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ABSTRACT. The structure of RNA is very important in biological processes. Over the 
recent years, lots of machine learning method have been emerged to predict the 
secondary structure of RNA. In this paper, we use Support Vector Machine to 
predict secondary structure of RNA sequence. Meanwhile, a sequence-based method 
is proposed by combining a new feature representation which is based on RNA long-
range interaction. We first quote E-NSSEL labels to represent the secondary 
structure of RNA. Combining with the definition of a new feature vector based on 
long-range interaction, the secondary structure of test sequence is predicted by SVM 
model, and the corresponding E-NSSEL sequence is consequently obtained. This 
sequence can be restored to secondary structure finally. The results which are 
obtained from RNA training and testing datasets show that this long-range-
sequence-based method is superior to those method without new feature. It has 
higher prediction accuracy as considering the new feature. Moreover, it can predict 
RNA sequences with long length, which is difficult to deal with traditional folding 
prediction. Furthermore, it suggests that our method may provide a reliable tool for 
RNA secondary structure prediction, including the prediction of RNA with 
pseudoknots. 
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1. Introduction 

As the existence of an omnipresent carrier in the cell, RNA is important in many 
life processes. The activity of RNA molecules is determined by its secondary even 
third structure. Therefore, fully understanding the secondary structure of RNA 
molecules reveals important limitations of the molecular physical properties and 
functions of regulatory molecules [1-2]. Actually, the use of computational methods 
to predict secondary structure of RNA has been over 40 years history [3]. The 
typical prediction algorithms are the minimum free energy algorithm [4-7], the 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 3, Issue 3: 43-52, DOI: 10.25236/AJCIS.030306 

Published by Francis Academic Press, UK 
-44- 

Stochastic context free grammars(SCFG) [8-11] and so on. Most of the experimental 
predictions for base pairing of RNA sequences have achieved a more reliable 
method for predictions of RNA secondary structure [12-16]. However, it costs a lot 
of time and expense to do these experiments, especially for too long RNA sequence. 
Hence, the method based on machine learning provides an attractive alternative for 
the prediction of RNA secondary structure. 

As artificial intelligence improves at anamazing speed, several attempts of 
machine learning method have been made to predict biological function. Meanwhile, 
as an important classification method of machine learning, which is called Support 
Vector Machine (SVM), proposed by Cortes, Vapnik and co-workers is an effective 
classification method [17-19]. The SVM method has been successfully applied to 
face recognition [20-21], prediction of time series [22-24], automatic location of 
video captions in extraction [25-26], RNA secondary structure prediction [27-30], 
etc. There are also lots of examples of classification prediction using Support Vector 
Machine, such as in biosynthesis, SVM is used to predict protein-protein 
interactions [31-32] and the Plant Root-Associated Ecological Niche of 21 
Pseudomonas Species [33] and so on. 

Long-range RNA structures are the interacting parts which are separated by long 
distances in RNAs. Throughout the tree of life, functional long-range base pairings 
in RNAs are widely known. There are an increasing number of reports in eukaryotic 
RNAs [34]. And it also contributes to human disease, including neurological 
disorders and other pathologies [35]. Since the long-range RNA structures are 
abundant and significant in RNA sequences, we define a new feature based on the 
long-range interaction when applying machine learning method. It will improve the 
prediction efficiency of secondary structure of RNA.  

In this paper, we use Support Vector Machine to consider the secondary structure 
prediction of RNA. In addition, we define a new feature vector according to the 
long-range interaction in RNA, which made our prediction accuracy greatly 
improved. The experimental data shows that the method and the new feature are 
feasible and have high prediction accuracy.  
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2. Method and data 

2.1 Support Vector Machine 

Class1 Class2  

Figure. 1 The class1 and class2 are divided by Optimum Classification hyperplane. 

Secondary structure predictions were generated automatically using Support 
Vector Machine [36]. Here we classify a pile of sequence data using SVM, 
especially for the two-class classification problem. As is shown in Fig. 1, This solid 
line represent the classification hyperplane, which is the best fit plane to separate the 
types of data into two categories. The criterion for “best fit” is that the distance 
between the line and the data on either side of the line is the largest. So our goal is to 
look for this hyperplane. 

When we input the ix in the equation: 

( ) bxy ii +•= ω  

When 0>iy  is obtained, this point belongs to the class1, conversely, this point 
belongs to the class2.  

Support Vector Machine can also map the input vectors dRX ∈
→

into a high 

dimensional feature space ( ) HX ∈


φ and construct an optimal separating 
Hyperplane(OSH) [37], which maximizes the margin. The mapping is performed by 
a kernel function ( ) ( ) ( )jiji xxxxK φφ •=,  which defines an inner product in the 
space H. 

The decision function implemented by SVM can be written as: 
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obtained by solving the Convex Quadratic Programming problem. In the problem, 
extending two new regularization parameters C and ϒ. 

For the given dataset in this article, we choose the radial basis kernel function, 
the regularization parameter C=1000 and ϒ=0.1 are selected for this dataset. 

2.2 Data and E-NSSEL labels  

RNA sequence data and the 3D-structure are obtained from PDB data bank 
(http://www.rcsb.org/).RNAVIEW(http://ndbserver.rutgers.edu/ndbmodule/services/
download/rnaview.html) is used to get the secondary structure in detail.  

The secondary structure of RNA is related with the long-range and short-range 
information of nucleotides. Here, we choose one nucleotide with the front and back 
N nucleotides as an input window. Therefore, the length of an input window is 
Lw=2N+1. The window lengh Lw can be changed in the prediction. Then, multiple 
sample inputs are obtained by moving the center position with shifting the input 
window at the same time. Each window corresponds to one input sample, the 
window with (Lw•4)bit of  0/1 encoding is used to represent the input of the window. 
The meaning of encoding is: each digit in the window represents a nucleotide, and a 
4bit orthogonal 0/1 encoding is used to represent one of the nucleotide types 
(ACGU). The corresponding relationship between each nucleotide and the encoding 
number is: 

A-1000  C-0100 

G-0010  U-0001 

Meanwhile, the E-NSSEL labels are used to translate RNA secondary structure 
into a specific way as is shown in table 1[38]. This labels can be another 
representation form of RNA secondary structure. Meanwile, the labels can recover 
the secondary structure of RNA.  In the secondary structure, for a helix, there are 
several continuous base pairs.The helix has two sides, one side is closer to the 5’ , 
which is called the positive side, the other side is closer to the 3’, which is called the 
negative side. We use number 1 and 3 to represent these two situations respectively. 
For pseudoknot, the bases in positive side and the negative side is substituted as 2 
and 4 respectively. But for the loop, let all the bases be 5. Thus, one RNA sequence 
can be written as a digit string with number 1-5. More importantly, the secondary 
structure is also included in the digit string. In this way, the computer can 
distinguish the digit and we can use the machine learning method to analyze the 
secondary of RNA sequence. 
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Table 1 The label representation method of the RNA new secondary structure elements 

Name of SSE Detail of SSE Label of SSE 
+Helix the positive side of the helix(closer to the 5’) 1 

+pseudoknots the positive side of the pseudoknot(closer to the 5’) 2 
-Helix the negative side of the helix(closer to the 3’) 3 

-pseudoknots the negative side of the pseudoknot(closer to the 3’) 4 
Loop unpaired base 5 

2.3 Long-range-sequence-based feature 

Long range interaction in RNA secondary structures is significant. In this paper, 
considering the long range interactions, we search for the whole sequence from the 
beginning, and apply the RNA pairing rules (A-U, C-G) to find where there will 
exist base pairs.  

Since one base pair is not stable in RNA secondary structure, we consider stack-
based structure instead of single base pair in the searching process. The number of 
continuous base pairs Ncb is supposed. In order to find which number is more 
suitable for the prediction, we change the number of continuous base pairs Ncb from 
0-5. It is considered as a new feature vector. The nucleotides in continuous base 
pairs are marked 1 and 2 respectively, and the remaining unmatched pairs are 
marked as 3, respectively. By adjusting the value of Ncb, the prediction accuracy of 
RNA secondary structure improves.  

2.4 Evaluation 

In this article, the accuracy evaluation we used is the precision rate, the recall 
rate, and the weight ratio coefficient f1-score between the precision rate and recall 
rate through Support Vector Machine model[39]. In the prediction of RNA 
secondary structure, TP is the number of base pairs which are correctly predicted; 
FN represents the number of base pairs which exist in the real structure but are not 
predicted in the result; FP indicates the number of base pairs which are not in the 
real structure but predicted from the model; TN indicates the number of  unpaired 
nucleotides which are correctly predicted from the model. The calculation formulas 
are as follows: 
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Accuracy is as important as recall. 

3. Results 

In order to evaluate the performance of SVM classifier for RNA secondary 
structure prediction, we compared the results of different number of continuous base 
pairs Ncb and  different window length Lw. We did quantitative experiments to find 
the most suitable window length Lw and number of continuous base pairs Ncb in the 
classifier. 

3.1 Choose suitable Lw and Ncb 

 

Figure. 2 The precision of RNA secondary structure by using SVM with different 
number of continuous base pairs (Ncb) and different length of windows (Lw). 

In Fig. 2, when the feature of base pairs is not considered, it is found that the 
higher the length of window is, the higher the overall precision rate is. The predict 
precision when the length of windows equals to 15 is the largest. It is 80%. As there 
is no other feature, longer length of the window covers more information about the 
nucleotides. Therefore, the prediction accuracy of long window is higher than that of 
short window. 

On the other hand, we considered the number of continuous base pairs Ncb as a 
new feature vector. It varies from 2 to 5. It is found that when the window length is 
5, the precision increases first, then reaches the maximum as Ncb=4. The prediction 
precision then declines. The maximum of precision is 82%, which is larger than that 
of Lw=15, Ncb=0. It is obvious that the influence of Ncb to the precision for Lw=5 is 
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more severe than other longer Lw. The reason is that shorter Lw brings fewer 
information around nucleotide, so the information of base pairs will help to improve 
the predicting precision. 

3.2 Test of RNA sequences 

282 RNA sequences without pseudoknots and 37 RNA sequences with 
pseudoknots were taken from PDB database to be discussed in this paper. Here, we 
chose the length of windows Lw= 5 and the number of continuous base pairs Ncb= 
=4 to get the prediction results using SVM classifier.  

Table 2 The prediction results of RNA sequences without pseudoknots 

 With long-range-sequence-based 
feature 

Without long-range-sequence-based 
feature 

 Precision Recall F1-score Support 
Vector Precision Recall F1-score Support 

Vector 
1 (+Stem) 0.67 0.69 0.68 331 0.54 0.59 0.56 37 

2 (+pseudoknots)         
3 (-Stem) 0.71 0.72 0.72 348 0.57 0.49 0.52 340 

4 (-pseudoknots)         
5 (Loop) 0.9 0.89 0.89 1115 0.87 0.89 0.88 1117 

average/total 0.82 0.82 0.82 1794 0.75 0.75 0.75 1794 

Tabel 3. The prediction results of RNA sequences with pseudo-knots 

 With long-range-sequence-based 
feature 

Without long-range-sequence-based 
feature 

 Precision Recall F1-score Support 
Vector Precision Recall F1-score Support 

Vector 
1 (+Stem) 0.69 0.53 0.6 34 0.67 0.73 0.7 33 

2 (+pseudoknots) 0.83 0.71 0.77 7 0.8 0.67 0.73 6 
3 (-Stem) 0.88 0.81 0.84 26 0.61 0.61 0.61 23 

4 (-pseudoknots) 0.88 0.7 0.78 20 0.71 0.48 0.57 21 
5 (Loop) 0.88 0.95 0.91 185 0.9 0.92 0.91 189 

average/total 0.85 0.86 0.85 272 0.83 0.83 0.83 272 
 

The Predicting precision for RNA secondary structure sequences without 
pseudo-knots is shown in Table 2. And  Table3 presents the predicting precision. for 
RNA sequences with pseudo-knots.  

In Table 2, when the long-range-sequence-based feature is not concerned, the 
average value of precision and recall are both 75%. However, when we apply long-
range-sequence-based feature in the prediction, the average value of precision and 
recall increases to 82%. It suggests this long-range-sequence-based feature is 
significant in prediction of RNA secondary structure. 
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In Table 3, when there is no other features except E-NSSEL, the average value 
of precision and recall are both only 83%, and the average value of precision with 
long-range-sequence-based feature is 85%, and the average recall is 86%. 

It shows that the influence extent of long-range-sequence-value feature to RNA 
sequences without pseudo-knots is larger than to RNA with pseudo-knots. 

4. Conclusion 

We proposed a new feature that based on long-range interaction of nucleotides 
for predicting RNA secondary structure. We first observed that for window length 
Ls=5 and number of continuous base pairs Ncb=4, the prediction has the highest 
precision comparing with other conditions. Then, under this condition, we compared 
the  prediction results of RNA sequences with the new feature and without the new 
feature. From the investigation of RNA sequences without pseudo-knots, the 
prediction precision applying new feature is higher than those which don’t consider 
new feature. However, in the research of RNA sequences with pseudoknots, the 
difference of the precisions with new feature and without new feature is not obvious 
in contrast to those RNA with pseudoknots. 

We believe that the support vector classifiers that combine long-range-sequence-
based new feature represent a powerful methodology that will form the basis for 
many future RNA secondary structure prediction approaches 

Of wireless sensor networks, moving target tracking based on wireless sensor 
networks also has broad application prospects.  
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