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Abstract: Accurately identifying the core drivers of carbon emissions and scientifically forecasting the 
pathway to carbon peaking are pivotal theoretical foundations for advancing the "Dual Carbon" 
strategic goals. This study focuses on Guangdong Province and innovatively incorporates green GDP 
(GGDP) as a core driver into the carbon peaking prediction model, addressing the limitations of 
environmental cost accounting in traditional forecasting methods. Based on the United Nations System 
of Environmental-Economic Accounting (SEEA) framework, we calculate Guangdong’s GGDP from 
2013 to 2023, analyze carbon emission trends using the emission coefficient method, identify key 
drivers—including population, GGDP contribution rate, industrial structure, and energy 
structure—through the STIRPAT model, and perform time-series forecasting using a CNN-LSTM hybrid 
model. Findings indicate that multi-scenario simulations project Guangdong's carbon emissions to 
peak in 2028 (baseline), 2027 (low-carbon), and 2026 (optimized-growth). Crucially, GGDP, by 
internalizing environmental costs, provides a scientifically superior basis for carbon peaking targets 
compared to conventional GDP. 
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1. Introduction 

With rapid economic development, the issue of CO₂ emissions has become increasingly severe, 
prompting nations worldwide to establish carbon neutrality targets. China has explicitly set its "Dual 
Carbon" goals: achieving carbon peaking by 2030 and carbon neutrality by 2060. As a major 
energy-consuming province, Guangdong’s carbon emissions have drawn significant attention. In 
February 2023, Guangdong released its Carbon Peaking Implementation Plan, targeting carbon 
by 2030, maintaining leading national standards in energy consumption and carbon emissions per unit 
GDP, and raising the share of non-fossil energy to approximately 35%. 

While conventional GDP effectively measures economic growth, it overlooks critical factors such 
resource depletion and environmental degradation. Rapid economic expansion has intensified resource 
consumption and pollution, particularly due to the strong linkage between economic growth and energy 
use, thereby driving carbon emissions. Consequently, this study prioritizes green GDP 
(GGDP),following Yang (2022) who highlighted its role in guiding sustainable development and green 
transformation pathways [1]. As a comprehensive metric, GGDP integrates economic performance with 
natural resource costs and environmental protection expenditures, offering a clear perspective on the 
relationship between regional development and environmental sustainability. 

In carbon emission research, scholars such as Zhong et al. (2024) have explored diverse spatial 
predominantly analyzing influencing factors and emission predictions through theories linking 
growth and energy consumption [2]. Methods often employ econometric models or GDP-centric 
evaluation systems. However, the limitations of conventional GDP in carbon emission 
forecasting—specifically its failure to reflect environmental externalities—have become apparent. This 
gap motivated the emergence of GGDP. Following the UN’s System of Environmental-Economic 
Accounting (SEEA) handbook (1993) [3], a multi-phase accounting framework evolved globally. China 
launched the Green National Accounting Study project in 2004[4]; though initially delayed, it resumed 
2015 (Phase 2.0), spurring scholarly exploration. Recent studies investigate correlations between 
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and carbon emissions, with some proposing GGDP-based prediction models. For instance, Wang et al.[5] 
applied EDA methods to examine synergies between environmental mechanisms and urban 
development across 211 Chinese cities. Others like Wang et al. (2023) implemented "greening" 
conversions of economic outputs by deducting environmental resource costs in GGDP calculations[6]. 

This study transcends traditional GDP-centric frameworks to explore GGDP’s potential for carbon 
emission and peaking predictions. Adopting the GGDP accounting system as an innovative carbon 
measurement approach enables more accurate emission quantification and trend analysis, thereby 
advancing Guangdong’s "Dual Carbon" objectives. Based on the UN SEEA framework and emission 
coefficient method, we calculate Guangdong’s carbon emissions, utilize the STIRPAT model to identify 
key drivers, and integrate CNN-LSTM hybrid modeling for dynamic time-series simulation and carbon 
peaking pathway projection. This work aims to provide theoretical and practical guidance for achieving 
carbon peaking and neutrality. 

2. Introduction to research methods and model construction 

2.1 Green GDP Accounting Method under the SEEA System 

This study requires GGDP accounting to predict Guangdong Province's carbon peak and examine 
the relationship between its GGDP and carbon emissions. Conventional GDP accounting overlooks 
environmental costs, while subsequent adjustments face controversies in quantifying environmental 
costs and defining accounting boundaries. Adopting the United Nations’ System of 
Environmental-Economic Accounting (SEEA) framework[7],this research calculates Guangdong’s 
GGDP, leveraging its authority and comprehensiveness to establish a scientific accounting framework. 
The GGDP accounting system comprises three modules: natural resource depletion cost, environmental 
pollution damage cost, and resource/environmental improvement value. Indicator selection adheres to 
these principles,as shown in Table 1. 

Table 1: Green GDP Indicator System 

Tier 1 Indicator Tier 2 Indicator Indicator Description 
Natural 

Resource 
Depletion Costs 

Energy Resource 
Depletion Costs 

Assesses the environmental loss caused by energy 
extraction and usage by selecting coal, petroleum, 

and natural gas, and quantifying the restoration cost 
per unit of energy. 

Cultivated Land 
Depletion Cost 

The annual net reduction in cultivated land area is 
determined by the difference between the current 
year's cultivated land area and that of the previous 

year. 
Water Resource 
Depletion Cost 

Measures the depletion cost of water resources 
using the actual compensation fees incurred for 

water resources. 
Mineral Depletion 

Costs 
Evaluates the environmental cost of mineral 

resource development by calculating the total 
output value loss resulting from mineral resource 

extraction. 
Environmental 
Pollution Loss 

Costs 

Wastewater 
Treatment Cost 

Assesses the economic burden of wastewater 
treatment by calculating the product of wastewater 

discharge volume and treatment cost. 
Waste Gas Treatment 

Cost 
Assesses the economic burden of waste gas 

treatment by calculating the product of waste gas 
emission volume and treatment cost. 

Solid Waste 
Treatment Cost 

Assesses the economic burden of solid waste 
treatment by calculating the product of solid waste 

generation volume and treatment cost. 
Resource and 
Environment 
Improvement 
Benefit Value 

Forest Resource 
Improvement Benefit 

Evaluates the economic benefit derived from forest 
resource improvement by calculating the product of 

afforestation area and forest value. 

Based on the above analysis, the GGDP calculation in Guangdong Province consists of the cost of 
natural resource consumption reduction, the cost of environmental pollution loss, and the value of 
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resource and environmental improvement benefits. The GGDP calculation formula is as follows: 

GGDP = GDP- Cost of natural resource depletion - Cost of environmental pollution loss + Benefits of resource and environmental improvement(1) 

Based on the above formula and referring to the literature of Du et al.[8], the above indicators were 
calculated by the following method, as shown in Table 2. 

Table 2: Accounting Methods for Tier 2 Indicators 

Tier 2 Indicator Accounting Method 
Energy Resource 
Depletion Costs 

Energy Resource Depletion Cost = Annual Energy Depletion 
Volume × Unit Resource Restoration Cost. 

Cultivated Land 
Depletion Cost 

Cultivated Land Depletion Cost = Annual Cultivated Land 
Depletion Volume × Unit Resource Restoration Cost. 

Water Resource 
Depletion Cost 

Water Resource Depletion Cost = Annual Water Resource 
Depletion Volume × Unit Compensation Fee. 

Mineral Depletion Costs Mineral Depletion Cost = Total Mineral Industry Output Value × 
Resource Depletion Coefficient. 

Wastewater Treatment 
Cost 

Wastewater Treatment Cost = Wastewater Discharge Volume × 
Unit Treatment Cost. 

Waste Gas Treatment 
Cost 

Waste Gas Treatment Cost = Waste Gas Emission Volume × Unit 
Treatment Cost. 

Solid Waste Treatment 
Cost 

Solid Waste Treatment Cost = Solid Waste Generation Volume × 
Unit Treatment Cost. 

Forest Resource 
Improvement Benefit 

Resource and Environment Improvement Benefit Value = Annual 
Afforestation Area × Unit Forest Value Price. 

2.2 Carbon emission calculation based on the emission factor approach 

This study systematically estimates the total carbon emissions of Guangdong Province using the 
emission factor approach. Based on disaggregated energy consumption data and corresponding 
emission factor parameters, an accounting framework for carbon emissions is established, enabling 
precise quantitative analysis of regional carbon emissions. This method demonstrates high applicability, 
strong practical utility, and operational straightforwardness. The calculation formula is as follows: 

C = ∑ Ei9
i=1 × NCVi × CEFi                        (2) 

Where,𝐶𝐶  represents the total carbon emissions;𝐸𝐸𝑖𝑖 denotes the consumption of the  𝑖𝑖 energy 
type;𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖is the average net calorific value (lower heating value) of the 𝑖𝑖 energy type;𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 signifies the 
carbon emission factor of the 𝑖𝑖 fossil energy type.𝑖𝑖 indicates the energy category, encompassing: coal, 
coke, crude oil, gasoline, kerosene, diesel, fuel oil, liquefied petroleum gas (LPG), and natural gas. The 
corresponding carbon emission coefficients for each energy type are provided in Table 3. 

Table 3: Energy Characteristics and CO₂ Emission Factors 

Energy Avg. Low Calorific 
Value/kj · kg−1 

Standard Coal 
Equivalent/kgce · kg−1 

Carbon Content 
per Unit Heat/ 

(t − c/TJ) 

Carbon 
Oxidation 

Rate/% 

CO₂ Emission 
Factor/(kg −

CO2/kg) 
Raw Coal 20908 0.7143 26.37 0.94 1.9003 

Coke 28435 0.9714 29.42 0.93 2.8604 
Crude Oil 41816 1.4286 20.08 0.98 3.0202 
Gasoline 43070 1.4714 18.9 0.98 2.9251 
Kerosene 43070 1.4714 19.6 0.98 3.0179 

Diesel 42652 1.4571 20.2 0.98 3.0959 
Fuel Oil 41816 1.4286 21.1 0.98 3.1705 

LPG 50176 1.7143 17.2 0.98 3.0119 
Natural Gas 38931 1.3300 15.32 0.99 2.1622 

2.3 Model construction 

This study utilizes an integrated STIRPAT and CNN-LSTM model to develop a carbon emission 
forecasting model for Guangdong Province[9], thereby predicting the carbon peak for the region. First, 
data on influencing factors are collected, and the STIRPAT model is employed to identify the primary 
drivers of carbon emissions. These factors include total population, the contribution share of GGDP to 
GDP, the proportion of non-fossil energy consumption, the value-added ratio of the secondary industry, 
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and foreign trade dependence. Subsequently, a CNN-LSTM forecasting model is constructed 
incorporating the aforementioned influencing factors to predict Guangdong Province's carbon 
emissions. This enables the prediction of both the timing and magnitude of Guangdong's carbon peak. 

2.3.1 Construction of the STIRPAT Model 

Within carbon peak accounting, researchers have developed various methodologies, including the 
Kaya identity, Long-range Energy Alternatives Planning System (LEAP), and mass balance approaches. 
The STIRPAT model—an analytical tool derived from the IPAT framework—enhances environmental 
impact assessment by incorporating stochasticity and error terms. Drawing on prior research[10,11,12] and 
Guangdong's specific context, this study selects five key variables: total population, GGDP 
contribution to GDP, non-fossil energy consumption share, secondary industry value-added ratio, and 
foreign trade dependence. These encompass socioeconomic development, economic status, and direct 
and indirect carbon emission drivers. We thus construct a regional STIRPAT forecasting model for 
carbon emissions. 

lnC = a + blnP + clnR + dlnJ + flnI + glnF + ε              (3) 

Where,𝑎𝑎 is the constant term;𝐶𝐶 denotes total carbon emissions;𝑃𝑃 represents total population;𝑅𝑅 
indicates the contribution share of GGDP to GDP;Ｊ signifies industrial structure, measured by the 
value-added ratio of the secondary industry;Ｉreflects energy structure, calculated as the proportion of 
non-fossil energy consumption;𝐹𝐹 represents foreign trade dependence, defined as the ratio of total 
annual import-export value to GDP;ｂ,ｃ,ｄ,ｆ,𝑔𝑔 is the logarithmic constant term. 

2.3.2 Construction of CNN-LSTM-based Carbon Emission Prediction Model 

This study employs TensorFlow to construct a hybrid CNN-LSTM neural network model. The CNN 
component first extracts features from high-dimensional data, while the LSTM module subsequently 
processes temporal sequences. Within this architecture, the CNN network handles feature extraction, 
and the LSTM model performs carbon emission forecasting. 

Convolutional Neural Networks (CNN) represent a deep learning architecture whose core structure 
comprises an input layer, multi-level feature extraction layers (a modular combination of convolutional 
and pooling layers), and an output layer. The feature extraction layers capture spatial features through 
convolutional operations and achieve dimensionality reduction while preserving critical information via 
pooling operations. This study utilizes two-dimensional convolution operations for processing 
high-dimensional data: 

Y(i, j) = f(∑ ∑ XN
n=1

M
m=1 (i + m − 1, j + n − 1) ⋅ K(m, n) + b)           (4) 

And apply the maximum pooling method in the pooling layer to reduce the data dimension: 

Y(i, j) = max
M

m=1
 max
N

n=1
X(i + m − 1, j + n − 1)               (5) 

Where,𝑌𝑌(𝑖𝑖, 𝑗𝑗) denotes the value of the output feature map at position (𝑖𝑖, 𝑗𝑗);𝑋𝑋(𝑖𝑖 + 𝑚𝑚− 1, 𝑗𝑗 + 𝑛𝑛 −
1) represents the value of the input data at position (𝑖𝑖 + 𝑚𝑚 − 1, 𝑗𝑗 + 𝑛𝑛 − 1);𝐾𝐾(𝑚𝑚,𝑛𝑛)indicates the weight 
value of the convolution kernel at position (𝑚𝑚,𝑛𝑛);𝑀𝑀 and 𝑁𝑁are the height and width of the convolution 
kernel, respectively;𝑓𝑓 stands for the activation function;𝑏𝑏 is the bias term. 

LSTM, an enhanced Recurrent Neural Network (RNN) introduced by Hochreiter & Schmidhuber 
(1997), mitigates short-term memory limitations in traditional RNNs through memory cells and 
a gating mechanism (forget/input/output gates). This architecture dynamically regulates temporal 
information flow, significantly enhancing long-range dependency capture. The key variables comprise 
the input 𝑥𝑥𝑡𝑡 , forget gate 𝑓𝑓𝑡𝑡 , input gate  𝑖𝑖𝑡𝑡, cell state 𝑐𝑐𝑡𝑡 , output gate 𝑜𝑜𝑡𝑡 and hidden state ht.The forget 
gate selects retention from ht − 1 and 𝑥𝑥𝑡𝑡: 

ft = σ(Wf ⋅ xt + Wf ⋅ ht−1 + bf)                   (6) 

Input gate outputs: update signal 𝑖𝑖𝑡𝑡, state candidate 𝑐̃𝑐𝑡𝑡: 

it = σ(Wi ⋅ xt + Wi ⋅ ht−1 + bi)                   (7) 

c�t = tanh(Wc ⋅ xt + Wc ⋅ ht−1 + bc)                 (8) 

Cell state update and output gating: 

ct = ft ⊗ ct−1 + it ⊗ c�t                     (9) 
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ot = σ(Wo ⋅ xt + Wo ⋅ ht−1 + bo)                   (10) 

The output of the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 model is: 

ht = ot ⊗ tanh(ct)                      (11) 

3. Analysis of Empirical Findings 

3.1 GGDP 

Guangdong's GGDP dynamics are presented in Table 4 

 Table: 4 Green GDP 2013-2023 

Year 2013 2014 2015 2016 2017 2018 
GGDP 57692.1 61949.8 68337.9 78338.6 87157.6 94845.8 
Year 2019 2020 2021 2022 2023  

GGDP 105786.8 109553.6 123023.3 127078.5 133868.7  

3.2 Carbon Emission Calculation Results 

Using the emission coefficient method, Guangdong's carbon emissions were calculated (Figure 1). 
Data from 2013-2023 indicate an overall upward trajectory from 493.09 Mt to 676.10 Mt, with 
significant interannual fluctuations. 

 
Figure 1: Carbon emissions and rate of change 

3.3 Analysis of Carbon Emission Drivers Using the STIRPAT Model 

The multivariate regression achieved R2 = 0.881, explaining 88.1% of carbon emission variance. 
Significant linear relationships were confirmed (F=7.375, p<0.05) among the five predictors. However, 
VIF values >100 in Table 5 indicate severe multicollinearity. 

Table 5: VIF values for each variable 

Variable VIF 
Total population 262.208 

GGDP contribution to GDP 15.033 
Industrial structure 56.023 
Energy structure 59.325 

Foreign trade degree 663.417 
Consequently, ridge regression was employed, introducing an L2-norm regularization term to the 

least squares framework, thereby mitigating multicollinearity interference among variables. 

Table 6: Ridge Regression Diagnostic Metrics 

K R2 F P 
0.149 0.936 5.642 0.023∗∗ 
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Table 6 demonstrates improved fit with L2 regularization. At 𝑘𝑘 = 0.149,𝑅𝑅² = 0.936 indicates 93.6% 
emission variance explained by five predictors.The model shows statistical significance (𝐹𝐹 =
5.642,𝑝𝑝 = 0.023 < 0.05), yielding the ridge regression equation: 

lnC = 0.91lnP + 0.165lnA − 0.316lnI − 0.226lnE − 0.079lnF − 3.372         (12) 

3.4 Multi-Scenario Carbon Emission Projections Using CNN-LSTM 

3.4.1 Parameter Determination and Scenario Analysis 

This study constructs a predictive model using the STIRPAT framework with five indicators: total 
population, GGDP-to-GDP ratio, non-fossil energy share, secondary industry value-added ratio, and 
trade openness. Three scenarios were established, drawing on recent research (2021–2025) on carbon 
peaking strategies for eastern China and multi-scenario national carbon emission pathways[13,14]: 
Baseline: Maintains historical change rates per Guangdong's 12th Five-Year Plan, ensuring 
socioeconomic stability; Low-Carbon: Imposes stringent carbon constraints, moderating indicator 
fluctuations while balancing development and ecological benefits; Optimized-Growth: Prioritizes 
economic expansion through accelerated change rates,minimizing administrative intervention to 
achieve short-term economic objectives. 

3.4.2 Prediction Model Calibration and Accuracy Evaluation 

The Mean Absolute Percentage Error (𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴), a standardized forecast accuracy metric, quantifies 
deviations between predicted and actual values. Selected for 𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  evaluation, its 
normalization of individual errors eliminates scale dependence. Lower MAPE indicates higher 
precision, computed as: 

MAPE = 1
n
∑ �yi−y�i

yi
�n

i=1 × 100%                     (13) 

Where,𝑦𝑦𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑦𝑦�𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. 

For LSTM model training, 2013–2023 data were partitioned 80%-20% into training and validation 
sets. The resulting MAPE of 2.765% demonstrates high predictive accuracy in capturing carbon 
emission trends. 

3.4.3 Multi-scenario carbon emission Forecast for Guangdong Province from 2024 to 2035 

The carbon emission model, parametrized with five key drivers under baseline, low-carbon, and 
optimized-growth scenarios, projects China's emissions for 2024–2033. Outcomes are shown in Figure 
2. 

 
Figure 2: Carbon emission Trends in Three Scenarios 

Under three scenarios, emissions peak in 2028 at 687.8 Mt (baseline), 2027 at 685.9 Mt 
(low-carbon), and 2026 at 683.2 Mt (optimized-growth). Evidently, enhanced mitigation efforts 
progressively advance peak timing and reduce emission magnitudes, validating policy adjustments' 
critical role in low-carbon transitions. 
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3.4.4 Forecast Comparison: Traditional and GGDP-Augmented Specifications 

Figure 3reveals significant divergences among actual emissions, conventional model projections, 
and GGDP-augmented model predictions during 2013–2023. The conventional model exhibits 
substantial post-2020 deviations, whereas the GGDP-augmented trajectory demonstrates superior 
alignment with empirical data, statistically outperforming the benchmark model. 

 
Figure 3: GGDP and GDP Carbon Emission Prediction 

4. Conclusion 

This study pioneers the integration of Green GDP (GGDP) into carbon peak forecasting for 
Guangdong Province. Utilizing the SEEA framework and emission coefficient method, we quantified 
GGDP and carbon emissions from 2013–2023. Key drivers—population, GGDP contribution ratio, 
industrial structure, and energy mix—were identified through the STIRPAT model, with multi-scenario 
projections conducted via a CNN-LSTM hybrid model. Results demonstrate that GGDP-driven green 
transition policies significantly accelerate carbon peaking: occurring in 2028 (baseline), 2027 
(low-carbon), and 2026 (optimized-growth) scenarios. Our findings delineate distinct development 
pathways' impacts on peak timing and magnitude, highlighting green policy's critical role in 
low-carbon development while providing theoretical foundations for regional/national decarbonization. 

Notwithstanding these contributions, limitations persist. Data constraints, particularly granular 
GGDP accounting metrics, may have compromised precision. Moreover, Guangdong-focused analysis 
necessitates further validation for broader regional applicability. 
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