challenges of labeling omissions or uncertainties during the network training phase. 

2. Methodology 

In practical applications, obtaining fault data samples from bridge health monitoring sensors is a 

significant challenge. Traditional fault data generation methods typically involve manually adding 

standard deviations to generate fault data. However, this approach often results in a lack of diversity in 

the generated data, making it difficult to effectively capture the complexity and diversity of real-world 

bridge sensor faults, thus limiting the generalization ability of the sensor fault diagnosis model. Drawing 

on the successful use of diffusion models in audio generation, we employ a diffusion model to generate 

time series data of bridge health monitoring sensor faults. Simultaneously, we integrate control conditions 

to enhance generation control and the concept of Pseudo Prompt Enhancement to construct an efficient 

and controllable generative model. This model is designed to generate various types of bridge health 

monitoring sensor fault data. Firstly, to improve the quality of the generated samples and enhance the 

structural characteristics of the noise in the diffusion model, the noise generated by the VAE model is 

jointly trained with the reverse denoising process of the diffusion model. This hybrid noise generation 

method is capable of producing noise with more complex features. Secondly, to effectively control the 

quality of the noise generated by the VAE model, a control condition module is introduced to regulate 

the noise generation. At the same time, during the network training phase, to address the issue of 

insufficient bridge sensor fault data samples, as well as the problem of omitted or uncertain labeling, a 
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Pseudo Prompt Enhancement module is introduced. In the specific training process, the control 

conditions and pseudo prompt conditions are combined to form the final condition input, which is then 

fed into the denoising network of the diffusion model. Through the inverse diffusion process, sensor fault 

time series data that meet the specified conditions are generated. Finally, to further improve the quality 

and diversity of the generated data, a classifier-free guidance mechanism is introduced to optimize the 

model. During the training phase, the model is allowed, with a certain probability, to operate 

independently of the conditional information, thereby training an unconditional denoising model. The 

main architecture of the fusion control condition and Pseudo Prompt Enhancement-based diffusion model 

is shown in Fig. 1. 

 

Figure 1: Fusion of control conditions and Pseudo Prompt Enhancement to generate the main 

architecture of the diffusion model. 

2.1. Traditional Bridge Health Monitoring Sensor Failure Data Generation Methods 

The fault types of bridge health monitoring sensors mainly include Deviation Fault, Drift Fault, Gain 

Fault, Precision Degradation Fault, Complete Failure Fault, and Outlier Fault. In practice, obtaining 

sensor fault data samples for bridge health monitoring is challenging. The commonly used method for 

generating bridge health monitoring sensor fault data is manual generation, typically by using formulas 

or adding standard deviations to generate various types of sensor fault data. Table 1 presents a summary 

of commonly used methods for generating bridge health monitoring sensor fault data. Figure 2 illustrates 

the manually generated fault data for the Deviation Fault of a bridge health monitoring sensor using a 2 

times standard deviation approach. Figure 3 shows the manually generated fault data for Precision 

Degradation Fault of a bridge monitoring sensor using a 1.5 times standard deviation approach..  

Table 1: Table of commonly used bridge health monitoring sensor fault generation methods. 

Fault Type Standard Deviation 

Deviation Fault 2σ 

Drift Fault 5σ 

Gain Fault G=2 

Precision Degradation Fault 1.5σ 

Complete Failure Fault A=0 
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Figure 2: Manual Generation Approach to Generate Bridge Health Monitoring Sensor Deviation Fault 

Data. 

 

Figure 3: Manual Generation Approach to Generate Bridge Health Monitoring Sensor Precision 

Degradation Fault Data. 

2.2. Diffusion Models 

Diffusion models are a class of probabilistic-based generative models that have made significant 

progress in recent years in areas such as image generation, audio generation, and text generation. The 

core idea of the diffusion model is to generate data by gradually adding noise to data, such as images or 

time series, until the data becomes completely noisy. The model then learns how to remove this noise to 

regenerate the data. Diffusion models are primarily divided into the forward diffusion process and the 

reverse diffusion process. In the forward diffusion process, given a real data sample X0, the model 

gradually adds noise to it, so that after multiple iterations, the original data becomes almost entirely noise. 

This process is typically carried out using additive Gaussian noise, as shown in Equation 1. 

q(xt|xt−1) = N(xt; √1 − βtxt−1, βtI)                        (1) 

Among these, βt controls the intensity of the added noise at each step, and xt represents the sample 

at step t. In the reverse diffusion process, the model attempts to recover the original data from the noisy 

data. This process is achieved by learning a conditional probability distribution, where the network 

predicts the next step of recovered data xt−1 based on the current noisy data xt, gradually denoising it 

step by step, and ultimately recovering a clear image or data sample. The key to the reverse process lies 

in how to train the model to accurately predict the denoising process at each step. Typically, maximum 

likelihood estimation or variational inference methods are used to train the network. For sensor fault data, 

this process is described in Equation 2. 

xt = √atx0 +√1 − αtε                               (2) 

Among thses, X0 is the original sensor failure time series data and ε~N(0,I) is the standard Gaussian 

noise, and αt is a predefined noise scheduling parameter that decreases with increasing time steps. The 

goal of the model is to learn a denoising function ε
θ

(xt ,t,c), where C denotes the conditional 

information, and train the model by minimising the Eq. 3 loss function. 
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Lθ = Ex0,ε,t[||εθ(xt, t,C) − ε||2]                           (3) 

2.3. Control Condition Module 

The control condition module is introduced into the control VAE model to improve the quality of the 

generated noise when using the diffusion model to generate the bridge monitoring sensor fault data.The 

control conditions in the control condition module include timestamps, fault types, and so on. These 

control conditions are processed by the control condition encoder to generate the corresponding 

embedding vectors Ccontrol. assuming that there are D different fault types, each of which corresponds to 

a label yd, and the time step information in the time series ti. The control conditions are shown in Equation 

4. 

Ccontrol = MLP(yd)⊕ PosEmb(ti)                          (4) 

MLP is a network consisting of multiple fully connected layers for mapping the fault type label yd to 

a high dimensional embedding space. yd is a uniquely hot coded vector with dimension D, and the 

embedding vector ed obtained after passing through has dimension H as shown in Equation 5. 

ed = MLP(yd) = σ(W2 ∗ σ(W1 ∗ yd+ b1) + b2）                (5) 

W1 and W2 are the weight matrices of the MLP, b1 and b2 are the bias vectors, σ is the activation 

function, and PosEmb(ti) is the position embedding, which is used to represent the position information 

of the time step ti. The position embedding is encoded using a fixed position encoding method, such as 

sine and cosine function encoding, or through trainable position embedding vectors as shown in Equation 

6. 

PosEmb(ti) = PE(ti)                               (6) 

The dimension of the position encoding PE(ti) is also H, ⊕ denoting the vector splicing operation. 

In this way, the control condition Ccontrol is integrated into the denoising process of the diffusion model, 

allowing the generated time series data to better match the predefined control condition. 

2.4. Pseudo Prompt Enhancement module 

Inspired by the diffusion model of Make an audio [6], during the network training phase, to address 

the issue of limited fault data samples from bridge health monitoring sensors in practice, and the 

occurrence of omitted or uncertain labeling of fault data in the network training process, the Pseudo 

Prompt Enhancement module is introduced. This module extracts latent representations from the sensor 

data using a pre-trained autoencoder or self-supervised learning method. These latent representations are 

then combined with auxiliary information related to the sensor data through a generative model to form 

a pseudo prompt, which can roughly reflect the state of the sensor device. Specifically, the following 

steps are performed: first, the latent representation Z is extracted from the sensor data using a pre-trained 

autoencoder or a self-supervised learning method, and this latent representation is capable of capturing 

the main features of the data, as shown in Equation 7.  

Z = Encoder(X0)                                (7) 

Next, a mechanism is designed to generate pseudo prompts that represent meta-information related 

to the sensor data, such as the device status and whether the bridge monitoring sensor is malfunctioning. 

This pseudo prompt is combined with the latent representation through a generative model to form the 

enhanced conditional information Cpseudo, as shown in Equation 8. 

Cpseudo = GeneratePrompt(z,Metadata)                   (8) 

Metadata contains auxiliary information related to the sensor data, and GeneratePrompt is a 

generative function used to generate pseudo prompts based on the latent representations and metadata. 

These pseudo prompts are used as additional conditional information to further guide the diffusion model 

in generating time series data that better aligns with the needs of the actual application. 

2.5. Model Training 

In the specific training process, the control conditions and pseudo prompt conditions are combined 

to form the final conditional input C, as shown in Equation 9. 
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C = [Ccontrol,Cpseudo]                           (9) 

This combination of conditions is then fed into the denoising network of the diffusion model as shown 

in Equation 10. 

ε
θ
(xt, t, c) =εθ

(xt, t, [Ccontrol,Cpseudo])                 (10) 

The model is trained by minimising the joint loss function of Equation 11. 

Lθ = Ex0,ε,t[||εθ(xt, t, [Ccontrol,Cpseudo]) − ε||2]              (11) 

In the generation phase, given specific control conditions and pseudo prompt conditions, the eligible 

sensor failure time-series data are gradually generated through an inverse diffusion process. Specifically, 

the initialisation samples the noise XT~N(0,1) from a standard Gaussian distribution, and then the data 

are generated through the iterative process of Eq. 12. 

Xt−1 =
1

√αt
(xt −

1−αt

√1−α′t
εθ(xt, t, [Ccontrol,Cpseudo])) + σtε            (12) 

Among them,α′t = ∏ αs
t
s−1 , σtis the noise scheduling parameter, which controls the amount of 

noise at each step. In this way, the generated time series data can not only retain the statistical 

characteristics of the original data, but also strictly follow the preset control conditions to achieve fine 

control of the generation process. 

In the process of model optimisation, in order to further improve the quality and diversity of the 

generated data, a classifier free bootstrapping mechanism can be introduced. Specifically, in the training 

stage, an unconditional denoising model is trained by making the model independent of the conditional 

information with a certain probability. The training loss function is adjusted as shown in Equation 13. 

Lθ = Ex0,ε,t[||εθ(xt, t, [Ccontrol,Cpseudo]) − ε||2]                 (13) 

In the generation phase, the impact of the condition information on the generation results is balanced 

by adjusting the guidance scale, as shown in Equation 14. 

εθ
guided

(xt, t,C) = εθ(xt, t,C) +W(εθ(xt, t, C) − εθ(xt, t, ))            (14) 

This method can effectively control the characteristics of the generated data during the generation 

process while maintaining the diversity and quality of the generated samples. In the data preprocessing 

stage, the sensor failure time series data are normalised to ensure the consistency of the data distribution 

and the stability of the model training, and the time series data of each sensor are normalised as shown 

in Equation 15. 

x’
0
=

x0−μ

σ
                                   (15) 

μ and σ are the mean and standard deviation of the data, respectively, so that the processed data is 

more suitable for use in the training and generation process of the diffusion model. 

3. Experiments 

3.1. Experimental Setup 

We conducted comparison and ablation experiments using a personal server. an I7-14700KF was used 

for the GPU, an NVIDA RTX 4090D was used for the GPU, and the server memory size was 64 GB. the 

main setup parameters are shown in Table 2. 

Table 2. Experimental Results. 

Item Setting 

Operating System Ubuntu22.04 

CPU I7-14700KF 

GPU NVIDA RTX 4090D 

RAM 64G 

CUDA 12.1 

Pytorch 2.0 

Python 3.11 
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Initial Learning Rate 1e-4 

Batchsize 64 

Embedding Dimension (D) 256 

Position Encoding Dimension(Dp) 128 

Noise Intensity 0.1 

Guidance Scale(S) 1.5 

Unconditional Training Probability 10% 

The dataset in the experiment consists of sequences collected from 18 sensors, with approximately 

5000 samples collected from each sensor. Five fault types：Deviation Fault, Drift Fault, Gain Fault, 

Precision Degradation Fault, and Outlier Fault—are generated using the method proposed in the paper, 

and compared with the manually generated fault data. Comparative experiments and ablation studies are 

conducted, with evaluation metrics including MSE, MAE, RMSE, MAPE, and R2. 

3.2. Experimental results display 

Figure 4 shows a comparison of manually generated versus using a diffusion model to generate bridge 

health monitoring sensor deviation fault data. Figure 5 shows a comparison of using manual generation 

versus using a diffusion model to generate bridge monitoring sensor accuracy degradation faults. 

 

Figure 4: Comparison of manually generated versus using a diffusion model to generate sensor bias 

failure data for bridge health monitoring. 

 

Figure 5: Comparison of manually generated versus using a diffusion model to generate sensor 

degrade failure data for bridge health monitoring. 

3.3. Results Analysis 

Table 3 lists the results of the comparison experiments. Comparing our proposed diffusion model 

with the deep learning model, our proposed model performs best in MSE, MAE, RMSE, MAPE, and R2 

evaluation metrics, outperforming the other comparative models. Specifically, the MSE of our proposed 

model is 0.078, MAE is 0.192, REMS is 0.279, MAPE is 0.098, and R2 is 0.961. It is higher than the 

models of Stable Diffusion[7], MPS-GAN[8], FedCSCD-GAN[9], WGAN[10], CGAN[11], and VAE[12], 

which indicates that our proposed model combines the advantages of control condition and pseudo-cue 
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generation fusion to generate real bridge health monitoring sensor failure data more comprehensively 

and efficiently, showing excellent robustness, while other models have limitations. 

Table 3. Experimental Results. 

Backbone MSE MAE RMSE MAPE R2 

VAE 0.135 0.275 0.368 0.185 0.892 

TCN 0.124 0.263 0.352 0.169 0.903 

GAN 0.118 0.252 0.344 0.174 0.911 

CGAN 0.109 0.239 0.330 0.158 0.921 

WGAN 0.096 0.223 0.310 0.135 0.937 

FedCSCD-GAN 0.091 0.215 0.302 0.128 0.943 

MPS-GAN 0.085 0.204 0.291 0.115 0.950 

Stable Diffusion 0.081 0.198 0.284 0.106 0.956 

Ours 0.078 0.192 0.279 0.098 0.961 

The ablation results in Table 4 discuss the impact of each component on the performance of the 

proposed model. The complete model performs best across all metrics. Model performance decreases 

significantly when any of the three modules are removed. Removing the Pseudo Prompt Enhancement 

module, the control condition module, or the classifier-free guidance mechanism all lead to a reduction 

in model performance, with the most notable decrease occurring when the control condition module is 

removed. The results of the ablation experiments demonstrate that each component plays a critical role 

in improving model performance. 

Table 4. Ablation Study. 

Ablation Setup MSE MAE RMSE MAPE R2 

Full Model 0.078 0.192 0.279 0.098 0.961 

Remove Pseudo Prompt 

Enhancement Module 

0.093 0.214 0.305 0.123 0.944 

Remove Control Conditions Module 0.104 0.228 0.322 0.145 0.932 

Remove Classifier Free 

Bootstrapping 

0.098 0.221 0.313 0.113 0.939 

4. Conclusion 

To address the challenge of the scarcity of bridge health monitoring sensor fault data samples, this 

paper proposes a diffusion model based on the fusion of control conditions and Pseudo Prompt 

Enhancement for generating bridge sensor fault data. Experimental results demonstrate that our proposed 

model outperforms other adversarial generation models and diffusion models in the generation of bridge 

sensor fault data. However, using the diffusion model to generate bridge health monitoring sensor fault 

data requires significant computational resources. Future research could focus on reducing the 

computational resources required for this process. 
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