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Abstract: Aiming at the problem of low positioning accuracy of underwater target, this paper proposes 
unscented Kalman filter (UKF), which is a common AUV weighted statistical linear regression track 
tracking algorithm. Its algorithm redundancy is lower than EKF, PF, PSO and other numerical 
optimization algorithms, and the algorithm efficiency is higher. However, when using UKF filtering 
algorithm to estimate AUV state variables using UKF, the prediction noise covariance and observation 
noise covariance are usually set to a certain value, and the AUV motion state is a nonlinear system. With 
the movement of AUV, the number of iterations of the algorithm increases, which will cause the 
accumulation of errors, and even lead to the divergence of positioning errors. Therefore, the improved 
adaptive Kalman filtering algorithm in this paper adds the adaptive adjustment of the process noise 
covariance matrix Q and observation noise covariance matrix R to the nonlinear filtering system, the 
aukf filtering can better suppress the decline of filtering accuracy or even divergence, and reduce the 
cumulative error of the prediction algorithm. Finally, the simulation results show that the target tracking 
accuracy is effectively improved and the influence of process noise and sensor noise on the prediction 
process is reduced. 
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1. Introduction 

In recent years, autonomous underwater vehicle (AUV), as the most widely used automation 
equipment in marine development, can replace human beings to complete diversified underwater 
operations in the deep sea with harsh environment and high risk factor, such as marine resource survey, 
underwater fishing and target tracking [1]. Underwater robot is gradually becoming an important means 
to assist in the development of seabed resources. The necessary condition for AUV to complete the 
scheduled task is to obtain accurate position information. Through the research on the design and 
improvement of aukf track tracking algorithm in AUV control system, the position information of AUV 
can be better obtained. 

At present, the widely used underwater navigation algorithms mainly include the following categories: 
dead reckoning, inertial navigation, acoustic navigation and geophysical navigation [2]. The position 
information of AUV is mainly collected by the sensors on the ship to transmit the parameters of the 
external environment in the form of digital signals to the track tracking module for data processing. At 
the same time, the state value of the next time is predicted by the state value of the algorithm at the 
current time, and the control signal of AUV propeller group is generated to control the ship to sail along 
the desired trajectory. 

The difficulty of UKF Algorithm in the application of AUV track tracking is that the waters where 
the AUV is located are constrained by multiple sets of fluid boundary conditions; The motion state of 
AUV is mostly nonlinear equations, so it is difficult to obtain reliable linear solutions [3-5] 

To solve the above problem, the nonlinear motion equation of AUV is locally linearized by numerical 
optimization method. Such as; The optimization method of bearings only track tracking based on 
extended Kalman filter (EKF) algorithm proposed by wangyanyan [6]. The simulation results show that 
the AUV motion prediction Trajectory Accuracy of this method is high. However, EKF increases the 
computational redundancy and error value in the transfer process in the process of calculating the state 
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of AUV and the Jacobian matrix of measurement, and requires first-order or second-order Taylor 
expansion in the process of local linearization, which will produce truncation error in the process and 
affect the accuracy of solving the state vector of AUV. Therefore, allotta proposed an AUV track 
prediction method based on Unscented unscented Kalman filter (UKF) [7]. The algorithm reduces the 
computational complexity, but the trajectory prediction error is still large. 

Therefore, in order to improve the error accuracy of AUV track tracking algorithm. In this paper, the 
standard UKF algorithm is improved. In the process of adjusting the prediction noise covariance matrix 
and the observation noise covariance matrix, the parameters are introduced in the UKF process. By 
adaptively adjusting the process noise covariance matrix Q and the observation noise covariance matrix 
R, the filtering accuracy and robustness are improved. 

2. AUV modeling 

The AUV modeling process mainly analyzes three parts: hull, propeller group and keel. In the process 
of motion, the external forces mainly include hydrostatic force, fluid lift, fluid resistance, additional mass 
force, and viscous resistance of propeller group [8-9]. The motion equation of AUV can better characterize 
the inherent characteristics of AUV in a nonlinear form. 

The motion equation of AUV can be approximately expressed as 

(𝑀𝑀𝑟𝑟𝑟𝑟 + 𝑀𝑀𝑛𝑛) − 𝐷𝐷(𝑣𝑣)𝑣𝑣 + (𝐶𝐶𝑟𝑟𝑟𝑟 + 𝐶𝐶𝑛𝑛)𝑣𝑣 + 𝑔𝑔(𝛿𝛿) = 𝜏𝜏𝐺𝐺 + 𝜏𝜏𝑝𝑝 + 𝜏𝜏𝐹𝐹            (1) 

Where  Mrb represents the mass matrix generated by the characteristics of the rigid body; Mn 
represents the mass matrix generated by the additional mass force; v is the movement speed of AUV; D 
is the resistance of the AUV during its movement; Crb represents the Coriolis matrix generated by the 
characteristics of rigid bodies; Cn represents the Coriolis matrix generated by the added mass force; 
g(δ) represents the recovery vector generated during AUV motion; δ  is the displacement vector; 
τGrepresents the external force vector generated by its own mass and buoyancy; τp  represents the 
external force vector generated by the propeller group; τFrepresents the external force vector generated 
by the keel. 

In the positioning process of AUV, the three-dimensional positioning can be converted into two-
dimensional positioning, and the depth position information can be measured by the depth meter. The 
horizontal pitch angle changes slightly during movement, and the following motion equation needs to be 
added 

𝑋𝑋𝑘𝑘 = [𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘, 𝑧𝑧𝑘𝑘]𝑇𝑇                               (2) 

Where, the transformation matrix of the reference coordinate system：xk, yk, zk  represents the 
longitude, latitude and depth during navigation. Through the position information, the transformation 
matrix of the motion model as the reference coordinate system can be obtained; 

�
𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑉𝑉𝑘𝑘 ∙ 𝑡𝑡 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑘𝑘
𝑦𝑦𝑘𝑘+1 = 𝑦𝑦𝑘𝑘 + 𝑉𝑉𝑘𝑘 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑𝑘𝑘
𝜑𝜑𝑘𝑘+1 = 𝜑𝜑𝑘𝑘 + 𝑡𝑡 ∙ 𝜔𝜔𝑘𝑘

                         (3) 

Where VK is the synthesis speed; ωk is the yaw angular velocity; Heading angle at φk position; t is 
the sampling period. Where Vk and ωk are input by AUV sensor measurement control system 

𝑢𝑢𝑘𝑘 = �𝑉𝑉𝑘𝑘𝜔𝜔𝑘𝑘
� = � 𝑉𝑉𝑚𝑚𝑚𝑚 − 𝑤𝑤𝑣𝑣𝑣𝑣

𝜔𝜔𝑚𝑚𝑚𝑚 − 𝑤𝑤𝜔𝜔𝜔𝜔
�                           (4) 

In the above formula, uk is the control input model; Vmk and ωmk are the measured values of the 
speed and yaw angle of the AUV, w is the Gaussian white noise, Qk = diag[σ2vk σ2ωk]  the 
covariance matrix of the system process noise. wk Therefore, the two-dimensional motion equation of 
AUV can be abbreviated as 

𝑋𝑋𝑘𝑘+1 = 𝑓𝑓(𝑋𝑋𝑘𝑘,𝑢𝑢𝑘𝑘 ,𝑤𝑤𝑘𝑘)                              (5) 

Where wk is process noise. 

Through UKF, a corresponding set of discretized AUV state vectors and covariance matrices can be 
updated at every moment, and then the sigma sampling matrix is used to calculate the mean and 
covariance weights. The standard UKF algorithm goes through several stages in one cycle, including 
state prediction, covariance calculation, Kalman gain calculation, state update, and covariance update. 
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From research analysis, it can be concluded that compared with traditional algorithms, standard UKF can 
achieve second-order operational accuracy and achieve ideal trajectory tracking performance. [10-11] 

3. Improved AUKF algrithm 

3.1. Adptive kalman filter algorithm 

Assuming the nonlinear system is as follows 

𝑥𝑥𝑘𝑘 = 𝑓𝑓(𝑥𝑥𝑘𝑘−1 + 𝜔𝜔�𝑘𝑘−1                            (6) 

𝑧𝑧𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘) + 𝑢𝑢𝑘𝑘                               (7) 

f and h represent the nonlinear functions of the z-system and measurement, respectively. k is the 
time series, xk is the state vector, zk is the observation vector, ω�k−1and uk are the process noise and 
measurement noise, which follow a normal distribution. 

When using the UKF filtering algorithm to estimate the AUV state variables, the predicted noise 
covariance and observed noise covariance are usually set to a certain value. The AUV motion state is a 
nonlinear system, and as the AUV moves, the number of iterations of the algorithm increases, which will 
cause error accumulation and even lead to localization error divergence. Therefore, parameters are 
introduced in the process of adjusting the predicted noise covariance matrix and observed noise 
covariance matrix using UKF to fully utilize the current data. 

I Initialize the state vector and state covariance matrix. 

II Time update 

Obtain the sampling point x through traceless transformation 

𝜒𝜒𝑘𝑘−1|𝑘𝑘−1 = �𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1 + �(𝑛𝑛 + 𝜅𝜅)𝑃𝑃𝑘𝑘−1|𝑘𝑘−1𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1 − �(𝑛𝑛 + 𝜅𝜅)𝑃𝑃𝑘𝑘−1|𝑘𝑘−1�      (8) 

Among them, n is the scaling dimension, k is the scaling dimension, P is the covariance matrix, 
and x� is the estimated value of the state vector. 

The one-step prediction of the state is: 

𝑋𝑋�(𝑘𝑘/𝑘𝑘 − 1) = 𝐴𝐴(𝑘𝑘 − 1)𝑋𝑋�(𝑘𝑘 − 1/𝑘𝑘 − 1).                    (9) 

The one-step prediction of covariance is: 

𝑃𝑃(𝑘𝑘/𝑘𝑘 − 1) = 𝐴𝐴(𝑘𝑘 − 1)𝑃𝑃(𝑘𝑘 − 1/𝑘𝑘 − 1)𝐴𝐴(𝑘𝑘 − 1)𝑇𝑇 + 𝐵𝐵(𝑘𝑘 − 1)𝑄𝑄(𝑘𝑘 − 1)𝐵𝐵(𝑘𝑘 − 1)𝑇𝑇   (10) 

The Kalman filter gain is: 

𝐾𝐾(𝑘𝑘) = 𝑃𝑃(𝑘𝑘/𝑘𝑘 − 1)𝐻𝐻(𝑘𝑘)𝑇𝑇[𝐻𝐻(𝑘𝑘)𝑃𝑃(𝑘𝑘/𝑘𝑘 − 1)𝐻𝐻(𝑘𝑘)𝑇𝑇 + 𝑅𝑅(𝑘𝑘)]−1          (11) 

The status update is: 

𝑋𝑋�(𝑘𝑘/𝑘𝑘) = 𝑋𝑋�(𝑘𝑘/𝑘𝑘 − 1) + 𝐾𝐾(𝑘𝑘)[𝑌𝑌(𝑘𝑘) −𝐻𝐻(𝑘𝑘)𝑋𝑋�(𝑘𝑘/𝑘𝑘 − 1)]            (12) 

State covariance update: 

𝑃𝑃(𝑘𝑘/𝑘𝑘) = [𝐼𝐼𝑛𝑛 − 𝐾𝐾(𝑘𝑘)𝐻𝐻(𝑘𝑘)]𝑃𝑃(𝑘𝑘/𝑘𝑘 − 1)                     (13) 

There are defects in the measurement and update process of UKF that affect the filtering accuracy, 
such as the system filtering error increasing with the increase of system dimension, and the initial filtering 
value directly affecting the measurement accuracy. Due to the complexity of underwater environments, 
noise covariance is usually associated with AUV systems, while measuring noise variance is done by 
sensors. The variance matrix value of measurement noise in underwater systems varies greatly in 
different environments and is difficult to predict. 

Therefore, a residual is constructed based on UKF, which is determined by the observation value at 
time t and the updated observation mean after UT transformation. This can reduce the difference between 
prediction and update, and adjust the size with r. 

𝐸𝐸𝑡𝑡 = 𝑧𝑧𝑡𝑡 − 𝑍̅𝑍 − 𝑟𝑟                                (14) 

Introduce the forgetting factor h (0<h<1) and calculate the adjustment parameter d. The mathematical 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 12: 59-65, DOI: 10.25236/AJCIS.2024.071208 

Published by Francis Academic Press, UK 
-62- 

parameter r also undergoes dynamic changes over time, which are related to the adjustment parameters 
and residuals. 

The mathematical parameter r also undergoes dynamic changes over time, which are related to the 
adjustment parameters and residuals. 

 r = (1 − d) ∗ r + d ∗ (zt − Z�)                        (15) 

Dynamic adjustment of prediction covariance Q and observation covariance R 

𝑅𝑅 = (1 − 𝑑𝑑) ∗ 𝑅𝑅 + 𝑑𝑑 ∗ (𝐸𝐸𝑡𝑡 ∗ 𝐸𝐸𝑡𝑡𝑇𝑇 − 𝑃𝑃𝑍𝑍𝑍𝑍)                   (16) 

𝑄𝑄 = (1 − 𝑑𝑑) ∗ 𝑄𝑄 + 𝑑𝑑 ∗ [𝐾𝐾 ∗ (𝐸𝐸𝑡𝑡 ∗ 𝐸𝐸𝑡𝑡𝑇𝑇) ∗ 𝐾𝐾𝑇𝑇 + 𝑃𝑃 − 𝐹𝐹 ∗ 𝑃𝑃 ∗ 𝐹𝐹𝑇𝑇]           (17) 

During the filtering process, when the measurement noise changes, the state of the filter can be 
determined by β. The smaller the value of β, the more sensitive it is to new information and the stronger 
its ability to judge changes or anomalies in measurement noise. The maneuverability requirements for 
underwater carriers are usually low, but drastic changes in attitude can affect the determination of noise 
statistical characteristics. In a highly dynamic carrier motion environment, maintaining a constant value 
of β is not conducive to high-precision navigation and positioning of the system. Effective tracking of 
the measurement noise matrix can be indirectly achieved through the innovation value. 

The improved adaptive Kalman filtering algorithm adds adaptive adjustment to the covariance matrix 
Q of process noise and the covariance matrix R of observation noise. In nonlinear filtering systems, 
AUKF filtering can effectively suppress the problem of decreased filtering accuracy or even divergence. 

𝑄𝑄𝑘𝑘+1 = 𝑄𝑄𝑘𝑘 + 𝜂𝜂(𝐾𝐾𝑘𝑘(𝐳𝐳𝑘𝑘 − 𝐳𝐳�𝑘𝑘)(𝐳𝐳𝑘𝑘 − 𝐳𝐳�𝑘𝑘)𝑇𝑇𝐾𝐾𝑘𝑘𝑇𝑇 − 𝑄𝑄𝑘𝑘)                 (18) 

𝑅𝑅𝑘𝑘+1 = 𝑅𝑅𝑘𝑘 + 𝜂𝜂�(𝐳𝐳𝑘𝑘 − 𝐳𝐳�𝑘𝑘)(𝐳𝐳𝑘𝑘 − 𝐳𝐳�𝑘𝑘)𝑇𝑇 − 𝑅𝑅𝑘𝑘�                   (19) 

Where η is the step size for adjusting the coefficient to control noise. 

The dynamic model generates errors during the simulation process, which affect the navigation 
accuracy. Introducing adaptive factors can further suppress the deviation of initial values and the 
imbalance of model parameter matching. The AUKF algorithm can further improve the accuracy of 
navigation through adaptive factors based on UKF, so the principle of adaptive estimation is applied to 
AUV when the system model is in an abnormal state.  

The improved adaptive Kalman filter has the following advantages, including: enhanced robustness: 
by dynamically adjusting the noise covariance, the filter can better adapt to different noise conditions, 
improved accuracy: in dynamic environments, it can maintain high state estimation accuracy, especially 
in cases of severe noise changes, with wide applicability: suitable for various nonlinear dynamic systems, 
especially in practical applications with good performance.  

4. Simulation 

4.1. Parameter design in simulation 

In order to verify the progressiveness and effectiveness of the AUKF algorithm, the standard UKF 
algorithm and the adaptive UKF tracking algorithm were simulated on the AUV SLAM model through 
MATLAB, and the obtained track prediction results were added to the algorithm the adaptive adjustment 
of the process noise covariance matrix Q and the observation noise covariance matrix R in the nonlinear 
filtering system. Several different AUV motion tracks were designed in the two-dimensional plane. The 
EKF algorithm prediction track, the UKF algorithm prediction track, the AUKF algorithm prediction 
track, and the BDS real motion track were simulated using MATLAB to compare error values. The 
performance of the improved algorithm was verified through simulation experiments. 

This is shown in Figures 1 and 3, assuming the target is moving in two-dimensional space, the initial 
position (x, y) of target 1 is (2,0), and the velocity environment is in a rectangle of 200m × 200m. The 
initial velocity of the AUV during motion is set to 0.97m/s, the velocity noise is 0.02m/s, the time interval 
for control signal transmission is 0.036s, and the maximum observable distance is set to 60m through 
sonar parameter indicators. The influence of sampling interval on model design is considered, and the 
state model is divided into two parts: sampling interval correlation term and sampling interval 
independent term, which are verified through debugging.  
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Figure 1: EKF and UKF simulation trajectories and predicted trajectories 

 
Figure 2: Estimation error of UKF initial positionF 

 
Figure 3: AUKF simulation trajectory and predicted trajectory 

 
Figure 4: Error estimation of AUKF initial position 
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By comparing the experimental results through simulation, the tracking error waveforms of the two 
trajectories in Fig. 2 and Fig. 4 are obtained, it can be seen that the standard UKF prediction curve has a 
good fit with the tracking trajectory in the first half of the curve, but the deviation of the predicted 
trajectory in the second half of the curve becomes larger and the tracking effect is average. Moreover, 
the prediction curve tends to gradually diverge, mainly due to the algorithm's accumulated error caused 
by noise; This is related to the accumulation of algorithm errors and the adaptability of the algorithm 
itself; The tracking performance of the adaptive UKF algorithm has relatively improved; The overall 
tracking performance of the AUKF algorithm curve is relatively stable, with low variance in the first half 
of the curve and large deviation in the second half of the predicted trajectory curve; The overall average 
tracking error of the AUKF algorithm is slightly lower than that of the standard UKF algorithm, and its 
path fit is also relatively ideal. Based on the simulation results of trajectory tracking, it can be found that 
the adaptive UKF algorithm can accurately track the true expected trajectory of AUVs. Compared with 
the standard UKF algorithm, the AUKF tracking curve is more stable and smooth, with stronger 
adaptability, which is consistent with previous theoretical expectations. The prediction error has also 
remained within an acceptable range  

The purpose of the adaptive UKF algorithm is to reduce the impact of accumulated errors on the 
tracking results during the AUV trajectory tracking process. Therefore, the trajectory is plotted using 
x_true_hist and the trajectory histories x_ekf_hist, x_ukf_hist, and x_aukf_ist of each filter. The figure 
compares the real trajectory with the trajectories estimated by three different filters  

 
Figure 5: Comparison of x_ekf_histt trajectories 

 
Figure 6: Comparison of x_ukf_hist trajectories 

 
Figure 7: Comparison of x_aukf_hist trajectories 
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Comparing the fluctuation amplitudes of the three trajectory curves, it can be seen that the average 
error of the AUKF algorithm is smaller than that of the UKF algorithm in both speed and attitude, 
indicating that the filtering accuracy of the former is higher than that of the latter, Fig. 5, Fig. 6, and Fig. 
7 are trajectory tracking diagrams under three filters, respectively. 

5. Conclusion 

An adaptive unscented Kalman filter algorithm based on AUV track tracking technology is proposed. 
When using UKF filtering algorithm to estimate AUV state variables using UKF, the prediction noise 
covariance and observation noise covariance are usually set to a certain value, and the AUV motion state 
is a nonlinear system. With the movement of AUV, the number of iterations of the algorithm increases, 
which will cause the accumulation of errors, and even lead to the divergence of positioning errors. 
Therefore, the improved adaptive Kalman filtering algorithm in this paper adds the adaptive adjustment 
of the process noise covariance matrix Q and the observation noise covariance matrix R to the nonlinear 
filtering system, and adds three different noise filters at the same time. It is found that the tracking curve 
of the improved algorithm is smoother and more consistent, indicating that the cumulative error caused 
by noise can be effectively reduced and the noise resistance is high under track tracking, which basically 
meets the expected requirements.B. 
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