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Abstract: With the rapid advancement of computer technology, multi-modality has emerged as a critical 
area of research. The fusion and alignment of multi-modal data not only enhance the intelligence level 
of Internet of Things (IoT) devices but also provide users with enriched and precise service experiences. 
However, most existing studies primarily focus on managing two to three modalities, which often proves 
inadequate in real-world complex and dynamic scenarios. To address this limitation, this paper conducts 
an in-depth investigation into multi-modal learning with the aim of overcoming the constraints 
associated with current modality quantities. In practical applications, coordinating multiple modalities 
remains a significant challenge, particularly in dynamic environments where noise factors can lead to 
fluctuating modality dominance. Consequently, achieving effective multi-modal fusion and alignment has 
become a key research challenge. This paper proposes a novel multi-modal fusion framework that 
emphasizes both inter-modal complementarity and collaboration while introducing a modality 
enhancement mechanism designed to mitigate noise interference across modalities. Experimental results 
validate the effectiveness of our proposed method across four benchmark datasets. 
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1. Introduction 

In recent years, with ongoing technological advancements, multi-modality approaches have been 
extensively applied across various computational tasks and have increasingly infiltrated key domains 
such as the Internet of Things (IoT)[1]. As IoT technologies evolve rapidly, there is an escalating demand 
for intelligent services driven by diverse sensor data. In this context, multi-modality learning has emerged 
as a pivotal area of research. Its primary objective is to fully leverage the complementary information 
among different modalities to enhance the perceptual capabilities as well as cognitive and decision-
making processes within IoT systems. The fusion and alignment of multi-modality data can significantly 
elevate the intelligence level of IoT devices while providing users with richer and more accurate service 
experiences in intricate environments[2]. 

As a result, multi-modality fusion and modality alignment have increasingly become central 
techniques in contemporary multi-modality research. Modality alignment primarily addresses semantic 
discrepancies and distributional inconsistencies among various data types. Once alignment is achieved, 
modality fusion further integrates multi-modality data—originating from images, speech, text, and 
sensors—through methods such as weighted combination, attention mechanisms, and feature 
transformation. This process generates joint representations characterized by strong expressiveness and 
discriminative power[3-5]. Consequently, it enhances overall data utilization efficiency while significantly 
broadening the application boundaries of multi-modality systems within the Internet of Things (IoT). 

However, most existing multi-modality research remains limited to relatively simple application 
scenarios, typically involving only two or three modalities[6-7]. Such constraints often result in poor 
adaptability and scalability when confronted with the complex and dynamic multi-modality 
environments of the real world. Moreover, in dynamic settings, the quality and contribution of each 
modality can fluctuate due to factors such as noise, occlusion, signal attenuation, or modality failure. 
These variations can lead to frequent shifts in the relative strengths of different modalities, thereby posing 
significant challenges for achieving stable fusion.To address these challenges, this paper proposes a novel 
multi-modality fusion approach that not only emphasizes complementary collaboration among 
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modalities during the fusion process but also fully accounts for the dynamic variation in modality 
performance within practical applications.  

2. Related Works 

2.1 Modal Alignment and Fusion 

Modality alignment is a crucial aspect of multi-modality machine learning, as it establishes 
correspondences between data from different modalities to facilitate effective information 
complementation. By associating semantic or structural information across modalities, modality 
alignment enables the model to infer information from one modality based on another, thereby alleviating 
distributional discrepancies between modalities.Early studies predominantly relied on supervised 
alignment techniques. For instance, DeVISE maximizes the similarity between image features and their 
corresponding textual labels within a shared embedding space to achieve supervised alignment[8]. In 
recent years, self-supervised alignment learning has emerged as one of the prevailing approaches in this 
domain. CLIP employs large-scale contrastive training with image-text pairs to project both modalities 
into proximate positions within a joint embedding space while simultaneously distancing unrelated 
instances[9]. This methodology significantly enhances zero-shot cross-modal retrieval capabilities. 
Similarly, ALIGN capitalizes on naturally occurring alignments between images and texts found in noisy 
web data, further illustrating the effectiveness of large-scale alignment learning[10]. However, many 
depend on well-aligned multi-modality datasets when in practice cross-modal datasets often contain 
noise and weakly aligned pairs.To address these issues, Xiao X proposed a more refined approach by 
identifying tokens in text that are highly relevant to their corresponding images and assigning them 
greater weight within the loss function. This strategy improves alignment accuracy by concentrating the 
learning process on more informative multi-modality correspondences[11]. 

Modality fusion emphasizes the integration of complementary information from multiple modalities, 
typically categorized into early fusion, late fusion, and hybrid fusion. Early fusion, often referred to as 
feature-level fusion, is one of the most widely utilized strategies in multi-modality learning. This 
approach involves merging features extracted from each modality prior to executing downstream 
analytical tasks. Current methodologies for feature-level fusion predominantly encompass probabilistic 
statistical models, neural network-based techniques, feature extraction methods, and search-based 
strategies[12]. In contrast, late fusion entails the independent processing of data and features from different 
modalities through separate models; each model generates unimodal decisions. Hybrid fusion integrates 
both feature-level and decision-level approaches with the objective of harnessing the advantages of early 
and late fusion while addressing their respective limitations. For example, ViLBERT employs cross-
modal attention mechanisms that facilitate interaction between visual and textual features across 
Transformer layers[13]. Building on this foundation, LXMERT introduces a task-driven gating mechanism 
designed to adaptively select salient modality-specific features, thereby enhancing the model's ability to 
concentrate on task-relevant information[14]. 

2.2 Modal Enhancement 

Due to real-world challenges such as modality-specific noise, missing modalities, and low-quality 
inputs, it is essential to enhance unimodal representations and their robustness in order to establish a 
more reliable foundation for cross-modal alignment and fusion. Current research on modality 
enhancement can be broadly categorized into two primary domains: 

The first category pertains to unimodal enhancement. Early investigations concentrated on improving 
single-modality representations through techniques such as data augmentation or feature optimization. 
For instance, SpecAugment introduces random masking within the time-frequency domain of speech 
signals, significantly bolstering the noise robustness of speech recognition models[15]. In the visual 
domain, RandAugment employs automated search methods to identify optimal combinations of 
augmentation strategies, thereby addressing the limitations associated with traditional handcrafted 
approaches[16]. While these techniques enhance the generalization capabilities of unimodal models, they 
often overlook semantic consistency across modalities; this oversight may lead to misaligned features 
that diverge from the objectives inherent in cross-modal tasks. 

The second category pertains to cross-modal enhancement, wherein researchers utilize information 
from various modalities to enhance unimodal representations, particularly in light of the emergence of 
large-scale multi-modality pre-trained models. For example, CMKD introduces a cross-modal 
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knowledge distillation framework that facilitates the transfer of alignment knowledge from a multi-
modality teacher model to a unimodal student network[17]. This approach enables the student network to 
preserve discriminative features even when certain modalities are absent. Similarly, AV-HuBERT 
employs audio-visual contrastive learning to constrain the latent space associated with lip movements, 
thereby indirectly bolstering the robustness of unimodal lip-reading encoders[18]. However, these 
methods heavily rely on the quality of cross-modal alignment and may introduce noise in scenarios 
characterized by weak inter-modality correlations. 

In summary, current mainstream approaches are transitioning from traditional static fusion strategies 
towards modality-adaptive fusion techniques. Inspired by this trend, we propose a comprehensive multi-
modality fusion framework that integrates a contrastive loss-based modality enhancement mechanism. 
This design further enhances feature modeling for each modality during practical tasks, thus improving 
fusion robustness under challenging conditions such as noise. 

3. Proposed method 

Figure 1 presents the overall architecture of our proposed model. Initially, each modality is converted 
into a unified sequence format, Subsequently, modality-specific features are extracted utilizing a multi-
modality encoder. After computing the weak modality through cosine similarity, we employ contrastive 
learning to enhance its representation.For modality fusion, a cross-attention mechanism is utilized to 
integrate information across different modalities. Detailed descriptions of these processes can be found 
in Sections 3.1 and Sections 3.2. 

 
Figure 1: The model architecture diagram. 

3.1 Modality Fusion and Decision Making 

Since this paper involves many different modalities, we set the modality as Xm ∈ ℝ, where m =
{1,2,⋯ , n}. First, we normalize each modality into a sequence format, meaning that each element in a 
table or figure is treated as an individual token in the sequence. As a result, we obtain the standardized 
input data Xm = tm × dm  for subsequent processing, where tm  is the input sequence length 
specifically designed for the mode and task, and dm is the input dimension specifically designed for the 
mode and task. For each different model m ∈ M, Liang and Paul Pu define a one-hot embedding mode 
em ∈ ℝ|M|, where |M| is the total number of modalities[19]. This embedding identifies the shared modality 
pattern across different tasks. Additionally, we introduce a modality-specific positional encoding Pm ∈
ℝtm×dpm , where dpm is the dimension of the positional encoding, used to capture the position of each 
element in the modality sequence.Moreover, we employ a shared positional encoding to capture temporal 
dimensions that are common across modalities.After processing, the final representation for modality m 
is: Xm = Xm ⊕ em ⊕ Pm ⊕ 0m . Here, ⊕ denotes concatenation of: the input sequence,modality 
embedding, positional encoding, and padding zeros. The padding 0m is used to fill the sequence with 
zeros so that all modalities are padded to the same standardized length tm × dall , where dall =
maxm∈M�dm + |M| + dpm� and dall  is the final channel dimension of the modality representation. 
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Based on this unified representation of all modalities, we adopt it as the input format and design a general-
purpose encoder based on the Transformer Perceiver architecture proposed by Andrew Jaegle[20]: 
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The model is trained recursively with a latent array Zm of shape dLN × dLS, where dLN denotes the 
sequence length of the latent dimension, and dLS represents the latent feature dimension. The latent 
array is randomly initialized as Zm

(0) at the beginning. Before computing each layer, we require the latent 
array from the previous layer Zm

(L−1) to calculate the current layer. The processed input Xm interacts 
with Zm

(L−1) through cross-attention to produce an intermediate representation Z�mL . Then, self-attention 
is applied to Z�mL  to obtain the input representation Zm

(L) for the next layer. Repeating the above steps 
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To effectively model multi-modality representations, we adopt a shared cross-modal Transformer 
block with parameter C, as proposed by Yao-Hung and Jiasen Lu[21-22]. Within this framework, for any 
pair of latent arrays Z1and Z2from two individual modalities, we compute the attention weights in a 
cross-modal manner using the shared Transformer block with parameter C. Specifically, we designate 
Z1 as the query input and Z2 as both the key and value, forming the basis of the attention mechanism 
to model the interactions from Z1 to Z2: 
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Here, 𝑊𝑊𝑄𝑄2 ∈ ℝ
𝑑𝑑𝐿𝐿𝐿𝐿×𝑑𝑑𝑘𝑘, 𝑊𝑊𝑉𝑉1 ∈ ℝ

𝑑𝑑𝐿𝐿𝐿𝐿×𝑑𝑑𝑘𝑘 are learnable parameters. Based on the equations (3), in the 
same way, we can also get attention between: 𝑍𝑍2→1, the final multi-modality representation is formed by 
concatenating the bidirectional attention results:  

     ]1 2 2 1,mmZ Z Z→ →=                               (4) 

To determine the relative strength or weakness of each modality, we employ residual similarity as a 
basis for comparison. After acquiring the representations of each modality, we first perform feature-level 
fusion to construct a shared reference embedding. Specifically, the fused representation is obtained as: 

  ( )1 2 i, ,. . .,fusedz Concat z z z=                        (5) 

Next, we measure the cosine similarity between the individual modality representation Zi and the 
fused feature vector Zfused  to assess alignment. The average similarity score across the dataset is 
computed as:    
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Where N denotes the number of samples, and simi
(n)  represents the average similarity between 

moZ�1dality i and the fused vector across all instances. Finally, the modality with the lowest similarity 
score is identified as the weak modality:   

( )arg min  n
i

i
Weak Modality sim=                       (7) 

3.2 Enhancement of Weak Modalities 

The contrastive loss function serves as a key component for model optimization. It enhances the 
semantic alignment between weak modality representations and the fused embedding, thereby improving 
the consistency and effectiveness of multi-modality fusion. To this end, we consider two modalities 
Z1and Z2 and construct a batch of sample representations. In this subsection, we describe the procedures 
of vector normalization, similarity computation, and similarity matrix construction, which are essential 
for the enhancement process. 

Vector Normalization: To mitigate the influence of scale on similarity calculation, we first apply ℒ2 
normalization to both vectors Z1and Z2. Among them, Z1 is weak modality and Z2 is strong modality: 
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After normalization, vectors are projected onto a unit hypersphere, and the residual similarity between 
them reduces to their dot product, i.e.:Z�1 ⋅ Z�2 = cosθ , which reflects the angular similarity. This 
operation ensures that similarity measurements focus purely on direction rather than magnitude, making 
the comparison more robust. 

Residual Similarity Matrix Construction: For a batch of B sample pairs, we compute pairwise 
similarities between the normalized representations of Z1and Z2, yielding a residual similarity matrix 
S ∈ ℝB×B, where: 

  
~ ~
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Here,Si,j represents the residual similarity between the i-th sample in Z1 and the j-th sample in  Z2. 
The matrix captures how each sample aligns with others across modalities (e.g., image-text or multi-view 
representations), providing a foundation for identifying and enhancing weak modalities. 

Contrastive Loss Design: To distinguish between positive and negative pairs, we adopt a temperature-
scaled Softmax function for normalization. For the i-th sample, the contrastive loss is defined as:  

( )
,

, , ,

/

/ / /
1

1

1 log
i i

i j j i i i

SB

contrast B S S S
i

j

eL
B e e e

τ

τ τ τ
=

=

= −
+ −

∑
∑

               (10) 

Here, the temperature parameter τ controls the sharpness of the similarity distribution. A lower τ 
increases the model's focus on distinguishing hard negative samples by sharpening the Softmax 
distribution. Conversely, higher values of τ  lead to smoother distributions and reduced training 
difficulty. To avoid redundancy from symmetric angular distances, the denominator includes both Si,j 
and Sj,i , excluding the self-similarity term. This design follows the symmetric contrastive learning 
framework proposed in Chen T, which aims to emphasize positive sample similarity while suppressing 
the influence of hard negatives[23]. 

Regularization Term: To prevent the model from collapsing due to over-reliance on similarity 
optimization, we introduce an embedding norm regularization term ℒreg, defined as:  

( )2 2
1 2 2 2|| || || ||regL Z Zλ= +                          (11) 

This term penalizes excessively large feature norms, encouraging a balance between representation 
learning and the primary task. The hyperparameter λ controls the strength of the regularization. 
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Final Loss Function: The overall objective is a weighted sum of the primary task loss, the contrastive 
loss, and the regularization term: 

task contrast regL L L Lα= + +                         (12) 

Here, α is a hyperparameter that adjusts the importance of the contrastive loss. By balancing the 
contrastive supervision with the main task objectives, the model dynamically enhances weak modality 
representations and improves the robustness and integrity of the multi-modality system. 

This work proposes a comprehensive modality fusion and enhancement framework, which integrates 
multiple modalities, determines modality strength through cosine similarity, and applies contrastive 
learning to enhance weaker modalities. The proposed approach not only extends fusion to support 
multiple modalities but also effectively improves the adaptability of the multi-modality fusion system to 
varying modality conditions, thereby enhancing the overall robustness and generalization capability of 
the system. 

4. Experimental Analysis 

4.1 Dataset 

In this section, we present comparative experiments aimed at evaluating the effectiveness of our 
proposed model. The experiments are conducted on a diverse array of multi-modality datasets provided 
by MultiBench, encompassing six modalities. Specifically, the datasets utilized include: 

UR-FUNNY: This dataset comprises 16,514 samples and incorporates three modalities—text, video, 
and audio—focusing on humor recognition. 

MOSEI: Similar to UR-FUNNY in terms of modalities, MOSEI is a larger dataset containing 22,777 
samples and is designed for sentiment analysis utilizing text, visual, and acoustic inputs. 

MIMIC: Comprising 36,212 instances, this clinical dataset includes time-series signals as well as 
tabular data to support medical diagnosis and prediction tasks. 

AV-MNIST: This dataset consists of 70,000 samples that each combine image and audio modalities; 
it serves as a benchmark for audio-visual classification. 

4.2 Experimental Environment 

This paper conducts experiments on the pytorch framework under Ubuntu 22.04, using two RTX 
3090 graphics cards and 120G of memory. The Adam optimization model is employed, with a learning 
rate of 5 × 10−4. In the model architecture design, we set the number of latent periods to 20, the latent 
dimension to 64, and the 𝐿𝐿2 regularization to 3 × 10−4. Additionally, the model runs for 100 epochs, 
which takes approximately 168 hours. 

4.3 Evaluation and Analysis 

In this subsection, we assess the performance of the proposed method across four benchmark datasets: 
UR-FUNNY, MOSEI, MIMIC, and AV-MNIST, utilizing Accuracy (Acc) as the primary evaluation 
metric. We conduct comparative experiments and provide a comprehensive analysis and discussion of 
the results to validate the effectiveness and reliability of our approach. The comparative results are 
presented in Table 1. In this table: 

MULTIBENCH serves as a comprehensive and unified benchmark for multi-modality learning, 
encompassing 15 datasets, 10 modalities, 20 prediction tasks, and 6 research domains[24] . 

VATT is a convolution-free Transformer model designed to directly process raw video, audio, and 
text inputs[25]. It employs a multi-modality contrastive learning strategy within a self-supervised learning 
framework. 

HIGHMMT is a scalable multi-modality fusion model that leverages shared-parameter multi-task 
learning to enhance cross-modal and cross-task generalization through transfer learning mechanisms[19]. 

These models serve as robust baselines for comparison purposes while underscoring the 
competitiveness of our method across various multi-modality scenarios.  
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Table 1: Comparative Experimental Results. 
Model MOSEI↑ 

Acc(%) 
MIMIC↑ 
Acc(%) 

AV-
MNIST↑Acc(%) 

UR-
FUNNY↑Acc(%) 

Ave↑ 
(%) 

MULTIBENCH[24]  79.4 67.7 70.4 63.7 70.2 
VATT[25]  79.5 64.3 70.1 63.0 69.2 

HIGHMMT[19]  79.4 68.9 70.2 64.2 70.8 
Our 80.2 68.3 70.2 66.4 71.3 

As demonstrated in Table 1, our proposed method achieves superior performance on the MOSEI and 
UR-FUNNY datasets, attaining an accuracy of 80.2%. While the highest scores on the MIMIC and AV-
MNIST datasets are achieved by HIGHMMT and MULTIBENCH, respectively, our approach exhibits 
strong competitiveness—showing only a 0.6% gap from the best-performing model on MIMIC and a 
mere 0.2% difference on AV-MNIST. Overall, when averaged across all datasets, our method consistently 
outperforms other approaches, achieving a 0.5% improvement over HIGHMMT, which serves as the 
strongest baseline among those compared. 

The proposed multi-modality fusion and enhancement framework demonstrates strong overall 
performance across four benchmark datasets, with particularly notable results on UR-FUNNY and 
MOSEI, where it achieves the best accuracy—improving by 2.4% and 0.8%, respectively. Moreover, the 
model attains an average accuracy of 71.3%, outperforming the strongest baseline, HIGHMMT (70.8%). 

The performance gains observed on UR-FUNNY and MOSEI indicate that the proposed modality 
enhancement mechanism effectively addresses challenges such as noise and dynamic variation across 
modalities. By applying contrastive learning to reinforce weaker modalities, the model suppresses the 
influence of poor-quality signals while strengthening high-contributing modalities. 

5. Conclusions 

To tackle challenges such as noise interference and variability in modality strength within multi-
modality data fusion and alignment, this paper presents an enhanced framework grounded in cross-modal 
alignment and adaptive fusion. By integrating a modality enhancement mechanism alongside a 
contrastive learning strategy, the model effectively mitigates the impact of low-quality modalities while 
dynamically adjusting the fusion weights across different modalities. 
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