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Abstract: Data augmentation (DA) is a critical technique for addressing data scarcity in deep learning. 
However, traditional random augmentation methods are inefficient, while active learning (AL) often 
overlooks the high-order correlations among samples. To address these limitations, we propose the 
Progressive Active Data Augmentation (PADA) framework, which applies the intelligent selection 
principles of AL to the data augmentation process. Within this framework, we designed the core selection 
strategy, Hyper-Ada. This strategy leverages an Adaptive Hypergraph Convolution (AdaHGConv) 
network to refine new features embedded with high-order relations, derived from the global context of 
all augmented samples. We innovatively combine the model’s prediction "Certainty" with our proposed 
"Representation Shift"—the magnitude of feature change before and after refinement—as the selection 
criterion to identify high-quality "anchor" samples. Experiments on CIFAR-10, SVHN, and CIFAR-100 
demonstrate that Hyper-Ada significantly outperforms supervised baselines and traditional AL methods, 
particularly in data-sparse scenarios. This validates the efficacy of guiding data augmentation through 
high-order feature refinement. 

Keywords: Data Augmentation, High - order Features, Active Learning, Adaptive Hypergraph, Image 
Classification 

1. Introduction 

The remarkable performance of deep neural networks in computer vision tasks is highly dependent 
on the availability of large-scale annotated datasets[1][2]. However, in many real-world applications, the 
high cost of data annotation constitutes a significant bottleneck, limiting model performance and 
applicability. Data Augmentation (DA), which expands datasets through artificial transformations, is a 
common technique for enhancing model generalization. Yet, conventional stochastic augmentation 
methods are often indiscriminate, producing a large volume of redundant or non-beneficial samples and 
thus reducing training efficiency. 

Concurrently, Active Learning (AL) aims to mitigate annotation costs by intelligently selecting the 
most informative samples for labeling. However, traditional AL strategies exhibit two primary 
limitations: First, they primarily focus on selecting samples from an unlabeled pool for costly manual 
annotation. Second, their selection criteria—such as uncertainty[3] or clustering-based diversity[4]—
largely evaluate samples in isolation, ignoring the complex internal structure of the dataset as a whole 
and the high-order relations among samples. 

This inspired us to investigate whether the "intelligent selection" paradigm of AL could be applied to 
the "cost-free" process of data augmentation, and whether an advanced selection strategy capable of 
comprehending high-order inter-sample relationships could be designed. 

To achieve this, we propose a new framework named "Progressive Active Data Augmentation 
(PADA)." During the model training process, this framework periodically selects a batch of the most 
valuable samples from a large candidate pool generated by strong data augmentation, thereby optimizing 
the training set. 

At the core of the PADA framework, we further introduce a novel selection strategy named Hyper-
Ada. Inspired by the principles of adaptive hypergraph networks[5] Hyper-Ada moves beyond treating 
candidate samples as independent points. It processes the initial features of all candidates as a global 
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context, leveraging Adaptive Hypergraph Convolution to dynamically discover latent high-order 
semantic correlations. Based on these correlations, it refines each sample’s feature representation to 
encode this structural information. 

Building on this, we innovatively propose two core metrics to evaluate the value of augmented 
samples. The first is "Representation Shift," defined as the L2 distance of a sample’s feature vector before 
and after refinement. We hypothesize that a greater shift magnitude signifies a more critical role for the 
sample within the data manifold and a stronger high-order correlation with other samples. Contrary to 
traditional AL, which prioritizes "uncertain" samples, our experiments revealed that combining this 
metric with the model’s prediction "confidence" is a more effective strategy. Our ideal samples are those 
that the model can already recognize with high confidence (High Certainty) but that also play a significant 
role in the global data structure (High Representation Shift). These samples can be regarded as "high-
quality anchors" for each class. Adding them to the training set most effectively helps the model to 
consolidate and stabilize its decision boundary. 

1.1 Main Contributions 

We conducted comprehensive experimental validation on three classic image classification 
benchmarks (CIFAR-10, SVHN, and CIFAR-100), particularly in simulated data-sparse scenarios (e.g., 
using only 20% of the original training data). The results demonstrate that the Hyper-Ada strategy within 
the PADA framework significantly outperforms standard supervised baselines and traditional 
"uncertainty + clustering" active selection methods. The main contributions of this paper are summarized 
as follows: 

We propose PADA, a novel framework that applies active learning principles to optimize the data 
augmentation process. 

We design Hyper-Ada, an advanced active selection strategy based on adaptive hypergraphs and 
high-order feature refinement. 

We demonstrate through extensive experiments that in data-sparse scenarios, understanding and 
leveraging high-order inter-sample relationships to guide data augmentation can effectively enhance the 
performance of deep learning models. 

2. Related Work 

2.1 Data Augmentation 

Data augmentation is a cornerstone for mitigating the data dependency of deep neural networks. Early 
efforts primarily focused on simple geometric transformations and color jittering, such as random 
flipping, cropping, rotation, and adjustments to brightness and contrast[1]. While simple and effective, 
these methods possess a limited transformation space. To further enrich data diversity, researchers 
introduced region-erasure methods like Cutout[6] and Random Erasing[7], which compel the model to 
focus on more comprehensive contextual information by randomly occluding parts of an image. 

Furthermore, sample-mixing strategies, such as Mixup[8] and CutMix[9], effectively expand the 
training distribution by performing linear interpolation at both the sample and label levels. These have 
been proven to enhance model generalization and robustness against adversarial attacks. To overcome 
the limitations of manually designing augmentation strategies, automated data augmentation 
(AutoAugment)[10] and its variants, like RandAugment[11], employ reinforcement learning or grid 
search to automatically discover optimal combinations of augmentation policies. 

Despite these methods significantly enriching the DA toolkit, their common characteristic is the 
universality and stochasticity of the policies. That is, once an augmentation strategy is defined, it is 
applied randomly and indiscriminately to all training samples, without considering the model’s specific 
"demand" for certain types of augmented data at particular training stages. In contrast, our PADA 
framework introduces a selection mechanism that aims to actively and purposefully select the most 
valuable samples for the current model from a randomly generated augmentation pool. This transforms 
data augmentation from an "open-supply" process into an "on-demand optimization" process. 
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2.2 Active Learning 

Active learning (AL) aims to minimize annotation costs by querying the most informative unlabeled 
samples. The core of AL lies in its sample selection strategy. The most classic category of strategies is 
Uncertainty-based Sampling[3], which selects samples where the model has the lowest prediction 
probability (Least Confidence), the highest prediction entropy (Max Entropy), or the smallest difference 
between the top predicted class probabilities (Margin Sampling). The intuition behind these methods is 
that the model learns the most from samples near its decision boundary. 

However, relying solely on uncertainty may lead to a selection of samples lacking diversity. To 
address this, researchers proposed Diversity-based Sampling. For instance, the Core-set approach[4] 
attempts to find a core subset that best represents the entire dataset distribution. Another common method 
involves using clustering algorithms to select samples from different clusters, ensuring broad coverage. 

In recent years, research has begun to integrate both uncertainty and diversity, exploring more 
complex selection criteria such as expected model change[12] or gradient information[13]. Nonetheless, 
most existing AL methods still suffer from two limitations: 1) They are primarily applied to scenarios 
requiring expensive manual annotation. 2) Their "diversity" metrics are often confined to pairwise 
relations between samples, failing to capture more complex, high-order structures formed by groups of 
samples. Our work overcomes both limitations: first, we apply the AL philosophy to the "cost-free" 
candidate pool of data augmentation; second, our Hyper-Ada strategy explicitly models the high-order 
relationships between samples, achieving a deeper understanding of the data’s intrinsic structure. 

2.3 Graph and Hypergraph Learning 

Graph Neural Networks (GNNs)[14][15]have emerged as powerful tools for processing structured 
data, learning node representations by passing and aggregating messages along the graph structure. 
However, standard graphs can only represent binary (pairwise) relationships between nodes. In many 
real-world scenarios, the relationships among samples are far more complex than pairwise connections. 

Hypergraphs[16][17] provide a more powerful framework, wherein a single "hyperedge" can connect 
an arbitrary number of nodes, thereby naturally representing multi-way, high-order relationships. In 
recent years, hypergraph learning, particularly Hypergraph Neural Networks, has demonstrated 
significant potential in computer vision[18] and other domains. For example, adaptive hypergraph 
networks[5] propose a method for dynamically generating hyperedges. This method can discover latent 
high-order semantic correlations based on the global context of the input data and refine each node’s 
feature representation via hypergraph convolution. 

Introducing graph or hypergraph structures into active learning is an emerging research direction[19]. 
These methods typically leverage the graph structure to measure uncertainty and representativeness 
simultaneously. However, to the best of our knowledge, our work is the first to utilize the "adaptive" 
hypergraph concept to refine high-order features of augmented samples and to innovatively use 
"Representation Shift" and "Certainty" as selection criteria. Our Hyper-Ada strategy is built upon this 
cutting-edge idea, aiming to achieve unprecedented intelligent data augmentation by modeling the high-
order intrinsic structure of the data. 

3. Methods 

3.1 Progressive Active Data Augmentation (PADA) Framework 

The traditional data augmentation process is static: once a set of augmentation strategies is determined, 
they are randomly applied to the data throughout the training process. We believe that a more effective 
paradigm should be dynamic and adaptive, that is, the model should actively select the most beneficial 
reinforcement samples for itself based on its learning status at different training stages. Based on this, we 
have proposed the PADA framework, whose process is shown in Figure 1. The specific steps are as 
follows: 
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Figure 1: PADA framework 

1) Initialization: Given an original labeled training set A, we first randomly sample a subset 𝐴𝐴sub from 
it based on the preset ratio 𝜌𝜌 (subset-ratio) as our base training set. This step aims to simulate scenarios 
where data is scarce. The initial training dataset 𝐷𝐷0 is set to 𝐴𝐴sub. 

2) Cyclical Iteration: The entire training process is divided into multiple stages, each of which 
contains K epochs (active-interval). For the i-th stage: 

a) Training: Conduct K epochs of standard supervised training on the deep learning model M using 
the current training dataset 𝐷𝐷i to obtain the updated model 𝑀𝑀i. 

b) Candidate Pool Generation: Apply a set of predefined, powerful random data augmentation 
transformations (such as RandAugment [11]) to the training set 𝐷𝐷i of the current stage to generate a large, 
temporary augmentation candidate pool 𝐶𝐶i. 

c) Active Selection: Input the updated model 𝑀𝑀i and candidate pool 𝐶𝐶i into our Hyper-Ada selection 
module (see Section 3.2 for details). This module will screen out n enhancement samples that are 
considered the most valuable from 𝐶𝐶i and denote them as 𝑛𝑛i. Here, n is usually a fixed proportion (e.g. 
10%) of the size of 𝐴𝐴sub. 

d) Dataset Update: Construct a new dataset 𝐷𝐷i+1 for the next stage of training. In our implementation, 
we adopt the substitution strategy, namely 𝐷𝐷i+1 = 𝐴𝐴sub ∪ 𝑛𝑛i. This means that the enhanced samples at 
each stage are de novo screened based on the latest model status, ensuring the dynamic adaptability of 
the strategy. 

3) Termination: Repeat step 2 until the preset total training epochs are reached. The PADA framework 
transforms the traditional, one-off data augmentation process into a periodic "perception-decision-
making - optimization" closed loop closely coupled with model training, thereby achieving the 
intelligence of data augmentation. 

3.2 Hyper-Ada: Adaptive Hypergraph Filtering Strategy 

The Hyper-Ada filtering strategy is the core driving force of the PADA framework, and its 
architecture is shown in Figure 2. Its objective is to provide a profound and effective decision-making 
basis for the active screening in step 2.c). The design of this strategy is based on a core assumption: the 
most valuable enhanced samples are those that play a key role in the overall structural relationship of the 
data. To capture this complex structure that transcends individual and paired relationships, we introduce 
an adaptive hypergraph convolutional network. 

For each sample 𝑥𝑥j  in the enhanced candidate pool 𝐶𝐶i , we first extract the information of two 
fundamental dimensions using the current model 𝑀𝑀i: 

Initial Feature: We input 𝑥𝑥j into the backbone network of 𝑀𝑀i and extract its feature vector 𝑓𝑓j before 
the global average pooling layer. This vector 𝐟𝐟𝑗𝑗 ∈ ℝ𝐷𝐷is the original, low-order semantic encoding of the 
content of 𝑥𝑥j by the model. 

Prediction Confidence: We perform a complete forward propagation on 𝑥𝑥j to obtain its prediction 
probability distribution 𝑝𝑝j across C categories. The confidence level 𝑐𝑐j of this sample is defined as the 
maximum predicted probability, that is, 𝑐𝑐j = max(𝑝𝑝j). 

After completing this step, for M samples in the candidate pool, we obtain the initial feature set F = 
𝑓𝑓1,... 𝑓𝑓M and the confidence set C = 𝑐𝑐1,... 𝑐𝑐M. 

This is the technical core of the Hyper-Ada strategy. Instead of conducting the analysis directly on 
the initial feature F, we first refined it through an adaptive hypergraph convolutional network 
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(AdaHGConv) [5]to inject high-order, context-dependent structural information. 

 
Figure 2: Hyper-Ada framework. 

Specifically, we input the entire initial feature set F (an M x D matrix) as a complete batch (1 x M x 
D) into the AdaHGConv module. This module performs two key operations internally: 

1) Adaptive Hyperedge Generation: The module first calculates the global statistics (such as mean 
and maximum) of all input features F, and inputs this global context information into a small network to 
dynamically generate a set of hyperedge prototypes. Each prototype can be regarded as an abstract 
higher-order semantic concept learned from data (for example, "objects with reflective surfaces", 
"backgrounds with complex textures", etc.). Then, through the multi-head attention mechanism, the 
module calculates the similarity between each sample feature 𝑓𝑓j and each hyperedge prototype, thereby 
obtaining a "soft" association matrix that defines the extent to which each sample participates in each 
higher-order semantic concept. 

2) Hypergraph Convolution: Next, through a two-stage message passing process, information 
exchange occurs between nodes (samples) and hyperedges (higher-order concepts). Firstly, the node 
features belonging to the same hyperedge are aggregated to form the feature representation of the 
hyperedge. Then, the features of these hyperedges are propagated back to the associated nodes. After this 
process, the initial feature 𝑓𝑓j of each sample absorbs the context information of the high-order semantic 
cluster it belongs to, and finally outputs a refined high-order feature 𝑓𝑓j

′. 

Ultimately, we obtain the refined high-order feature set F’ = 𝑓𝑓1
′,... 𝑓𝑓M

′ . Compared with F, each feature 
vector in F’ contains information about its position and role in the entire dataset topology. After obtaining 
the refined high-order feature set F’, we comprehensively evaluate the value of each sample 𝑥𝑥j in the 
candidate pool 𝐶𝐶i through two core indicators. 

Representation Shift: We believe that after a sample is refined through the global context, the degree 
of change in its feature vector directly reflects its importance in the overall topological structure of the 
data. A structurally critical sample will have a strong high-order association with many other samples, 
resulting in a significant correction of its features during the extraction process. However, for a redundant 
or isolated sample, the feature changes will be very small. Therefore, we define the higher representative 
score of the JTH sample as the L2 norm between the eigenvectors before and after its refinement, that is, 
the "representation change" 𝑆𝑆shift(j) : 

𝑆𝑆shift(𝑗𝑗) = ∥∥𝐟𝐟𝑗𝑗′ − 𝐟𝐟𝑗𝑗∥∥2                                                                       (1) 

where 𝐟𝐟𝑗𝑗 ∈ ℝ𝐷𝐷 is the initial feature vector of sample 𝑥𝑥𝑗𝑗, and 𝐟𝐟′𝑗𝑗 ∈ ℝ𝐷𝐷 is the high-order feature vector 
refined by the adaptive hypergraph convolution network ℋ , i.e., 𝐟𝐟′𝑗𝑗 = ℋ(𝐅𝐅)𝑗𝑗 . ∥⋅∥2  denotes the 
Euclidean norm. 
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Prediction Confidence: Unlike the traditional active learning approach of prioritizing "uncertain" 
samples, our experiments show that choosing samples that the model can already recognize with high 
confidence is a more effective strategy. As a powerful quality filter, the high-confidence 𝑐𝑐j ensures that 
the core semantics of the selected enhanced samples remain clear and unambiguous even after drastic 
changes. Its definition is as follows: 

𝑐𝑐𝑗𝑗 = max�𝐩𝐩𝑗𝑗�                                                                           (2) 

where 𝐩𝐩𝑗𝑗 is the predictive probability distribution vector for sample 𝑥𝑥𝑗𝑗 from model 𝑀𝑀𝑖𝑖. 

Combined Score: To integrate the structural importance of a sample with the reliability of the model’s 
prediction for it, we first normalize both scores across all 𝑀𝑀  candidate samples using Z-score 
standardization to eliminate scale differences: 

𝑆̂𝑆shift(𝑗𝑗) =
𝑆𝑆shift(𝑗𝑗) − 𝜇𝜇(𝑆𝑆shift)

𝜎𝜎(𝑆𝑆shift)
                                                            (3) 

𝑐̂𝑐𝑗𝑗 =
𝑐𝑐𝑗𝑗−𝜇𝜇(𝑐𝑐)

𝜎𝜎(𝑐𝑐)
                                                                               (4) 

where 𝜇𝜇(⋅)  and 𝜎𝜎(⋅)  represent the mean and standard deviation over the entire candidate pool, 
respectively. The final combined score for the 𝑗𝑗-th sample, Score(𝑗𝑗), is then defined as the sum of these 
two standardized scores: 

Score(𝑗𝑗) = 𝑆̂𝑆shift(𝑗𝑗) + 𝑐̂𝑐𝑗𝑗                                                                 (5) 

We select the top-𝑛𝑛 samples with the highest scores, considering them as “high-quality anchor” 
samples that can most effectively help the model consolidate its core knowledge and stabilize its decision 
boundaries for the next stage of training. 

4. Experiment 

In this section, we conducted a comprehensive experimental verification of the proposed PADA 
framework and Hyper-Ada screening strategy. Our aim is to answer the following core questions: 

1) Can our Active Data augmentation framework (PADA) improve model performance compared 
with the standard supervised learning baseline? 

2) Is the Hyper-Ada screening strategy based on high-order features that we proposed superior to the 
traditional screening strategy based on "uncertainty + clustering"? 

3) How do these methods perform in datasets of different complexities and scenarios with varying 
degrees of data scarcity? 

4) Does our method have an advantage in terms of computational cost? 

4.1 Experimental Setup 

Datasets: We conducted experiments on three image classification benchmark datasets of different 
complexities: CIFAR-10, CIFAR-100[20], and SVHN [21]. To simulate scenarios with scarce data, we 
set different subset-ratios for each dataset, namely 100% (1.0), 50% (0.5), and 20% (0.2). 

Model and training details: Our model architecture selection refers to the standard practices in the 
fields of semi-supervised and self-supervised learning to ensure fair comparisons on a strong and 
recognized baseline. Specifically, we use the WideResNet-28x2[22] model on CIFAR-10, and the larger-
capacity WideResNet-28x8[22] model on the more complex CIFAR-100 and SVHN. Although these 
Settings were borrowed, all of our experiments were conducted in a fully supervised mode. All 
experiments were trained end-to-end using the SGD optimizer, with a total of 200 epochs of training 
rounds. For the PADA framework, we set the active filtering period K (Active-Interval) to 10 epochs. 
The number of enhanced samples n selected each time is fixed at 10% of the size of the base training set 
(𝐴𝐴sub) used. 

Comparison method: 

1) Baseline: The standard supervised learning method. The model is trained only on the corresponding 
proportion of the training set (𝐴𝐴sub), without any active screening. 
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2) PADA (Entropy+Diversity): Our PADA framework, but it adopts the traditional "entropy 
uncertainty +K-Means clustering diversity" as the screening strategy. 

3) Hyper-Ada: Our PADA framework adopts the ultimately proposed screening strategy based on 
adaptive hypergraphs and "determinism + representation of change". 

4.2 Main Experimental Results and Analysis 

Table 1 summarizes the final test accuracy rates of the main experiments. From the data, we can draw 
the following key observations and conclusions: 

Table 1: Final test accuracy rates (%) of Different methods under various datasets and different 
training ratios (𝜌𝜌). 

Dataset Model K 𝛒𝛒 𝐪𝐪 baseline acc PADA acc Hyper-Ada acc 

cifar10 WideResNet 28×2 10 
0.2 0.1 88.11 88.44 88.53 
0.5 0.1 92.89 92.89 92.97 
1.0 0.1 95.01  95.34 

cifar100 WideResNet 28×8 10 
0.2 0.1 62.33 62.39 62.87 
0.5 0.1 74.14 74.19 74.27 
1.0 0.1 80.55  81.03 

svhn WideResNet 28×8 10 
0.2 0.1 95.69 95.80 95.89 
0.5 0.1 96.91 96.94 96.95 
1.0 0.1 97.49  97.51 

1) The universal effectiveness of the Hyper-Ada strategy: In all comparative experiments, the Hyper-
Ada method we proposed achieved the best performance. This strongly demonstrates the superiority and 
universality of our screening strategy based on high-order feature extraction. 

2) The sparser the data, the more obvious the advantage: The performance improvement (Δ𝐴𝐴𝐴𝐴𝐴𝐴) of 
Hyper-Ada over the Baseline is most significant when the data is sparse. For example, on the CIFAR-
100 dataset, when 100% data was used, Hyper-Ada (81.03%) improved by 0.48% compared to Baseline 
(80.55%); When the data volume was reduced to 20%, this performance improvement expanded to 0.54% 
(62.87% vs 62.33%). This validates our hypothesis: when the available labeled data is limited, it becomes 
particularly crucial to intelligently mine information from "cost-free" augmented data. 

3) The more complex the task, the more obvious the advantages: The advantages of Hyper-Ada are 
more prominent on more challenging datasets. On the CIFAR-100 with more categories (20% data), the 
performance improvement was 0.54%, while on the relatively simple CIFAR-10 (20% data), the 
performance improvement was 0.42%. This indicates that our method can effectively assist the model in 
learning more complex feature distributions, which is crucial for distinguishing fine-grained categories. 

4) Hyper-Ada outperforms the traditional PADA strategy: By comparing the results of Hyper-Ada 
and PADA (based on entropy + clustering), we can clearly see the superiority of the screening strategy 
based on high-order features. For example, on CIFAR-100 (50% data), the performance of Hyper-Ada 
(74.27%) is significantly higher than that of traditional PADA (74.19%). This proves that the "certainty 
+ representation change" index we proposed can more accurately locate the most valuable enhanced 
samples for the model compared to the traditional "uncertainty + cluster diversity". 

4.3 Ablation Experiment: The influence of the enhanced sample retention ratio 

Table 2 lists the influence of different proportions of enhanced samples on the model performance. 
Under the setting of a 20% training data ratio, we explored the impact of increasing the number of 
retained "high-quality" enhanced samples after each active screening on model performance. The 
experimental results show that when the retention ratio increases from 10% to 50%, the final accuracy 
of the model shows a slight but continuous improvement (for example, on CIFAR-10, it increases from 
88.53% to 88.84%). However, the marginal benefit of such performance improvement is diminishing. 
This indicates that although increasing the number of high-quality enhanced samples is beneficial, the 
significance of the screening process itself may be even higher. Even if only the top 10% of the samples 
are retained, significant performance improvements can already be achieved, demonstrating that our 
PADA framework strikes a good balance between computational efficiency and performance gain. 
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Table 2: The test accuracy of enhanced samples in different proportions(q). 

Dataset Model K 𝛒𝛒 𝐪𝐪 baseline acc Hyper-Ada acc 

cifar10 WideResNet 28×2 10 

0.2 0.1 88.11 88.53 
0.2 0.2 88.11 88.52 
0.2 0.4 88.11 88.58 
0.2 0.5 88.11 88.84 

cifar100 WideResNet 28×8 10 

0.2 0.1 62.33 62.87 
0.2 0.2 62.33 62.65 
0.2 0.4 62.33 62.92 
0.2 0.5 62.33 62.81 

svhn WideResNet 28×8 10 

0.2 0.1 95.69 95.89 
0.2 0.2 95.69 95.88 
0.2 0.4 95.69 95.86 
0.2 0.5 95.69 95.88 

4.4 Computational Cost Analysis 

In addition to model accuracy, the PADA framework we proposed also demonstrates significant 
advantages in computational efficiency. Compared with a "brute-force augmenting" baseline - that is, 
pre-generating massive (for example, 10 times) augmenting data and conducting the entire training 
process - our method significantly reduces the training cost through a dynamic loop of "screening - 
training". 

Take the use of 20% data (with a 𝐴𝐴sub size of 10,000) on CIFAR-10 as an example. The training set 
size of the brute-enhanced baseline will reach 100,000, while the training set size of Hyper-Ada at each 
stage is only 11,000. This means that, under the same batch_size, the number of batches that the brute-
force enhancement method needs to process per epoch is nearly nine times that of Hyper-Ada. Although 
our method introduces periodic active filtering overhead (approximately equivalent to the time 
consumption of 1-2 training epochs), its total training time is significantly lower than that of brute-force 
enhancement methods. Our approach replaces the huge "ineffective computational cost" of continuous 
training on a large amount of redundant data with a smaller, one-off "intelligent decision-making cost". 
In addition, PADA is a storage and memory-efficient strategy that does not require caching massive 
amounts of augmented data on disk. 

4.5 Discussion on Framework Advantages 

Our PADA framework and Hyper-Ada strategy also have two important conceptual advantages: 

1) Decoupling and plug-and-play of augmentation strategies: The PADA framework decouples the 
"generation" and "use" of data augmentation, enabling it to be flexibly combined with any existing or 
future data augmentation techniques (such as RandAugment, CutMix, etc.) as a meta-strategy. The 
Hyper-Ada filter plays a role in quality control, which enables us to confidently use more aggressive and 
diverse enhancement methods to generate candidate pools without worrying about introducing excessive 
noise, greatly enhancing the universality and robustness of the framework. 

2) Provide model interpretability and insights: Our approach is not merely a performance 
improvement tool, but also a framework for model diagnosis and analysis. The subset of samples selected 
by Hyper-Ada in each screening stage can be regarded as an "intelligent detection" of the current learning 
state of the model. By conducting visualization and statistical analysis on these selected samples, we can 
gain valuable insights into the learning bottlenecks of the model and the effectiveness of data 
augmentation strategies, providing a valuable by-product for the study of model interpretability. 

5. Conclusion 

In this paper, we propose a novel framework called Progressive Active Data Augmentation (PADA) 
to address the blindness and inefficiency issues existing in data augmentation in deep learning. This 
framework innovatively applies the "intelligent screening" concept of active learning to a "cost-free" data 
augmentation process. By periodically and adaptively optimizing the training set, it transforms data 
augmentation from a static and random process into a dynamic and intelligent closed loop. 
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As the core of this framework, we further designed and implemented an advanced screening strategy 
- Hyper-Ada. The core breakthrough of this strategy lies in that it no longer assays each enhanced sample 
in isolation. Instead, inspired by the idea of adaptive hypergraph networks, it takes the features of all 
candidate samples as a global context and uses adaptive hypergraph convolution (AdaHGConv) to extract 
features that contain high-order semantic associations among samples. Based on this, we have proposed 
a brand-new sample value assessment system, which combines the "certainty" of model prediction with 
the "representation change" we define. Experiments have proved that screening for samples of "high-
quality anchor points" that the model can confidently identify and also play a key role in the overall data 
structure is a more effective strategy than traditional methods based on uncertainty. 

We conducted comprehensive comparative experiments on three benchmark datasets (CIFAR-10, 
SVHN, CIFAR-100). The results clearly show that: 

1) The Hyper-Ada strategy we proposed consistently outperforms the standard supervised baseline 
and the active screening method based on traditional clustering in all experimental setups. 

2) The advantages of this method are particularly prominent in scenarios with sparse data (for 
example, using only 20% of the training data) and complex tasks (such as CIFAR-100), demonstrating 
its great potential in solving problems of limited data in the real world. 

3) Compared with brute force enhancement methods, our framework significantly reduces the 
computational and storage resources required for training while achieving better performance, realizing 
a win-win situation of efficiency and effectiveness. In conclusion, our work provides an effective and 
efficient new paradigm for how to intelligently utilize data augmentation. By introducing an 
understanding of the higher-order structure of data into active learning, we have demonstrated that the 
shift from "choosing what to label" to "choosing what to learn" is feasible and productive. 

For future work, we believe there are several directions worth exploring. Firstly, more complex multi-
scale feature fusion modules (such as HyperACE) can be integrated into our high-order feature extraction 
process in order to capture richer semantic information. Secondly, the PADA framework can be applied 
to a wider range of task domains, such as text enhancement in natural language processing or lesion 
recognition in medical image analysis. Finally, through a more in-depth analysis of the samples selected 
by Hyper-Ada, it is expected to provide valuable insights for the interpretability of the model and the 
design of a better data augmentation strategy itself. 
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