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Abstract: As an important technology of battery management system, state of health estimation of 
lithium-ion battery is the basis of electric vehicle range estimation and predictive maintenance, and 
also an important parameter to help correct and improve the accuracy of state of charge estimation. 
The state of health estimation technique for lithium-ion batteries is reviewed and classified into direct 
and indirect methods, the advantages and disadvantages of different categories is described as well. 
What’s more, health indicators for state of health estimation and their practicality is analyzed. Finally, 
it is pointed out that state of health estimation for lithium-ion batteries on electric vehicles should 
possess on-board practicality while ensure accuracy at varying wide temperature window. 
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1. Introduction 

Traditional fuel vehicles bring convenience to human life, but also cause energy crisis and 
environmental pollution. Therefore, countries around the world are actively committed to the research 
and promotion of new energy vehicles. In recent five years, the sale of new energy vehicles in China 
has increased sharply, with pure electric vehicles accounting for the largest proportion. Due to the high 
specific energy and long service life of lithium-ion battery, the pure electric vehicle mainly uses 
lithium-ion battery as the power source. 

With the use of lithium-ion batteries on electric vehicles (EVs), some irreversible chemical 
reactions occur inside the batteries, resulting in cracks in the electrodes and loss of active materials of 
positive and negative electrodes, which lead to the aging of batteries. Battery aging results in 
decreasing of capacity, with continuous reduction of driving range. with the aging of batteries, its 
internal resistance is increasing, which is more likely to cause thermal runaway, spontaneous 
combustion and even explosion. Therefore, on-board State of Health (SOH) estimation is of great 
importance for ensuring occupant safety and reliable State of Charge (SoC) estimation. Thus, this paper 
reviewed SOH estimation methods for lithium-ion batteries to guide the on-board technique 
development for EVs. 

2. Research status of SOH estimation for lithium-ion batteries 

SOH represents the current health level of a battery and is the basis and prerequisite of life 
prediction. With the degradation of battery, capacity gradually decreases while internal resistance 
continuously increases, and hence capacity and internal resistance are commonly used as health 
indicators (HIs) for battery SOH. Battery capacity is a measure (typically in Ah) of the charge stored by 
the battery, and calculated by timing the discharge time with the constant discharge current which was 
acquired under certain specified conditions. As a result, the SOH is obtained with capacity and internal 
resistance as follows: 
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Where Cnow is the capacity at present, Crated is rated capacity given by the manufacturer, Rnow is the 
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current internal resistance, REOL is the internal resistance at the end of life, and Rnew is the initial internal 
resistance. 

According to Equation (1) and (2), the SOH range of battery is 0~100%. The SOH of a new battery 
is 100% and it decreases continuously with the use of battery. When the battery performance declines 
to an extent that the basic operation of the equipment can not be maintained, it is considered that the 
battery has run out its life and needs to be replaced in time, and the SOH at this moment is called the 
failure threshold. Generally, scholars in the automotive industry choose 80% as the failure threshold. 
According to Equation (1) and (2), the battery SOH estimation includes capacity and internal resistance 
estimation as SOH can be obtained from capacity and internal resistance. 

Waag et al. Classified battery capacity estimation methods into three categories: state of charge 
(SOC) - open circuit voltage (OCV)-based method, curve-based method and model-based method [1]. 
SOC-OCV based method is always accompanied with the equivalent circuit model (ECM). Curve-
based method includes incremental capacity analysis (ICA) and differential voltage analysis (DVA), 
and model-based method is divided into electrochemical model and physical model-based method. 
Berecibar et al. divided SOH estimation method into experimental technique and adaptive model-based 
technique [2]. Experimental technique contains direct measurements and models based on 
measurements. The direct measurement method obtains the battery health indicator through 
measurement, while the models based on measurements extracts the health indicator based on electrical 
signal, and then SOH can be acquired. Different from the experimental technique, the adaptive model-
based technique obtains the SOH by employing the ECM. 

According to the references, we divide SOH estimation method into two categories: direct method 
and indirect method. The direct method uses the original or simply processed measurement to calculate 
the capacity or SOH, while the indirect method first needs extracting indirect health indicators from the 
measurement with complex calculation. The difference between the two types is shown in Fig.1. 

 
Figure 1: Classification of SOH estimation method for lithium-ion battery 

2.1 Direct method 

SOH can be estimated by internal resistance of battery [3], mechanical stress [4] between cells and 
Ampere hour integration [5]. Electrochemical impedance spectroscopy needs special instruments. 
Stress measurement needs to paste strain gauge on each battery. The Ampere hour integration tends to 
accumulate measurement error. Therefore, these three methods are not suitable for EVs on-board 
application. 

Extracting health indicators based on current and voltage is one of the important methods to 
estimate SOH. Liu et al. extracted time interval of equal discharge voltage difference (TIEDVD) and 
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discharge voltage difference of equal time interval (DVD_ETI) to estimate SOH based on linear model 
[6,7]. Although linear relationship between TIEDVD, DVD_ETI and SOH is strong in general, the 
linearity is weak when SOH is near 0 and 100%. Therefore, Zhao used nonlinear fitting function 
Support Vector Machine (SVM) to calculate SOH [8]. The increasement of the number of 
characteristic variables improves the estimation accuracy, and hence Zhang et al. extracted five 
variables including charge time and battery surface temperature, and used multi-core Relevance Vector 
Machine (RVM) to estimate battery SOH [9].  Some variables of the above methods are taken from the 
constant current discharge stage. As the EV’ battery is not discharged with constant current, the method 
is not of universality, thus the above methods are not able to be applied on vehicles. 

The practical applicability of SOH estimation method can be improved by extracting health 
indicators from charge stage. Feng et al. extracted the probability distribution function of charge 
voltage sampling points and estimated SOH with the number of sampling points in a certain voltage 
interval [10]. However, the accuracy of SOH is affected by sampling accuracy, noise and data 
smoothing technology. Chen et al. extracted the charge time, energy and electric quantity of fixed 
voltage interval as the input of SVM to estimate SOH without considering the influence of temperature 
[11]. Hu et al. input the initial charge voltage, charge cutoff voltage, charge cutoff current, charge 
cutoff voltage, constant current charge quantity and constant voltage charge quantity into k-nearest 
neighbor regression to estimate the capacity [12]. However, technique in reference [12] need the 
battery to be fully charged and discharged, so it cannot be applied on vehicle. 

Internal resistance and capacity can be identified as a variable in state-space representation derived 
from battery ECM. Based on first-order RC ECM, Kim estimated the battery capacity with a double-
sliding-mode observer [13]. In order to improve accuracy, Guo et al. used nonlinear least square 
method to identify battery capacity [14]. To improve the dynamic performance of parameter 
identification, recursive least square method with forgetting factor (LSMFF) was used to identify 
battery internal resistance [15]. Kalman filter (KF) and other methods evolved from were also common 
parameter identification method when using ECM. Hu et al. used double EKF to update battery 
capacity at macro scale and estimate battery SOC at micro scale [16]. Combining three-dimensional 
capacity-SOC-OCV surface and Thevenin battery model, Xiong et al. used dual adaptive KF to 
estimate battery SOC and capacity [17]. Compared with KF and UKF, particle filter is not constrained 
by linear or Gaussian distribution, and has better reliability and accuracy, but it possesses the 
disadvantage of particle degradation. Based on the battery ECM, Yang et al. employed genetic 
algorithm (GA) with objective function, which is sum of terminal voltage error squares, to estimate the 
battery capacity [18]. However, the parameter identification of battery ECM depends on the SOC-OCV 
curve, and the SOC-OCV curve drifts due to change of temperature. Therefore, the SOH estimation 
method based on the battery ECM can only be implemented at a specific temperature, and it is not 
robust when used on EVs. 

Considering the effects of temperature on SOC-OCV, Remmlinger established a linear variable 
parameter state space model, and then used the central differential Kalman filter to identify the battery 
internal resistance [19]. Chaoui [20] identified the parameters of Thevenin battery ECM based on 
adaptive control theory, and added temperature compensation term to revise estimated internal 
resistance. Although Remmlinger and Chaoui considered the ambient temperature, the method with 
battery ECM needs to update the parameters all the time in the whole data acquisition stage and thus is 
time-consuming. 

The loss of active material (LAM) and loss of lithium-ion (LLI) affect the electrode voltage curve, 
causing the voltage curve to change with the increase of LAM and LLI. Therefore, voltage curve 
reconstruction is an effective method to quantify LAM and LLI. Ma et al. used particle swarm 
optimization (PSO) to identify the degree of LAM and LLI by comparing the reconstructed voltage 
curve with real voltage, and then determined SOH [21]. However, this method requires constant current 
discharge, takes a long time, and is affected by temperature, and hence it cannot be used within EVs’ 
battery management system (BMS). 

By applying direct method, the SOH can be obtained quite straightforward with original or slightly 
deformed measurement, causing the estimation process quite time time-saving, except for ECM-based 
technique which has high accuracy. 

2.2 Indirect method 

Indirect health indicators are usually extracted from the normal charging/discharging voltage and 
current. Widodo et al. extracted the sample entropy of discharge voltage, and quantified the mapping 
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relationship between sample entropy and capacity with Support Vector Machine (SVM) and RVM [22]. 
SVM is sensitive to parameter adjustment and function selection, and RVM has greater sparsity, but the 
training time is greatly increased. Li et al. employed probabilistic finite state automata and wavelet 
transform to obtain a health indicator named feature difference so as to make SOH estimation [23]. 
However, health indicator extraction takes many steps and hence causes this technique time-consuming. 
Li et al. applied polynomial to fit the battery surface temperature sample entropy versus SOH curve 
[24]. This method exhibits slight computing-burden, but requires constant current discharging. Lu et al. 
input constant current charging time, maximum curvature of voltage during constant voltage charging, 
constant voltage charge quantity and discharge voltage drop into Laplacian Eigenmap to obtain SOH 
[25], which requires the battery to be fully charged and cannot be applied on EVs. 

Indirect health indicators can also be extracted by exerting special operating mode to battery. Cai et 
al. first applied “Hotel pulse” current profile on battery, and then indirect health indicator was extracted 
based on fast wavelet transform and cross D-Markov machine to represent SOH [26]. Hu extracted 
sample entropy of voltage sequence under hybrid pulse power characterization profile, and then 
calculating SOH by a cubic function [27]. Piao tested battery under economic commission for Europe 
and extra urban driving cycle, and determined the abnormal points in the operation data based on the 
angular distribution outlier detection method so as to estimate SOH [28]. The above methods all apply 
special profile on battery, but these methods are impractical for on-board circumstance due to the lack 
of testing equipment. 

Differential thermal voltammetry (DTV), ICA and DVA are alternative technique to estimate SOH. 
Wu et al. found DTV curve peak value and its position moved linearly with the aging of battery, and 
then employed Savitzky-Golay to smooth the temperature curve so as to improve estimation accuracy 
[29]. Goh estimated SOH based on linear relationship between capacity and the time difference from 
first peak of the DVA curve to the end of constant current charging [30]. ICA curve peak position and 
peak value were used to estimate SOH by SVM and linear regression [31]. Lorentz function, Gaussian 
function, Gauss vertex function, pseudo-Voigt peak function and Daubechies wavelet can be used to 
smooth the ICA curve so as to improve estimation accuracy. Wang et al. optimized the DVA curve 
with center least squares method and so-called local data symmetry method, and then estimated the 
SOH according to the linear correlation between two inflection points’ distance and capacity [32]. 
Different smoothing method and sampling frequency cause different DTV, DVA, ICA curve, 
indicating the performance of these methods is not stable. What’s more, the imperative of constant 
current discharging induces these methods not practicable for on-board application. 

Indirect health indicators can be extracted from battery electrochemical model as well. Prasad et al. 
derived the transfer function of electrochemical model, and used least square method to identify 
diffusion time which is one of the transfer function parameters so as to estimate SOH based on a linear 
correlation between it and capacity [33]. Lee et al. found the solid-phase diffusivity in the 
electrochemical model declines monotonously with battery aging, thus solid-phase diffusivity was used 
to estimate SOH [34]. Electrochemical model involves chemical reactions, and it is theoretically 
impossible to describe and quantify all the reactions in the battery without error. Moreover, the process 
of parameter identification is still difficult and time-consuming for BMS CPU. Therefore, this method 
cannot be applied on-board. 

The battery ECM can also be used to extract indirect health indicators. Yang et al. also estimated 
SOH based on linear correlation between time constant and capacity with Thevenin battery model [35].  
Zhang et al. established a battery ECM including two capacitors and three resistors, and found one 
capacitance was linearly related to the battery capacity [36]. The indirect health indicators extracted 
from ECM mostly have linear correlation with SOH, which makes SOH estimation quite simple. 
However, as battery internal resistance change with SOC, other parameters change as well with 
charging and discharging battery. Thus, this method needs to consider the SOC so as to improve the 
estimation accuracy. 

It takes more effort to dig and extract indirect health indicators than health indicators. However, it's 
hard to say which category is better than the other, but the superiority of a technique hugely depend on 
three factors- the feasibility to extract the health indicator, the quality of health indicator, and mapping 
functions used to calculate SOH. The feasibility to extract the health indicator measures the degree of 
difficulty to calculate health indicators, and whether the health indicator is available for on-board usage. 
The quality of health indicator, which is the most important factor for a good SOH estimation method, 
is measured by health indicator’s correlation with SOH, and high correlation means good quality. The 
mapping functions are chosen to calculate SOH after selecting the health indicator. The relationship 
between SOH and health indicator determines the mapping function to be used, but a good choose of 
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mapping function improves SOH estimation accuracy than other available methods. 

The advantages and disadvantages of some mentioned methods are shown in Table 1. 

Table 1: Advantages and disadvantages of some SOH estimation methods 

 Health indicators or 
methods Algorithm involved Advantage Disadvantage 

Direct 
method 

Internal resistance by 
electrochemical 

impedance 
spectroscopy[3] 

Linear regression Calculation is simple 
and time-saving 

Special test equipment is 
required 

Battery pack stress[14] Linear regression Calculation is simple 
and time-saving 

Strain gauge causes 
additional cost 

Starting voltage, cut-off 
voltage and current, 

constant current charge 
and constant voltage 

charge[12] 

k-nearest neighbor 
regression High accuracy Fully charging or 

discharging is rare 

Internal resistance or 
capacity by ECM Kalman filtering[30] 

SOC and SOH can be 
estimated 

simultaneously 
Iterative update causes 

huge amount of calculation 

Reconstruction of 
voltage curve[21] 

Particle swarm 
optimization 

Explaining the 
mechanism of battery 

degradation 

Time-consuming and needs 
constant current charging 

or discharging 
Time interval of equal 

discharge voltage 
difference[6] 

Linear regression Calculation is simple 
and time-saving Low accuracy 

Discharge voltage 
difference of equal time 

interval[7] 

Recurrent neural 
network 

Support vector 
machine 

High accuracy Needing much data for 
training 

Average temperature 
during charge, average 

temperature during 
discharge, cutoff 

voltage[9] 

Relevance vector 
machine High accuracy 

Needing complete constant 
current discharge and same 

temperature with test 

Charge time, energy and 
partial capacity in fixed 

voltage range[11] 
Support vector 

machine High accuracy 
Needing complete constant 
current discharge and hug 
amount of training data 

Indirect 
method 

Sample entropy of 
discharge voltage[22] 

Support vector 
machine 

Only needing little 
voltage data 

Constant current discharge 
is required 

Time constant[35] Linear regression Simple calculation Needing fully charging and 
less accurate 

ICA [31], DTV [29], DVA 
curve[30] Linear regression Simple calculation Needing constant current 

discharge and less accurate 
Time constant and 

internal resistance of 
electrochemical model[33] 

Linear regression 
High accuracy Complicated and time-

consuming Solid phase diffusion 
coefficient of 

electrochemical model[34] 
Linear regression 

Sample entropy of 
battery surface 

temperature in charge 
stage[34] 

Polynomial function Only needing little 
temperature data 

Environment temperature 
affects accuracy 

Constant current charge 
time, maximum 

curvature of constant 
voltage charge voltage, 
constant voltage charge 
quantity and discharge 

voltage drop[25] 

Laplacian Eigenmap Moderate accuracy Needing a lot of training 
data 

Voltage sample entropy 
of hybrid pulse power 
characteristic test[27] 

Cubic function Simple calculation 
Special charging and 

discharging profiles are 
required 

3. Conclusion 

State-of-art of SOH estimation method for lithium-ion batteries is introduced, and their pros and 
cons for on-board application is also analysed. Though the endless invention of SOH estimation 
method improves estimation accuracy, some problems to be addressed are as follows: 
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(1) Some health indicators are not practical, so the corresponding SOH estimation method cannot be 
applied on EVs.  

Because EVs power battery is not discharged by a constant current, the health indicators extracted 
from the constant current discharging condition are not applicable for on-board application. Although 
the charging strategy of electric vehicle is fixed, the constant current charging time and constant 
voltage charging time extracted from the charging phase can only be obtained by near fully charging 
and discharging, and hence the method cannot be implemented on EVs. Therefore, considering the 
depth-of-discharge and usage conditions of batteries is indispensable for making robust SOH 
estimation. 

(2) The accuracy and robustness of SOH estimation with temperature compensation needs to be 
further improved. Although some methods have incorporated temperature into SOH estimation, their 
employment condition lies in a narrow temperature window, and estimation accuracy huge suffers from 
higher or lower temperature. Therefore, a SOH estimation method suitable for wide temperature range 
is yet desirable. 

(3) Database of lithium-ion batteries of EVs needs more data. Although the Chinese ministry of 
industry and information technology requires enterprises to transmit the operation data of EVs to the 
database, the transmitted data of batteries is not complete. In terms of battery voltage, only the battery 
pack voltage and the maximum and minimum cell voltage are transmitted, causing the lack of valuable 
cell voltage, which is base for monitoring cell safety and operation status. Therefore, it is challenging 
to estimate SOH of individual cell in battery pack. 

(4) An accurate SOH estimation of battery pack still needs more effort. At present, the research on 
SOH estimation of battery pack is far less than cell and module, and the definition of battery pack SOH 
has not reached a consensus. The battery pack is usually composed of hundreds of cells. Due to the 
inconsistency of individual cells, defining a generic and reasonable SOH of battery pack is quite 
difficult. In practical application, the environment of battery pack is complex and the working 
conditions change always. Therefore, it is urgent to develop a robust and adaptive SOH estimation 
method for battery pack. 

The slow aging process of lithium-ion batteries reduces the timeliness requirement of SOH 
estimation, thus future research should be focused on time-consuming physical-electrochemical model 
coupling data-driven method as a result of pursuing highly accurate estimation. In addition, with the 
rise and development of big data and cloud computing, the running speed of complex algorithms will 
be boosted quite a lot, while ensuring the timeliness and accuracy of SOH estimation results. 
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