
Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015

Published by Francis Academic Press, UK
-22-

A Survey on Formal Specification and
Verification of System-Level Achievements
in Industrial Circles

Feng Zhang, Wensheng Niu

School of Computer Science and Engineering, Beihang Univerisity, Beijing, China
zhang_wenruo@outlook.com

ABSTRACT. Formal methods have been applied more and more in industrial circles.
They use mathematical logic and rigorous models for analysis and verification, can
be used at all the system life cycles, and provide verified software without bugs with
respect to certain properties. The increasing industrial applications show that
formal methods not only are theoretical research anymore, but also can be deployed
in many concrete industrial applications. This paper surveys the important formal
specification and verification of system-Level achievements in industrial circles.

KEYWORDS: formal methods, formal specification and verification, system-Level
achievements in industrial circles

1. Introduction

Formal methods have been applied more and more in industrial circles. They use
mathematical logic and rigorous models for analysis and verification, can be used at
all the system life cycles, and provide verified software without bugs with respect to
certain properties. The increasing industrial applications show that formal methods
not only are theoretical research anymore, but also can be deployed in many
concrete industrial applications.

Formal methods are mathematical methods that support the strict specification,
design, and verification of computer systems [1]. The mathematical foundations
used in formal methods include mathematical logic, discrete mathematics, computer
languages, etc., which aid in the establishment of correct, robust software design
through mathematical analysis. The formal approach ensures that: (1), accuracy to
describe the requirements of the software system; (2), no-confusion to achieve
accurate communication between the engineers; (3), to provide accurate and
consistent software requirements for the use of formal methods verified evidence;
(4), providing proof of conformity and consistency between formal descriptions.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015

Published by Francis Academic Press, UK
-23-

The contents of formal methods contains two main elements: the formal
specification and formal verification. A formal specification is a software
functional description developed using a formal language with strict grammar and
semantics, which is the basis for the post-design, coding, and verification process.
At present, there are two major classifications of specification methods: functional
programming and state machine. Functional programming can be used in later
interactive theorem proving, fine-grained formalization of objects of any abstraction
layer, or refinement construction. There are many types of state machines, such as
Timed Automata and Label Transition Systems. Formal verification is to verify
that the system implementation conforms to the formal specification of the system.
Traditional verification methods include review, analysis, and testing. Formal
verification can be mathematical reasoning, simulation, simulation, and testing.
Formal verification strives to achieve exhaustive testing of software, automated
testing, and Conducted at the earliest stages of software development.

There are four important review articles on formal methods in recent years that
can be used by readers for reference, which are: [2] published by Abrial, the founder
of Method B, in 2007, [3] published by York University's Woodcock J in 2009, and
[4] and [5] published by Zhao Yongwang in 2014 and 2017 respectively. Among
them, the literature of Abrial and Woodcock J is mainly about the successful
application of formalization in industry. Zhao Yongwang's research is more detailed
and targeted. It mainly introduces the application of formal methods in Separation
Kernels, which include both software and hardware.

2. Formalization of Application Software

2.1 Airbus & Boeing

The large-scale and successful use of formal methods by Airbus in a number of
civil aircraft is a strong force in the industrial application of formal methods. There
is nothing more persuasive than the large-scale application of formalized technology
on large, commercial and civil aircraft used by the world. Boeing also uses formal
methods in some new models. The same thing is that the formalization of the
application software part uses SCADE.

At the beginning of this century, Airbus began to develop the SCADE toolset [6]
on a large scale into the development of key software for civil aircraft from their
A340-500 models, including the Electric Load Management Unit (ELMU) and
Backup Flight Control Computer (FCSC).

At the same time, the A380 successfully used the formal method in the avionics
certification phase [7]. The literature [6] lists several advantages of using the
formalized SCADE toolset: (1) The code is more automated and the code errors are
significantly reduced: 70% of the A340 aircraft's code is automatically generated. (2)
Shorter time to change requirements: The SCADE toolset makes A340's
requirements change management faster and traceability improved. (3) Increase

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015

Published by Francis Academic Press, UK
-24-

productivity: Although each new Airbus requires about twice as much software as
its predecessor.

In view of the previous successful experience, Airbus continued to use the
formal method on a large scale in the world's largest civilian passenger aircraft A380,
mainly based on the SCADE toolset. In fact, most of the onboard computers
developed by Airbus and its suppliers benefit from the use of the SCADE toolset.
The SCADE package is used to develop most of the key onboard software for the
A380 and A400M military transport aircraft, as well as the SCADE Suite for the
A340-500/600 passenger aircraft's auxiliary flight command system; the A380 and
A400M cockpit control display systems and airborne The display of the airport
navigation system was developed using SCADE Display and they all conform to the
specifications of the graphical interface.

The Boeing 787 Dreamliner also uses the SCADE toolset to develop applications.
Unfortunately, we were unable to find an official Boeing official statement, but only
in SCADE's official technical report [6], the Boeing 787's landing gear and brake
system used SCADE.

2.2 Paris Metro

This article examines three Paris Metro application cases that use formal
methods.

In 1989, the SACEM system [8] [9] using the B method was successfully
delivered to the Paris Metro. SACEM was proposed from the improvement project
of the fast network commuter train in the RER region of Paris [10]. The
improvement was initiated in 1988 by GEC Alsthom, MATRA Transport and RATP
(Paris Public Transport Operator). They jointly studied computer signal systems
used to control fast network commuter trains in the RER region of Paris. The goal of
the signal system is to increase commute traffic by 25% while maintaining the
existing level of safety. After the use of SACEM, it successfully operated on the A
line train in the RER area of Paris. As of this, the resulting SACEM system with
embedded hardware and software was delivered in 1989 and controlled the speed of
the Paris RER A train, which has involved 7 billion passenger journeys since its
introduction. The proposal of SACEM originated in 1988

The formal specification in the SACEM system uses the B method [11], and the
formal proof obligation is automatically generated, but the proof process is done
manually. The verification of the entire system (including non-safety critical
procedures) took approximately 100 person-years. At the beginning of the SACEM
project, communication between formal team members and signal engineers was a
dilemma, as signal engineers generally did not understand the B method. To this end,
the B-method training was specially conducted for the signal engineering personnel
to solve the communication problem between the two teams. SACEM's approach to
ensuring security includes formal protocols and certifications for online error
detection, software verification, and fault tolerance for on-board ground composite
systems.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015

Published by Francis Academic Press, UK
-25-

In view of this successful application, the Paris researchers deployed two traffic
projects using the B method: Paris Metro Line 14 [12] and Paris Charles de Gaulle
Airport commuter shuttle [13]. In these two systems, the key software part accounts
for about 1/3 of the total software. These key software parts are developed using the
B method. The operation of Metro Line 14 is fully automated, with safety critical
aspects involving the operation and stopping of trains and the opening and closing of
train and platform doors. No unit tests were performed on the Line 14 or Roissy
Shuttle projects, which were replaced by some of the most successful overall tests.
This significantly reduces overall development costs.

3. Formalization of OS Kernels

The formal proof of the Australian seL4 [14] [15] kernel is a milestone in the
complete verification of system-level software, especially the underlying software
operating system kernel.The seL4 embedded OS kernel is an evolution of the L4
microkernel that enhances the security feature. The seL4 microkernel includes 8700
lines of C and 600 lines of assembly, proving that the process uses approximately
100,000 lines of Isabelle/HOL protocol and proof code. A total of 160 defects were
discovered during the entire validation process, 16 of which were discovered during
the testing phase, while the remaining 144 were discovered during the proof of use
form of Isabelle/HOL.

This chapter will introduce two other important OS kernels that use formal
methods.

3.1 INTEGRITY-178B

INTEGRITY-178B [16] is an operating system product chain developed by
Green Hills that focuses on software certification and guarantees a high level of
safety & security. INTEGRITY-178B is a real-time, partitioned operating system
that complies with DO-178B's highest-rated Class A safety standard (2002) and is
the first EAL 6 to comply with the security standard Common Criteria (the highest
level is EAL 7,) 2008) operating system. It has been successfully applied to military
aircraft such as the B-2, F-16, F-22 and F-35, as well as the Airbus A380 large
passenger aircraft. The INTEGRITY-178B also supports multi-core hardware
platforms.

The Security Standard Common Criteria requires that, starting with EAL 5, a
formal method must be used. If you are conducting EAL Level 7 certification, you
must also have a formal model and proof [17] for the entire development process.
Finally, the product will be submitted to the IAD (Information Assurance
Directorate) for information flow penetration testing. SKPP specifically requires the
“NSA Evaluator” to perform vulnerability analysis, penetration testing and covert
channel review. The assessment includes these specific activities and unconstrained
searches for vulnerabilities. The certification process requires submission of some
certification evidence, such as formal verification. These formal verifications are

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015

Published by Francis Academic Press, UK
-26-

required to demonstrate the abstract functionality of the kernel unrelated to the
hardware platform [18].

INTEGRITY-178B uses GWV [19] as a security policy, and uses ACL2 to
create a three-layer protocol, namely functional requirements specification,
advanced and low-level design. Functional conventions are the formalization of
interfaces. The other two are semi-formal descriptions of systems of different
abstraction levels. The low-level design directly corresponds to the implementation,
simplifying the “code-to-protocol” analysis requirements during CC certification.
The GWV-based strategy they adopted is based on the MASK data separation
strategy, which is designed to model a split kernel that can implement partitioning of
applications running on a single-processor system. The GWV attribute requires that
the execution step of modifying any memory segment must follow the mapping of a
set of memory regions bound to the current partition and allow interaction with that
memory segment.

3.2 CertiKOS & mCertiKOS

Yale University's CertiKOS [20] is an embedded OS microkernel for cloud
computing security issues. It addresses the issue of functional correctness and
sensitive information disclosure issues to be addressed during the certification
process. For traffic security, CertiKOS researchers used Coq to formalize the
information flow control of the kernel runtime. For ease of certification and
formalization, CertiKOS uses a highly modular design that divides complex systems
into smaller modules that are formalized and certified one by one. However,
CertiKOS is not a fully formalized kernel. For example, virtual memory components
are not subject to formal specifications and certification. In addition, the complex
resource management algorithms in cloud virtualization are not formalized, but the
permissions check is implemented in the kernel. This eliminates complex policy
management and scheduling tasks from the kernel without sacrificing functionality,
thereby reducing formal authentication of kernel code.

In the literature [21] and [22] publied in 2015, the research team proposed the
concept of deep specifications to fully complex the complex system-level software.

The basis for their deep statutes is the abstraction of software. They believe that
"modern computer systems consist of multiple layers of abstraction (eg, OS kernels,
hypervisors, device drivers, network protocols, etc.), each of which defines an
interface to the implementation details of the hidden functions. Built on each layer
The client program on top can be understood based on the interface only, without
having to care about the concrete implementation of each layer. Although they are of
obvious importance, the abstraction layer is mainly regarded as a system concept;
they are almost never officially specified or verified. This makes it difficult to
establish strong correctness attributes and it is difficult to verify [21] across multiple
layers of extensions." Accordingly, they proposed a deep specification: a powerful
abstract form of a rich set of protocols. Just as data abstraction in a typed function
language leads to important representation independence, the abstraction of depth

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015

Published by Francis Academic Press, UK
-27-

conventions is characterized by important implementation independence. This deep
implementation requires that any two implementations of the same depth
specification must have context-equivalent behavior. They also proposed a new
layer calculus framework for formal protocol, programming, validation, and
abstraction layer combinations. An important feature of the deep protocol concept is
that the concept framework uses a formal-certified and certified CompCert [23]
compiler to compile C into a complete assembly object code.

mCertiKOS [24] is a fully formalized operating system microkernel based on the
deep protocol concept. To achieve full kernel formalization, mCertiKOS is a single-
processor version of the simplified implementation of CertiKOS, designed for 32-bit
x86 architectures, which also uses Coq form tools. mCertiKOS uses a separate
virtual address space to provide a multi-process environment for applications where
communication between different applications is established through messaging.
mCertiKOS used 9.5 person-months in the planning and development phase and 2
people in the link phase.

4. Formalization of Compilers

The CompCert [23] project presents a thorough, math-based solution to the
problem of miscompilation: a form of the compiler itself, proof of the tool's
operation. Applying program-proven techniques to the source code of the compiler,
mathematical determinism can be used to prove that the behavior of the executable
code generated by the compiler is exactly the same as the semantics of the source C
program, thus eliminating all risks of compile errors [25]. Compiler validation is not
a new idea: the first compiler correctness proof (for converting arithmetic
expressions to stack machines) was published in the literature [26] in 1967, and then
used Stanford LCF Proof Assistant in 1972. Make mechanization proof [27]. Since
then, compiler formal verification has been the subject of much academic research.

The CompCert project brings a range of work to a complete, optimized compiler,
not for the production of critical embedded software systems. CompCert is the first
compiler to use formal authentication and optimization and is IEC 60880 certified. It
is a "lightweight optimization", machine-validable C compiler that is designed for
the aerospace industry and contains a subset of C. The most important omission in
CompCert verification is that it does not support concurrent and separate
compilation, both of which are current research topics.

Xavier Leroy of the INRIA Institute in France led the team to develop CompCert
and formalized it using Coq. The reason for using Coq is that the compiler can be
extracted from the proof of correctness. The CompCert implementation itself and the
formalization process contained a total of 42K lines of code, which took three years.
CompCert supports online evaluation, or you can purchase [28] commercially. The
code generated by Compcert is good, but at a fair speed. It generates code at twice
the speed of gcc at level 0, 7% slower than gcc-01, and 12% slower than gcc-02. On
PowerPC, the performance of the generated code is approximately 90% of GCC
version 4 at optimization level 1. For use in the aerospace industry, CompCert has

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015

Published by Francis Academic Press, UK
-28-

passed the DO-178B certification requirement [29]. It supports PowerPC, ARM,
RISC-V and x86 (32 and 64 bit) platforms.

The difference between CompCert and other compilers is that it is officially
verified with Coq, which eliminates the problem of miscompilation on some
targeted issues. That is, in the proven field, the executable code it produces is proven
to be identical to the semantics of the source C program. CompCert opens up a
viable path to the use of formal methods in the compiler world, and the results of
this project are unprecedented in the compiler world. Yale's CertiKOS [20] and
mCertiKOS [24] kernels and the deep protocol concept [21] both use CompCert as a
compiler to ease verification and certification. CompCert's formal proof covers
everything from abstract syntax trees to generating assembly code. To preprocess
and generate executable object files, CompCert also uses external C precompilers,
linkers, assemblers, and C libraries. These processing stages are not formally
verified, but they are also well understood and robust. They claim that errors in
intermediate processing stages found in other compilers have been eliminated in
CompCert. As of early 2011, the development version of CompCert was the only
compiler that Csmith could not find the error code. They spent about six CPU years
completing the task in the Csmith test. CompCert uses formal verification to
guarantee an excellent unbreakable feature. At the same time, it provides a proof
framework for developing and optimizing the compiler, which is used to perform
machine-enable security checks on the compiler.

5. Formalization of Processors

5.1 AAMPs

In 1995, Miller and Srivas published their formal use of PVS [30] on the
AAMP5 chip microcode in the literature [31][32]. The work was initiated by NASA,
and Rockwell Collins and SRI International (Stanford International Research
Institute) jointly completed. AAMP5 is a proprietary microprocessor within
Rockwell Collins. It has a stack-based architecture, a large instruction set, and
extensive use of microcode, a pipelined architecture and complex processing units
with overall performance between Intel 386 and 486.

Rockwell Collins formalizes AAMP5 at both the register transfer level and the
instruction set level, and establishes a refinement relationship between the two to
prove the correctness of the microcode instructions. The main experience of the
project is to demonstrate the feasibility of the application of the formal method on
the microprocessor. Second, the development engineer can read and write the form
code after training. The unexpected result of motivating engineers was that they
found two errors in the procedural process, even if they had not yet reached the
formal proof stage.

Formal engineering for AAMP5 has encountered difficult problems in progress:
labor costs are too large, and an average of 300 people per instruction is required.
However, the project team believes that this is the first time they have learned, used

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015

Published by Francis Academic Press, UK
-29-

PVS and formal methods. If similar projects are carried out in the future, it should
be possible to significantly reduce labor time. Therefore, they then started a follow-
up project: Proof of the microcode for the AAMP-FV chip [33]. The project is still
being initiated by NASA and is being developed by Rockwell Collins and SRI
International. In addition to verifying the chip itself, the project has another
experimental goal: skilled formalists can significantly reduce formal engineering
time to an acceptable level. The progress of the AAMP-FV project also confirms the
predictions of formalists: proficiency in formal methods and the accumulation of
reusable code or modules for previous projects, resulting in a significant reduction in
the progress of this project. . Although AAMP-FV is more complicated for AAMP5.

What's even more exciting is that Rockwell Collins's formal work for the
AAMP7 chip, [34], received the highest level of EAL-7 (US) National Security
Agency security certification for the Common Criteria [17] standard. Multiple
independent security level devices for encryption applications. The AAMP7 chip
uses a microkernel architecture that supports partitioning. The formalization work
uses the ACL2 [35]. The project established a line-by-line protocol model with
AAMP7 microcode and added some security features for inter-partition
communication in the protocol model.

5.2 Transputers

As early as the late half of the 1980s, Inmos et al. used Occam [36] [37] (a
simple, low-level, operational process algebraic CSP subset) to implement the
Transputer [38] series of microprocessor chips. Formal work. Transputer is designed
for parallel processing. Among them, T800 includes floating point calculation, 32-
bit reduced instruction set, memory, four bidirectional communication links, and so
on. The T9000 is more complex, and it also includes a memory model and a
processor pipeline.

As the scope of the test was clearly confirmed, Transputer developers began
formalizing the use of correct-by-construction formal methods to build floating-
point units.

They first used the Z [39] [40] method to formalize the IEEE-754 floating-point
arithmetic standard for natural languages [41] and revealed some of the problems in
the standard. For example, the standard requires that diagnostic information for
invalid operations (such as the square root of a negative number) be propagated
through further operations, but this is sometimes impossible.

Next, their task is to prove that floating-point packages written in Occam and
used in previous Transputers are the correct implementation of IEEE-754. Trial
verification using Hoare Logic [42] found several errors in rounding and remainder
operations. Occam is too abstract, it can't be used directly in hardware design. The
Occam conversion system only applies the rules of Occam programming to generate
equivalent microcode programs.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015

Published by Francis Academic Press, UK
-30-

Although Occam is still immature and has many flaws, using it for formal
development of floating-point units is at least three months faster than simultaneous
informal development [43]. More importantly, two errors were found in floating-
point microcode using Occam [44]. Inmos, the head of the University of Oxford and
Transputer, also won the Queen's Technology Achievement Award in 1990.

6. Formalization of the Multi-Level Systematic HACMS

Aware of the many important achievements of the formal approach, the Defense
Advanced Research Projects Agency (DARPA) launched a multi-level, system-level
formal project in 2012 to address military traffic. The security of the tool prevents
the military vehicles, especially the unmanned traffic equipment, from being
hijacked by the network. This project is called "High-Assurance Cyber Military
Systems" (HACMS [45] [46]). Such military transportation systems may be military
unmanned vehicles, military unmanned aerial vehicles, and the like.

The goal of HACMS is to create technologies that build high-assurance CPS
systems. The high guarantee here is defined as functionally correct and satisfies the
appropriate safety and security. Achieving this goal requires a completely different
approach than mainstream software engineering. Therefore, the goal of HACMS is
to adopt a clean-slate, formal-based software engineering approach; at the same time,
this formalization method is required to generate source code automatically or semi-
automatically. In addition to generating code, the project requires proof of machine-
checkable proof that the generated code meets functional requirements as well as
safety and security policies. A key technical challenge is to develop techniques to
ensure that such evidence can be combined, allowing the construction of high-
assurance systems using high-assurance components. It can be seen that the project
is different from other research projects. Its main goal is to use the existing formal
method results to integrate different forms of different formal methods into a
military transportation system. The project is more focused on the security of
military vehicles that are linked via a network rather than physically linked.

HACMS brings together many well-known research units, such as universities
MIT, Princeton, UCLA, Boeing, research units NICTA, SRI and so on. At the same
time, HACMS integrates several existing mature formalizations, such as the seL4
operating system, the CertiKOS operating system, the CompCert compiler, and the
SCADE formal toolset. The entire HACMS consists of five technical areas (TA),
they are [46]: TA1-military vehicles, TA2-operating system, TA3-control system,
TA4-research integration and TA5-red team (Read Team). The red team in TA5 is
the blue army in the military exercise. It is responsible for the security attacks in the
network environment for the traffic systems developed by other teams.

Different from the general research projects of universities and research
institutions, the biggest feature of HACMS is that it has convened a group of cyber
attack experts, Red Team, to carry out security attacks in the network environment
for the vehicles developed by the project to establish a safety assessment baseline.
And iteratively modify the traffic system software. HACMS is divided into three

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015

Published by Francis Academic Press, UK
-31-

phases in time, each phase being 18 months. HACMS requires that the developed
system be delivered to the Red Team for security attack testing and evaluation
during the final period of each phase. During this time of attack, Red Team found a
serious vulnerability [45] on all platforms. For example, the Red Team can control
an in-flight quad-copter like a legitimate operator and prevent the aircraft from
rejecting legitimate commands.

7. Conclusion

Following the achievements of seL4, the completion of CompCert, CertiKOS
and HACMS projects greatly invigorated the confidence of formal researchers. Most
importantly, the industry has seen the commercial viability of formal application in
commercial and industrial grades from the results of these system-level projects.

The current stage is a period of rapid advancement in the theory of formal
methods and its applications. From the current results, formal methods may achieve
more results in the last decade or two and become more widely used in industry.
There are three main reasons:

1) Improvements of hardware computing power} makes it possible to perform
some formal simulation and proof work that could not be completed, even if these
formal methods have not made any progress.

2) More and more formalization tool [46] can be used in a variety of fields,
including aerospace, automotive, and networking. Well-known formal methods or
tools now known include: Isabell/HOL, Event-B&Rodin, STCSP&PAT, Coq, ACL2,
Alt-Ergo, Astree, Bedrock, Boogie, CVC4, Frama-C, KLEE, PVS , SLAM, TLA+,
VCC, Nices2, Z3, etc.

3) The formalization tool of more and more perfect can greatly reduce labor time.
Most of these tools can be developed for a specific domain, reusable module library,
and enhance the automatic proof function as much as possible.

References

[1] Formal Methods Europe. Formal methods. http://www. fmeurope.org/
formalmethods.

[2] Jean-Raymond Abrial. Formal methods: Theory becoming practice. Journal of
Universal Computer Science, 2007, 13 (5): 619-628.

[3] Woodcock J., Larsen P. G., Bicarregui J., et al. Formal methods: Practice and
experience. ACM computing surveys (CSUR), 2009, 41 (4): 19: 1-19: 36.

[4] Zhao Yongwang, Ma Dianfu, and Yang Zhibin. 2014 A survey on formal
specification and verification of separation kernels. Technical report, Tech. rep.,
National Key Laboratory of Software Development Environment (NLSDE).
Beihang Univerisity.

[5] Zhao Yongwang., Sanán David, Zhang Fuyuan, et al. High-assurance separation
kernels: a survey on formal methods. arXiv preprint arXiv:1701.01535, 2017.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015

Published by Francis Academic Press, UK
-32-

[6] Berry, G. 2008. Synchronous design and verification of critical embedded
systems using SCADE and Esterel. Lecture Notes in Computer Science, In
Formal Methods for Industrial Critical Systems. Heidelberg: Springer, 2008,
4916: 2-2.

[7] Souyris, J. , Wiels, V. , Delmas, D., et al. Formal Verification of Avionics
Software Products. Proceedings of The International symposium on formal
methods. Berlin: Springer, 2009: 532-54.

[8] Guiho G. and Hennebert C.. SACEM software validation. Proceedings of the
12th International Conference on Software Engineering. Nice: IEEE Computer
Society Press, 1990: 186-191.

[9] Hennebert C. and Guiho G.. SACEM: A fault tolerant system for train speed
control. Proceedings of the 23th International Symposium on Fault-Tolerant
Computing. Toulouse, France: IEEE Computer Society Press, 1993: 624-628.

[10] Jonathan Bowen and Victoria Stavridou. Safety-Critical Systems, Formal
Methods and Standards. Software Engineering Journal, 1993, 8 (4): 189-209.

[11] Jean-Raymond Abrial. The B-book: Assigning Programs to Meanings.
Cambridge: Cambridge University Press, 1996.

[12] Behm P., Benoit P., Faivre A, et al. M\eteor: A successful application of B in a
large project. International Symposium on Formal Methods. Berlin, Heidelberg:
Springer, 1999: 369-387.

[13] Badeau F. and Amelot A. Using B as a high level programming language in an
industrial project: Roissy VAL. International Conference of B and Z Users.
Berlin, Heidelberg: Springer, 2005: 334-354.

[14] Klein G., Elphinstone K., Heiser G., et al. seL4: Formal verification of an OS
kernel. Proceedings of the 22nd ACM Symposium on Operating Systems
Principles. ACM, 2009: 207-220.

[15] Murray T., Matichuk D., Brassil M., et al. seL4: From General Purpose to a
Proof of Information Flow Enforcement. Proceedings of The IEEE Symposium
on Security and Privacy. IEEE Press, 2013: 415-429.

[16] GreenHills. INTEGRITY-178B RTOS. http://www.ghs.com/products/safety
critical/integrity-do-178b.html. (2015). Accessed: 2015-07.

[17] Common Criteria. Common criteria for information technology security
evaluation (3.1 r4 ed.). National Security Agency, 2012.

[18] National Information Assurance Partnership (NIAP). Separation Kernels on
Commodity Workstations. http://www.niap-ccevs.org/ announcements/
Separation\%20Kernels\%20on\%20Commodity\%20Workstations.pdf. 2010.

[19] Greve, David, Matthew Wilding, and W. Mark Vanfleet. A Separation Kernel
Formal Security Policy. Proceedings of The Fourth International Workshop on
the ACL2 Theorem Prover and Its Applications. 2003.

[20] Liang Gu, Alexander Vaynberg, Bryan Ford, et al. CertiKOS: a certified kernel
for secure cloud computing. Proceedings of the Second Asia-Pacific Workshop
on Systems. ACM, 2011: 3.

[21] Gu R., Koenig J., Ramananandro T., et al. Deep specifications and certified
abstraction layers. Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages - (POPL). 2015: 595-608.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015

Published by Francis Academic Press, UK
-33-

[22] Appel A. W., Beringer L., Chlipala A., et al. Position paper: the science of deep
specification. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 2017, 375 (2104): 20160331.

[23] Xavier Leroy. The CompCert C verified compiler. Documentation and user’s
manual. INRIA Paris-Rocquencourt, March 2012. http://compcert. inria.fr/man/
manual.pdf.

[24] David Costanzo, Zhong Shao, and Ronghui Gu. End-to-end Verification of
Information-flow Security for C and Assembly Programs. Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). In Proc. of PLDI’16. ACM Press, 2016: 648-664.

[25] Xavier Leroy. Formal verification of a realistic compiler. Communications of
the ACM, 2009, 52 (7): 107–115.

[26] John McCarthy and James Painter. Correctness of a compiler for arithmetical
expressions. Proceedings of the Symposia in Applied Mathematics. American
Mathematical Society, 1967: 33–41

[27] Robin Milner and Richard Weyrauch. Proving compiler correctness in a
mechanized logic. Proceedings of the 7th Annual Machine Intelligence
Workshop. Edinburgh University Press, 1972: 51–72.

[28] CompCert. See http://compcert.inria.fr.
[29] Franca RB, Favre-Felix D, Leroy X, Pantel M, Souyris J. Towards formally

verified optimizing compilation in flight control software [A]. Proceedings of
The Predictability and Performance in Embedded Systems (PPES), 2011, 18: 59-
68.

[30] Owre, S., Rushby, J. M., and Shankar, N.. PVS: A prototype verification
system. Proceedings of 11th International Conference on Automated Deduction.
Berlin: Springer, 1992: 748-752.

[31] Miller S.P. and Srivas M.. Formal verification of the AAMP5 microprocessor:
A case study in the industrial use of formal methods.Proceedings of 1995 IEEE
Workshop on Industrial-Strength Formal Specification Techniques. Boca Raton:
IEEE, 1995: 2-16.

[32] Srivas, M. and Miller, S.. Applying formal verification to a commercial
microprocessor. In IFIP Conference on Hardware Description Languages and
their Applications (CHDL). Makuhari, Chiba, Japan: IEEE, 1995.

[33] Miller, S. P., Greve, D. A., and Srivas, M. K.. Formal verification of the
AAMP5 and AAMP-FV microcode. Proceedings of the Third AMAST
Workshop on Real-Time Systems. Salt Lake City, Utah. 1996.

[34] Greve D. and Wilding M.. Evaluatable, high-assurance microprocessor.
Proceedings of the Second Annual HighConfidence Systems and Software
Conference (HCSS). National Security Agency, Linthicum, 2002.

[35] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided
Reasoning: ACL2 Case Studies. Springer Science \& Business Media, Vol. 4.

[36] Barrett G. occam 3 reference manual. Inmos Limited, March 1992. Available at:
http://wotug. ukc. ac. uk/parallel/occam/documentation, 1992.

[37] Wexler J. Concurrent programming in OCCAM 2. New York: Ellis Horwood,
1989.

http://compcert.inria.fr/man/manual.pdf
http://compcert.inria.fr/man/manual.pdf

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 2, Issue 1: 22-34, DOI: 10.25236/AJCIS.010015

Published by Francis Academic Press, UK
-34-

[38] May David, and Roger Shepherd. The transputer. Neural Computers. Springer,
1989. 477-48.

[39] Spivey J. M. and Abrial J.-R.. The Z Notation, second edition. Prentice Hall
International, Hemel Hempstead (U.K.), 1992.

[40] Woodcock, J. and Davies, J.. Using Z: Specification, Refinement, and Proof.
International Series in Computer Science. Prentice Hall, 1996.

[41] Geoff Barrett. Formal methods applied to a floating-point number system. IEEE
transactions on software engineering, 1989, 15 (5): 611-621.

[42] Hoare C A R. An axiomatic basis for computer programming. Communications
of the ACM, 1969, 12 (10): 576-580.

[43] Barrett, G.. 1990. Verifying the Transputer. Proceedings of the first conference
of the North American Transputer Users Group on Transputer research and
applications. IOS Press, 1990.

[44] Jeremy Gibbons. Formal methods: Why should I care? The development of the
T800 Transputer floating-point unit. Proceedings of the 13th New Zealand
Computer Society Conference. Auckland: New Zealand Computer Society, 1993:
207-217.

[45] Kathleen Fisher. HACMS: High assurance cyber military systems. Proceedings
of the 2012 ACM Conference on High Integrity Language Technology. Boston,
USA, 51–52.

[46] Fisher K., Launchbury J., Richards R.. The HACMS program: using formal
methods to eliminate exploitable bugs. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 2017: 375 (2104),
20150401.

