
Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 12: 24-35, DOI: 10.25236/AJCIS.2024.071204 

Published by Francis Academic Press, UK 
-24- 

Machine learning-based PM concentration prediction 
and model interpretability analysis 

Junxi Li* 

School of Mathematical Sciences & College of Computer Science and Software Engineering, Shenzhen 
University, Shenzhen, 518060, China 
*Corresponding author 

Abstract: Accurate PM2.5 concentration forecasting is pivotal for environmental health and sustainable 
development. This study introduces a machine learning model leveraging the SHAP framework for 
enhanced interpretability and prediction accuracy. Utilizing 2023 meteorological data from Beijing's 
Wanshou Xigong meteorological station, we initially explored all characteristics and selected three 
algorithms, RF, SVR, and LightGBM, to construct machine learning models for PM2.5 concentration 
prediction. The R2 of each model on the validation set reached 0.9334, 0.9185, and 0.9472. Ultimately, 
we conducted SHAP framework interpretability analysis on the LightGBM model, removing features with 
minimal predictive impact. The R2 of the final prediction model reaches 0.9501. This advancement 
significantly aids in precisely predicting PM2.5 concentration, supporting proactive environmental and 
health policies. 
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1. Background And Introduction 

PM2.5, atmospheric particles under 2.5 μm that penetrate deep into the lungs, are laden with toxins 
and pose significant health risks, including respiratory ailments and lung cancer[1]. Recognized globally 
as a critical environmental pollutant, precise and timely PM2.5 forecasting is essential for crafting air 
quality policies. Such predictions empower authorities to adjust emissions, enhance transportation, and 
establish warning systems, thereby combating climate change, safeguarding health, and fostering 
sustainable development.  

Predicting PM2.5 concentrations is a complex challenge integral to air quality management. 
Traditional methods such as statistical, numerical, and integrated models have been pivotal but face 
limitations in real-time data updating and predictive accuracy. The WRF-Chem model[2], while 
influential, struggles with timely data synchronization, leading to delayed forecasts. To address this, 
satellite remote sensing has emerged as a promising approach, yet its complexity in capturing spatial-
temporal dynamics hinders real-time predictive capabilities[3]. As data volume swells, traditional 
machine learning models[4] encounter drawbacks like high computational costs and uncertainties. This 
paper introduces the LightGBM model, which offers efficient, scalability, and multi-thread 
parallelization, coupled with the SHAP framework for model interpretability and optimization. Our 
technical approach, depicted in Fig. 1, which focuses on training the model through data processing, 
model training, model comparison, and SHAP interpretation modification. Finally, the SHAP-LightGBM 
model is utilized to predict PM2.5 concentration. 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 12: 24-35, DOI: 10.25236/AJCIS.2024.071204 

Published by Francis Academic Press, UK 
-25- 

initial data data mergingdata 
cleansing missing fills feature 

processing
training division

Data processing

training data model training model 
evaluation model save

adjust parameters

Model building

initial data data mergingdata 
cleansing missing fills feature 

processing
training 
division

Data processing

training data model training model 
evaluation model save

adjust 
parameters

training data model training
training 

data
model 

training

Comparison model

Optimization model

analyzing 
features

SHAP- 
LightGBM

 
Figure 1: Flow chart of the experiment 

2. Related Work 

2.1 Data set sources and analysis 

The dataset collects a total of 8760 data for each hourly period of the whole year 2023 from the 
WanshouXigong meteorological station. In addition to the four temporal features, there are 11 main data 
features as follows: PM2.5, PM10, SO2, NO2, CO, O3, TEMP, P, Precipitation, Direction, and Velocity. 

Weather station transmission as well as logging problems can result in some data being missing and 
unrecorded. Given the strong autocorrelation within the data, Lagrange interpolation is employed to fill 
in missing values, facilitating the model training process. Table I shows the number of missing values 
for each feature. 

Table 1: Number of missing values for each feature 

Features Missing values 
PM2.5 105 
PM10 65 
SO2  184 
NO2 262 
CO 719 
O3 625 

Direction 1 
The Lagrange interpolation method[5] is as follows: 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 12: 24-35, DOI: 10.25236/AJCIS.2024.071204 

Published by Francis Academic Press, UK 
-26- 

0 0

(x)
n

j

j i j
j i

n

i
i

P
x

x
y

x
x= =

≠

−
×

−
= ∏∑

                                                        (1) 

( , )i ix y  is the data points; 
x is the index value of the missing value; 

(x)P  is the fill value of the missing value. 

 
Figure 2: Data Distribution Chart 

Figure 2 shows the distribution of the data plotted after data processing, it is obvious that these eleven 
features are more evenly distributed except for the feature Precipitation. In order to train the model, 8760 
data were divided into five parts, four as the training set and one as the validation set for prediction and 
to test the prediction effect of the model. At the same time, the ten features PM10, SO2, NO2, CO, O3, 
TEMP, P, Precipitation, Direction, and Velocity, as well as the temporal features, are set as inputs to the 
prediction model. The concentration of PM2.5 is set as the output of the prediction model. Normalize the 
data to improve the numerical stability of the model. The normalized data is first used for model training 
and the predicted outputs for the validation set. The output is then back-normalized to obtain the final 
prediction of PM2.5 concentration. 

2.2 Model preparation 

2.2.1 Random Forest 

Random forest regression[6] is one of the more widely used methods in machine learning regression 
methods. Random forest regression method is mainly based on decision tree theory, through the 
integration of multiple decision tree regression models to predict the target variable, and finally 
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summarize the results of a large number of decision tree regression models, so as to improve the accuracy 
of the regression model. Firstly, random forest regression constructs decision trees by randomly obtaining 
multiple sample subsets in the training set through bootstrap resampling; secondly, when training the 
decision trees, randomly selecting features from the feature set to train each decision tree, so that the 
prediction structure of each decision tree is not the same; then, regression prediction is performed on 
each decision tree without pruning, and all the regression predictions are averaged; furthermore, the 
regression model results are summarized to improve the accuracy of the regression model. In addition, 
Random Forest regression can also evaluate the importance of feature variables. Numerous studies have 
shown that the Random Forest machine learning algorithm can balance the error of unevenly distributed 
samples, provide a better fit to nonlinear data, and have a better tolerance for outliers and noise. The most 
important parameters affecting the effectiveness of the random forest regression model are the number 
of decision trees in the forest, the minimum number of samples of leaf nodes, the minimum number of 
samples of non-leaf nodes, the number of features of optimal splitting, the proportion of randomly 
selected samples, and the maximum depth. So this paper will be traversing the optimization of these six 
parameters, and the rest of the parameters are uniform default values. The specific algorithm of random 
forest regression(2) is as follows: 
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(x)H   is the random forest regression result; 
x  is the independent variable; 

iΦ  is an independent and identically distributed random vector for output based on x and iΦ ; 

N  is the number of regression decision trees. 

2.2.2 Support vector machine regression 

The basic idea of the SVR model[7] is that the original input space, which is nonlinearly correlated 
with the predictor variables, is mapped onto a high-dimensional feature space by a nonlinear mapping 
function (kernel function) to obtain a model that is as suitable as possible to fit the samples of the training 
set. A common approach is to construct a loss function between the sample labels and the model 
predictions and determine the function model by minimizing the loss function. We can create a dataset 
considering output vectors. The goal of SVR is to find a multiple regression function to predict the desired 
output properties of an unknown object based on a given dataset S. The SVR model (3) is as follows: 
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Lagrange multipliers for which ia  and 
*
ia  satisfy the constraints; 

( ), ( )i jx xϕ ϕ
 are nonlinear mapping functions; 

b is the offset for the regression function ( )f x . 

2.2.3 LightGBM model 

The LightGBM model[8], first proposed by the Microsoft team in 2017, is an improved gradient-
boosting decision tree framework. Its basic idea is to linearly combine M weak regression trees into a 
strong regression tree. The combination formula (4) is as follows: 
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( )F x is the final output value; 

( )mf x is the output value of the mth weak regression tree. 
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The main improvements to the Light GBM model include the histogram algorithm and the leaf-
growth (leaf-wise) strategy with depth restriction. The histogram algorithm divides the continuous data 
into K integers and constructs a histogram of width K. The histogram is then traversed and the discretized 
values are accumulated as indexes. The discretized values are accumulated as indexes in the histogram 
during traversal, which in turn searches for the optimal decision tree split points. The leaf-wise strategy 
with depth restriction means that at each split, the leaf with the maximum gain is found for splitting and 
the cycle continues. At the same time, by limiting the depth of the tree as well as the number of leaves, 
the complexity of the model is reduced, and overfitting is prevented. 

2.2.4 Model Evaluation Parameters 

Mean Absolute Error (5) is a measure of the accuracy of a predictive model or estimation method. It 
indicates the average size of the difference between the predicted values and the actual observed values. 
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

iy  is the 𝑃𝑃 𝑟𝑟 𝑒𝑒 𝑑𝑑 𝑖𝑖 𝑐𝑐 𝑡𝑡 𝑒𝑒 𝑑𝑑  𝑣𝑣 𝑎𝑎 𝑙𝑙 𝑢𝑢 𝑒𝑒 ; 

iy  is the Observed value; 
n is the total number of observations. 

Mean Squared Error (MSE) (6) is a commonly used measure of the difference between the predicted 
values of a model and the actual observed values to assess how well the model fits the given data. MSE 
is obtained by calculating the average of the squares of the differences between the predicted values and 
the actual observed values. It provides an indication of how far the expected value differs from the 
original value. 



2

1
( )

n

i i
i

y y
MSE

n
=

−
=
∑

                                                           (6) 



iy  is the 𝑃𝑃 𝑟𝑟 𝑒𝑒 𝑑𝑑 𝑖𝑖 𝑐𝑐 𝑡𝑡 𝑒𝑒 𝑑𝑑  𝑣𝑣 𝑎𝑎 𝑙𝑙 𝑢𝑢 𝑒𝑒 ; 

iy  is the Observed value; 
n is the total number of observations. 

R2(7) is a statistic used in regression analysis to measure how well the model fits the data. The value 
of R2 ranges between 0 and 1, with 0 indicating that the model does not account for any of the variability 
and 1 indicating that the model fits the data perfectly. 
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

iy  is the 𝑃𝑃 𝑟𝑟 𝑒𝑒 𝑑𝑑 𝑖𝑖 𝑐𝑐 𝑡𝑡 𝑒𝑒 𝑑𝑑  𝑣𝑣 𝑎𝑎 𝑙𝑙 𝑢𝑢 𝑒𝑒 ; 

iy  is the Observed value; 

y is the average value; 
n is the total number of observations. 
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3. Research process and results 

3.1 Model construction process and analysis 

The construction of the three models needs to establish the corresponding parameters. To train the 
model parameters optimal can predict the corresponding optimal effect. We use the grid search to go to 
the parameters that affect the model effect of the grid search traversal to find the model optimal 
parameters. 

The construction of the model I random forest model needs to adjust the number of decision trees in 
the forest, the minimum number of samples of leaf nodes, the minimum number of samples of non-leaf 
nodes, the number of features of optimal splitting, the proportion of randomly selected samples, and the 
maximum depth, which are the six parameters that mainly affect the prediction effect of the model. The 
optimal parameters of the model are obtained by performing a grid search on the training set as shown 
in Table 2 below: 

Table 2: Random forest model parameterization 

parameters value 
number of decision trees in the forest 700 

minimum number of samples of leaf nodes 1 
minimum number of samples of non-leaf nodes 4 

the number of features of optimal splitting 4 
proportion of randomly selected samples 

maximum depth 
100% 

34 
The construction of the model II support vector machine regression model requires the adjustment of 

the regularization parameter (C), the threshold of the insensitive loss function, the kernel function 
selection, and the kernel coefficients, which are the four parameters that mainly affect the prediction 
effect of the model. The optimal parameters of the model are obtained by performing a grid search on 
the training set as shown in Table 3 below: 

Table 3: Support vector machine regression model parameterization 

parameters value 
C 150 

epsilon 10 
kernel RBF 

Gamma 0.1 
The construction of the model III LightGBM model requires adjusting five parameters that mainly 

affect the prediction effect of the model: the number of trees, the learning rate, the number of leaf nodes, 
the maximum depth of the tree, and the minimum number of samples per leaf node. 

The optimal parameters of the model are obtained by performing a grid search on the training set as 
shown in Table 4 below: 

Table 4: LightGBM model parameterization 

parameters value 
number of trees 750 

learning rate 0.09 
number of leaf nodes 40 

maximum depth of the tree -1(limitless) 
minimum number of samples per leaf node 20 

3.2 Analysis of forecast results 

The best model trained by grid search is used to predict the PM2.5 concentration on the validation set 
and the results are obtained as shown below.  

Observation of Figure 3 shows that the LightGBM model has the best prediction effect, the true value 
and the predicted value almost match, and the two line graphs have high overlap, while the SVR model 
and the RF model do not have much difference, but they are obviously weaker than the prediction effect 
of LightGBM model. The difference between the normalized data of the true value and the predicted 
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value is relatively large. 

 
Figure 3: Fitting diagram of three models' true value and predicted value 

 
Figure 4: Scatter plot of PM2.5 concentration 
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As depicted in Figure 4, the scatter plots for all three models demonstrate a strong predictive 
performance. The horizontal axis represents the actual values, while the vertical axis represents the 
predicted values. Notably, the scatter plot for the LightGBM model aligns more closely with the line y=x, 
suggesting a superior fit compared to the other models. 

The error line graph in Figure 5 clearly shows that the LightGBM model has superior predictive 
performance on the validation set compared to the RF and SVR models. The LightGBM model 
demonstrates a notably lower ratio of prediction error to the predicted value, suggesting a higher accuracy. 

 
Figure 5: Error line graph 

Table 5 counts the model evaluation parameters of each model prediction. It is obvious that the 
LightGBM model evaluation parameter R2 is 0.9472, MAE is 0.14, MSE is 0.05, and the model 
evaluation parameters[9] are all significantly better than RF and SVR prediction models. 

Table 5: Model evaluation parameters 

Model MAE MSE R2 

RF 0.16 0.06 0.9334 
SVR 0.18 0.08 0.9185 

Lightgbm 0.14 0.05 0.9472 
Through the above comparison, it can be found that LightGBM as a modern machine learning 

integrated learning algorithm is significantly better than the traditional machine learning models RF, and 
SVR. The LightGBM model was chosen to predict PM2.5 concentrations with the best results. 

4. SHAP Framework interpretability analysis 

4.1 Introduction to the SHAP Framework 

SHAP[10] (Shapley Additive Explanations) is a method for interpreting the predictions of machine 
learning models, and its core principle is based on the concept of Shapley Value in game theory. The 
SHAP framework can be applied to the interpretation of various black-box models. It identifies the 
impact of each feature on the model prediction by decomposing the model prediction into a weighted 
sum of each feature value. The SHAP framework provides a comprehensive feature importance analysis 
and prediction interpretation by considering the combination and interaction of features, which is 
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calculated as follows: 

1 2( ) ( ) ( )is i iki ba ey y f f fλ λ λ= + + +                                                 (8) 

Where λij denotes the jth feature of the ith sample, yi denotes the predicted value of the model for the 
sample, and ybase denotes the mean value of the predicted value of the model for all samples (i.e., the 
baseline value of the model). f(λij) denotes the contribution of the jth feature in the ith sample to the final 
predicted result of the model, yi. When f(λij) > 0, it means that the feature has an enhancing effect on the 
prediction value, i.e., it makes a positive contribution; conversely, it means that the feature has a 
decreasing effect on the prediction value, i.e., it makes a negative contribution. 

4.2 Feature Importance Visualization Analysis 

Since LightGBM shows excellent prediction ability, this paper introduces the DeepExplainer 
explanatory framework in SHAP during the training of the PM2.5 concentration prediction model in order 
to further improve the model accuracy. To study the correlation between PM2.5 concentration variables 
and different features, the importance of different feature quantities is analyzed by calculating the 
absolute value of the SHAP value of each input feature, and sorting the mean value of the impact of PM2.5 
concentration prediction, as shown in Figure 6. The horizontal axis of the figure represents the mean of 
the absolute value of SHAP for the overall sample. According to the figure, it can be found that the 
concentration of PM10 is the feature that has the greatest influence on the results of PM2.5 concentration 
predicted by the model, and the rest are CO, and No. The SHAP value of Precipitation is the smallest, 
and its contribution to the model decision is also the smallest, which is also related to the relatively 
concentrated data distribution of Precipitation. 

 
Figure 6: Contribution map 

Figure 7 shows a summary plot of the SHAP values for the 15 features, where the horizontal 
coordinates indicate the SHAP values. The SHAP values of different features are distributed on both 
sides of the baseline in the center. The left-hand area represents the influencing factor that negatively 
affects the outcome, while the right-hand area represents the influencing factor that positively affects the 
outcome. Each sample in the dataset is run through the model and a point result is created for each feature. 
Each point color varies depending on the size of the feature value. The right eigenvalue fades from blue 
to red, indicating a gradual increase in the value of the independent variable. 

By analyzing the feature SHAP value plot, the effects of PM10, CO, and No on the model are more 
significant. Further analysis of the influence of each feature on the model output in the figure shows that 
for the concentration of PM10, as its eigenvalue increases, it makes a positive contribution to the predicted 
results of PM2.5 concentration, i.e., the larger the concentration of PM10, the higher the concentration of 
PM2.5. As the concentration of PM10 decreases, it basically makes a reverse contribution to the predicted 
results of PM2.5 concentration, i.e., the smaller the concentration of PM10, the lower the concentration of 
PM2.5. This indicates that generally the higher the concentration of PM10 the higher the corresponding 
concentration of PM2.5. The same is true for CO concentrations with large SHAP values. Therefore, in 
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environmental management, the concentration of PM2.5 can be reduced by encouraging the use of clean 
energy to reduce particulate matter PM10 as well as CO emissions from inadequate combustion treatment. 

 
Figure7: SHAP value 

The quantitative visualization shown in Figure 7 shows the contribution of each feature to the final 
score and ranks the most important positive and negative predicted impacts. The key insights into this 
prediction transform the complex decision problem, including all components of the LightGBM model, 
into a simple readable, and informative diagram where the unit of measurement is the target unit. A 
visualization of the model's first prediction is shown in Figure 8. 

It is clear that the first PM2.5 concentration predicted by the model is labeled 118.447μg/m³ and 
provides information about all the features (and their values) that influence this prediction. The main 
features that increase the PM2.5 concentration: O3, TEMP, CO, and PM10 are shown in red. While 
comparing this result with the initial feature importance analysis (Figure 6), it can be concluded that 
Precipitation, Direction, and Velocity do not have high enough values. 

 
Figure 8: First PM2.5 concentration prediction 

Figure 9 presents a SHAP heatmap where darker colors indicate larger absolute SHAP values, 
signifying a greater impact on model predictions. The top section visualizes the model's predictions based 
on these values for 1752 data points from the validation set. It is observed that features such as PM10, 
CO, No, SO2, P, and day have both positive and negative contributions to the predictions. In contrast, the 
predictions for the validation set involving features like hour, O3, and six other features nearly converge 
to zero. The SHAP values for each sample in the heatmap predominantly cluster in the white region near 
the 0 threshold, indicating minimal impact. 
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Figure 9: SHAP Heatmap 

Figure 10 is a summary plot of the SHAP interaction values, where the seven features with the highest 
contribution are summarized in a matrix of SHAP interaction values. It can be found that the SHAP 
interaction value between each feature outside the diagonal is close to 0, which means that the marginal 
contribution of each of these seven features interacting with each other in the model's prediction is very 
small and the dependency is not very strong, indicating that their effects on the model's prediction are 
independent of each other. 

 
Figure 10: Summary of SHAP interaction value matrix 

Through the above experiments, the SHAP-LightGBM model was established, and three features 
Precipitation, Direction, and Velocity were eliminated for re-prediction. It was found that the R2 of the 
prediction model was improved from 0.9472 to 0.9501, and the elimination of the redundant features had 
a facilitating effect on the prediction of the model. 

5. Conclusions and outlook 

5.1 Conclusion 

In this study, by applying the LightGBM model, the PM2.5 concentration was successfully and 
effectively predicted. The experimental results show that the model performs well in predicting PM2.5 
concentration, especially with an R2 value of 0.9472 on the validation set, which verifies the accuracy 
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and stability of the model. Analyzing prediction models through SHAP framework, we found that the 
concentrations of CO, PM10, and SO2 were positively correlated with PM2.5 concentration in most data 
points, while air pressure (P) and month were negatively correlated with PM2.5 concentration. These 
findings provide a new perspective for PM2.5 management. To effectively reduce PM2.5 concentration, 
it is necessary to control CO emissions. In addition, through feature selection, we identified three features, 
Precipitation, Direction, and Velocity, which contribute less to PM2.5 prediction, and removed them from 
the data set to further optimize the model performance. The R² value on the validation set is improved to 
0.9501. 

5.2 Outlook 

Although this study has achieved significant results in PM2.5 concentration prediction, there are still 
some limitations and future research directions. First, the size of the current dataset limits the real-time 
nature of the model predictions. In order to improve the usefulness and real-time performance of the 
model, data collection capabilities need to be enhanced to support more frequent and extensive data 
collection. Second, future research could explore more features and variables to further improve the 
prediction accuracy and generalization ability of the model. In addition, the methodology of this study 
can be considered to be applied to the prediction of PM2.5 concentration in other regions to verify the 
generalizability of the model. Finally, with the continuous advancement of machine learning technology, 
more advanced algorithms can be explored to further improve the performance of the prediction model. 
With these improvements and extensions, we expect to be able to provide a more accurate and real-time 
scientific basis for air quality management and PM2.5 pollution control and make greater contributions to 
environmental protection and public health. 
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