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Abstract: The Hemodynamic Gain Index (HGI) is a parameter assessed during cardiopulmonary 
exercise testing (CPX). This study evaluated the association between HGI and the occurrence of Major 
Adverse Cardiovascular Events (MACE). This retrospective analysis included 211 patients who 
underwent CPX at the Fifth Affiliated Hospital of Zhengzhou University between January 2019 and 
January 2022. Patients were divided into quartile groups based on HGI percentile (calculated as 
[(HRpeak × SBPpeak) − (HRrest × SBPrest)] / (HRrest × SBPrest)). Baseline characteristics, 
laboratory findings, and long-term prognosis (MACE) were compared across groups. A predictive 
model incorporating three risk factors—"interventricular septal thickness, HGI, and history of 
diabetes"—was constructed. Receiver operating characteristic (ROC) curve analysis demonstrated that 
the performance of this model was superior to using peak oxygen consumption (PeakVO₂) alone for 
predicting MACE (AUC=0.787, 95% CI: 0.629-0.755 vs. AUC=0.637, 95% CI: 0.365-0.923; p=0.004). 
The predictive model developed in this study, comprising HGI, interventricular septal thickness, and 
history of diabetes, demonstrated higher diagnostic efficacy for adverse cardiovascular events 
compared to using PeakVO₂ alone. This model holds greater clinical utility for predicting major 
adverse cardiovascular events. 
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1. Introduction 

China's aging population is increasingly prominent, and the group at risk for cardiovascular diseases 
(CVD) is large, becoming the greatest threat to adult mortality. The medical resource burden caused by 
major adverse cardiovascular events (MACE) has continued to increase over the past decade. The 
prevention and treatment of CVD remain a long and challenging task[1]. Cardiopulmonary function and 
exercise capacity are key indicators for evaluating the prognosis of MACE. The hemodynamic gain 
index (HGI) serves as a comprehensive marker of hemodynamic reserve, capturing the net gain in the 
heart rate-blood pressure product (the product of heart rate [HR] and systolic blood pressure [SBP]) 
from rest to peak exercise[2]. HGI may become a critical indicator for assessing patients' exercise 
capacity and the risk of cardiovascular events. The aim of this study is to verify the correlation between 
HGI and exercise capacity parameters obtained from cardiopulmonary exercise testing (CPX), explore 
the predictive value of HGI in MACE events, and construct a cardiovascular event prediction model 
and nomogram, providing an objective, quantitative evaluation of the impact of various factors. 

2. Materials and Methods 

2.1 Study Subjects 

From January 2019 to April 2022, 211 patients who underwent cardiopulmonary exercise testing 
(CPX) at the Fifth Affiliated Hospital of Zhengzhou University were included. The hemodynamic gain 
index (HGI) was calculated based on CPX parameters, and descriptive statistical grouping of HGI was 
performed using the 25th, 25th to 50th, 50th to 75th, and above the 75th percentiles. The predictive and 
prognostic value of the hemodynamic gain index in relation to cardiovascular event incidence was 
analyzed. 

Inclusion criteria: 

a) Inpatients who participated in cardiopulmonary exercise testing; 
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b) Aged between 40 and 80 years. 

Exclusion criteria: 

a) Patients with cognitive dysfunction, psychological cognitive disorders, or those who were 
unwilling or unable to cooperate during the experiment; 

b) Malignant tumors (short life expectancy); 

c) Patients with incomplete statistical or follow-up data; 

d) Patients who refused to participate in the study. 

2.2 Research Methods 

2.2.1 Cardiopulmonary Exercise Testing 

The Quark PFT Ergo cardiopulmonary exercise testing system, manufactured by COSMED S.R.L, 
Italy, was used. 

2.2.2 Data Collection 

Cardiopulmonary exercise testing indicators included: resting systolic blood pressure (SBPrest), 
resting diastolic blood pressure (DBPrest), resting heart rate (HRrest), peak oxygen uptake 
(PeakVO2/Kg), anaerobic threshold (AT), peak systolic blood pressure (SBPpeak), peak diastolic blood 
pressure (DBPpeak), peak heart rate (HRpeak), heart rate reserve (HRR), carbon dioxide ventilation 
equivalent (VE/VCO2), slope of carbon dioxide ventilation equivalent (VE/VCO2 slope), V, and HGI. 
Baseline indicators included: age, gender, blood lipids, BMI, medical history, smoking history, alcohol 
history, past medical history, use of hemodynamic improvement medications, and carotid plaque status. 

2.2.3 Follow-up and Endpoint Events 

Follow-up was conducted through the hospital’s inpatient and outpatient systems or by telephone to 
confirm whether cardiovascular adverse events (MACE) occurred after patient discharge. MACE 
included unstable angina, recurrent myocardial infarction, heart failure, severe arrhythmia, and sudden 
cardiac death. 

2.3 Statistical Methods 

This study primarily used SPSS 27.0 and R (4.3.3) software for statistical analysis. Normally 
distributed continuous data were expressed as ±s. For homogeneity of variance, independent sample 
t-tests were used for group comparisons, and approximate t-tests were used for unequal variance. 
Skewed distribution data were expressed as M [P25;P75] and compared using the non-parametric 
Mann-Whitney U test. Categorical data were expressed as counts (n), with group comparisons 
performed using the chi-square test (Fisher’s exact test was used for multiple rows and columns). The 
non-parametric Mann-Whitney U test was also used for comparisons of ranked data between two 
groups. Multivariate logistic regression analysis was used to construct a risk prediction model based on 
variables with P<0.05, and a nomogram was created for visual representation of the model. The 
performance of the prediction model was validated using the receiver operating characteristic (ROC) 
curve. All statistical analyses were two-sided, with P<0.05 considered statistically significant. 

3. Results 

3.1 Baseline Information 

A total of 211 patients were included and divided into four groups based on HGI percentiles: 
“HGI1,HGI2, HGI3, HGI4,” with 53, 56, 50, and 52 patients in each group, respectively. Statistical 
analysis was performed on the baseline data of the four groups. Significant differences were found in 
age (p=0.000), peak oxygen uptake (p<0.001), Peak O2 (p<0.001), HRR (p<0.001), Peak CO 
(p<0.001), and interventricular septal thickness (p=0.007). No statistically significant differences were 
found for the other results (Table 1). 

Chi-square or Fisher's exact test was used to compare categorical variables (if applicable); the 
Kruskal-Wallis test was used to compare continuous variables; non-parametric data were analyzed 
using non-parametric tests; Q1 = 25th percentile; Q3 = 75th percentile;LDL: Low-Density Lipoprotein; 
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HDL: High-Density Lipoprotein. 

Table 1 Baseline Data of HGI 

 total 
(n=211) 

HGI4 
(>2.0) 
(n=53) 

HGI3 
(2.0-1.5) 
(n=56) 

HGI2 
(1.18-1.5) 

(n=50) 

HGI1 
(<1.18) 
(n=52) 

P* 

Age(n) 56.7±10.7 50.8±9.7 57.5±9.9 57.8±10.2 60.9±9.1 0.0001 
female(n) 144 37 41 37 29 0.3958 

BMI 25.38±3.3 25.57±3.5 24.92±2.4 24.90±3.2 26.10±3.9 0.2517 
Drug(n)      0.8383 

Yes 62 14 15 16 17  
No 149 39 41 34 35  

Smoking(n)      0.2118 
Yes 70 16 14 17 23  
No 141 37 42 33 29  

Diabetes(n)      0.4013 
Yes 24 4 5 6 9  
No 187 49 51 44 43  

Atrial fibrillation(n)      0.1360 
Yes 8 0 1 3 4  
No 202 53 55 47 48  

Hypertension(n) 
Yes 
No 

86 
125 

16 
36 

20 
30 

26 
30 

24 
29 0.3399 

Lipoprotein 85.70(33.60, 
161.20) 

76.60(40.20, 
156.95) 

82.25(24.52, 
142.75) 

73.80(26.30, 
216.00) 

107.25(40.25, 
183.40) 0.7004 

Apolipoprotein B 0.79(0.64, 9, 96) 0.78(0.56, 0.97) 0.81(0.645, 0.97) 0.78(0.62, 0.98) 0.78(0.64, 0.96) 0.8252 
Triglycerides 1.60(1.09, 2.21) 1.60(0.92, 2.04) 1.72(1.10, 2.49) 1.45(1.09, 2.00) 1.70(1.09, 3.20) 0.2303 

LDL 2.29(1.89, 2.89) 2.54(1.95, 2.95) 2.41(2.05, 2.90) 2.28(1.69, 2.93) 2.13(1.85, 2.55) 0.1247 
HDL 1.19(1.00, 1.37) 1.23(1.04, 1.43) 1.21(1.00, 1.37) 1.19(1.06, 1.36) 1.12(0.95, 1.35) 0.3178 

Total Cholesterol 4.54 ±1.08 4.76 ±1.15 4.60 ±1.09 4.42±1.11 4.35 ±0.95 0.5154 
Interventricular 

Septum Thickness       

≥12mm 30 2 8 6 14 0.007 
8-11mm 181 51 48 44 38  

Carotid Plaque Count      0.4207 
≥3 25 9 4 5 7  
<3 186 44 52 45 45  

NYHA      0.1339 
I 51 11 9 12 19  
II 127 30 38 33 26  
III 32 12 9 5 6  
IV 1 0 0 0 1  

peakO2 17.30(15.30, 
19.40) 

19.00(17.35, 
21.40) 18.2(16.10, 19.40) 16.60(15.38, 

18.22) 
14.65(12.95, 

17.00) <0.001 

Peak O2 1.24(1.04, 1.46) 1.05 (0.86, 
1.31) 1.21 [1.11, 1.37] 1.24 [1.08, 

1.50] 
1.41 [1.21, 

1.60] <0.001 

VE/VCO2 slope 23.12(20.90, 
25.80) 

22.07(19.76, 
24.39) 

22.67(20.37, 
25.94) 

23.5(21.26, 
26.13) 

24.5(21.72, 
28.00) 0.027 

HRR 33.4±16.32 24.85±13.86 28.22 ±14.75 35.66±14.55 46.28±13.49 <0.001 
Peak O2 pulse 9.72±2.27 9.93±2.06 9.74±2.12 9.62±2.25 9.56±2.66 <0.001 

Peak CO 8.24(6.92, 9.63) 9.39(8.14, 
10.93) 8.13(7.15, 9.79) 8.11(7.32, 9.04) 7.03(5.74, 8.70) <0.001 

AT 12.30(10.70, 
13.60) 

11.60(9.82, 
13.00) 

11.50 (10.57, 
12.67) 

12.70(11.25, 
14.55) 

12.90(11.80, 
13.70) <0.001 

3.2 Univariate Analysis and Multivariate Logistic Regression 

Univariate analysis identified significant variables, and further multivariate binary logistic 
regression (stepwise method) was used to select independent influencing factors. The “rms” package in 
R software was used to create a nomogram prediction model, and ROC curves were drawn (Figures 1 
and 2). 

3.2.1 Construction of the Nomogram Prediction Model 

The nomogram prediction model was constructed based on the three independent influencing 
factors identified by logistic regression analysis. The nomogram is based on each regression coefficient, 
which is proportionally converted into a scale from 0 to 100 points. These points are summed according 
to the independent variables, and the total score is used to locate the position on the total score scale. 
The higher the total score, the greater the risk. The influencing factors included HGI, interventricular 
septal thickness, and history of diabetes. 

3.2.2 ROC Curve 

ROC curves were plotted to analyze the model’s diagnostic efficiency for cardiovascular event 
occurrence. The results showed that the model (Figure 2A) had an AUC of 0.787 (95% CI: 
0.629–0.755). When using peak oxygen uptake alone to diagnose cardiovascular event occurrence, the 
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model’s AUC for Peak VO2 (Figure 2B) was 0.637 (95% CI: 0.558–0.715). The diagnostic efficiency 
of the prediction model was better than using Peak O2 alone (p=0.004). The Hosmer-Lemeshow test 
showed good goodness-of-fit (χ2=10.36, P=0.24). The clinical decision curve demonstrated that the 
prediction model has good clinical application value. 

 
Figure 1 Nomogram Prediction Model 

Note: age = age, yes (greater than 60), no (less than or equal to 60); its = interventricular septal 
thickness, yes (greater than 12), no (less than or equal to 11); arrhythmia = arrhythmia, yes (history of 
arrhythmia), no (no history of arrhythmia); diabetes = diabetes, yes (history of diabetes), no (no history 
of diabetes) 

 
A: ROC Curve of the Prediction Model B: ROC Curve of the Prediction Model and Peak Oxygen Uptake 

 
C: Clinical Decision Curve Analysis of the Nomogram Prediction Model D: Calibration Curve of the Nomogram Prediction Model 

Figure 2: roc1 represents the Peak O2 curve, and roc2 represents the prediction model curve. 

4. Discussion 

Cardiopulmonary exercise testing (CPX) is a well-established clinical examination that provides 
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valuable diagnostic and prognostic information for patients with various chronic diseases[3]. 
Cardiovascular disease (CVD) remains the leading cause of death worldwide[4]. Although CVD 
mortality has declined in recent years, hospital admissions due to acute manifestations of major adverse 
cardiovascular events (MACE) continue to rise. Physical inactivity is a major behavioral risk factor for 
CVD, and cardiopulmonary function is an important prognostic indicator[5]. As a simple parameter, the 
hemodynamic gain index (HGI) can be applied to predict the incidence of MACE and explore its 
prognostic and preventive value. 

Hemodynamic responses during exercise testing are crucial for assessing cardiovascular function, 
diagnosing cardiovascular diseases, and evaluating overall prognosis[6]. HGI, as a comprehensive 
measure of hemodynamic reserve, captures the net gain in the heart rate–blood pressure product (the 
product of heart rate [HR] and systolic blood pressure [SBP]) from rest to peak exercise. Research by 
Baruch Vainshelboim et al. found that HGI is a strong predictor of heart failure (HF) incidence in men, 
supporting its prognostic value and indicating that higher HGI is independently associated with lower 
HF risk[2]. Another study confirmed that HGI in female patients also holds predictive and prognostic 
value for cardiovascular diseases[6]. 

Some observational studies have shown that CPX parameters, either directly measured or estimated 
through exercise testing, are negatively and independently associated with cardiovascular outcomes and 
type 2 diabetes[7,8]. Nesti L et al. reported that diabetic patients exhibit reduced peak oxygen uptake 
before the onset of significant cardiovascular events[9]. Cardiac remodeling is common among patients 
with HF and serves as an indicator of disease progression and severity. Interventricular septal 
hypertrophy is one aspect of remodeling. The septum plays a role in maintaining ventricular integrity 
and coordinating effective cardiac pumping. Abel N et al. found that septal hypertrophy was not 
associated with all-cause mortality over a median follow-up of 30 months but was independently 
predictive of rehospitalization risk. Moreover, septal hypertrophy was identified as a predictor of 
mortality, even among patients with a normal left ventricular mass index[10]. 

Based on data analysis, a prediction model was constructed using three risk 
factors—interventricular septum, HGI, and history of diabetes. The area under the ROC curve for this 
prediction model (AUC = 0.787, 95% CI: 0.629–0.755) was significantly higher than that of peak 
oxygen uptake (AUC = 0.637, 95% CI: 0.365–0.923) (p = 0.004). This model provides valuable 
reference for clinicians in predicting recurrent cardiovascular events and evaluating prognosis among 
high-risk populations. 

β-blockers can impair heart rate response during exercise and may reduce HGI[2], yet no significant 
differences in HGI were observed across groups in this study, nor did β-blockers appear to significantly 
affect prognosis. Factors such as patient medication adherence and information bias cannot be ruled out. 
Additionally, this study lacked a broader range of cardiac structural indicators, suggesting the need for 
further investigation into the relationship between HGI and cardiac remodeling. 

In conclusion, HGI is a parameter derived from routine exercise testing and can serve as a substitute 
for peak oxygen uptake, particularly suitable for treadmill tests where gas exchange analysis is not 
feasible. Incorporating HGI into prognostic assessments for high-risk patients and implementing 
cardiopulmonary fitness interventions in individuals with low HGI may strengthen current public 
health prevention strategies and offer a more precise and effective approach to patient health 
management. 
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