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Abstract: Soil salinization in Northwest China, caused by its arid climate, high evaporation, and 
inappropriate irrigation methods, is a severe environmental issue affecting resources and the ecosystem. 
The study area is the Anjihai Irrigation District in Northwest China, where regression analysis was 
applied to soil salinity data and Landsat TM/ETM+ imagery, with the multi-year average vegetation 
index as the independent variable, to model the spatial distribution of soil salinity. The results indicate 
that the best correlation between soil salinity and vegetation index occurs in the 30–60 cm soil layer. 
Using the multi-year average vegetation index as a covariate significantly improves the accuracy of soil 
salinity remote sensing inversion in the study area. The soil in the region is primarily non-salinized and 
lightly to moderately salinized, with salinized soils mainly distributed in the northwestern, central, and 
eastern parts of the study area. This study provides valuable insights into the spatial distribution of soil 
salinity in the Anjihai Irrigation District. It demonstrates the potential of using vegetation indices to 
improve remote sensing inversion accuracy for soil salinity assessment. 
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1. Introduction 

Soil salinization is a serious global issue that affects resources and the ecological environment, 
primarily occurring in arid and semi-arid regions with low precipitation, high evaporation, high 
groundwater levels, and high concentrations of soluble salts[1]. Northwest China, located in the northwest 
inland of China, has a temperate continental climate characterized by low annual precipitation and high 
evaporation[2]. Harsh natural conditions and inappropriate agricultural irrigation methods have led to a 
severe soil salinization problem in Northwest China[3]. 

Traditional methods for monitoring and evaluating soil salinization mainly involve field sampling 
combined with laboratory analysis of physical and chemical properties to assess the degree of salinization 
in a given area[4]. However, this method is time-consuming and labor-intensive, and it cannot meet the 
demands for large-scale, rapid, and dynamic monitoring and evaluation of salinization. Remote sensing, 
with its large scale, wide coverage, and high timeliness, provides a more efficient, cost-effective, and 
faster means for monitoring soil salinization[5]. Currently, remote sensing monitoring of soil salinization 
typically uses annual remote sensing data and crop covariates to invert soil salinity. However, recent 
studies have shown that using only single-year remote sensing data for soil salinity inversion increases 
the risk of obtaining erroneous conclusions. Using multi-year average data as the dependent variable in 
model construction can yield more accurate and objective results. 

This study, building on previous research, takes the Anjihai irrigation district in the Manas River 
Basin as an example. It uses seven years of Landsat TM/ETM+ remote sensing data, global soil data, and 
measured soil salinity data, employing regression analysis to construct an inversion model for 
quantitatively remote sensing soil salinity in the study area. This aims to provide scientific evidence for 
the sustainable development of oasis agriculture. 
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2. Materials and Methods 

2.1 Overview of the Study Area 

The Manas River Basin is located in the central section of the northern Tianshan Mountains in the 
Northwest region of China , in the heart of the Eurasian continent. To the north, it borders the 
Gurbantunggut Desert, while the southern part is mountainous[6]. The oasis area within the basin is 
composed of alluvial fans, spring overflow zones, alluvial plains, deltas, and lakefront plains. The study 
area, the Anjihai Irrigation District, is located in the western part of the middle section of the Manas 
River Basin. It lies in the saline-alkali accumulation zone on the edge of the alluvial fan in the Manas 
River Basin, with geographic coordinates ranging from 85°10′E to 85°37′E and from 44°20′N to 44°40′N. 
The average altitude is between 300 and 500 meters. The climate is a typical temperate continental 
climate, with an average annual temperature of 5-7°C, a frost-free period of 147-191 days, annual 
precipitation of 110-200 mm, and annual evaporation of 1500-2000 mm. Major crops cultivated in the 
area include cotton, corn, and vegetables such as peppers and onions. 

2.2 Soil Sample Collection and Chemical Analysis 

Soil samples were collected in July 2017. Sampling points were arranged based on local geological 
structure, topography, land use, and other conditions, with a sampling interval of 2-3 km. Samples were 
taken at three depths: 0-30 cm, 30-60 cm, and 60-100 cm, resulting in a total of 49 soil samples. The soil 
samples were brought back to the laboratory, naturally air-dried, ground, and passed through a 20-mesh 
sieve. A 1:5 soil-to-water ratio extraction solution was prepared, and the total salt content was determined 
using the drying residue method. 

2.3 Remote Sensing Data Acquisition and Processing 

The remote sensing imagery used in this study includes seven years of Landsat TM/ETM+ data from 
2014 to 2020. The imaging period was from June to September each year, during which the study area 
in the Manas River Basin experiences summer and autumn. During this period, vegetation growth is lush, 
making it more favorable for vegetation index extraction. 

2.4 Soil Property Data Acquisition and Processing 

Soil property data were obtained from the Harmonized World Soil Database (version 1.1) provided 
by the Food and Agriculture Organization (FAO) of the United Nations. For data within China, the source 
was the second national land survey, with soil data provided by the Nanjing Soil Institute at a 1:1,000,000 
scale. 

2.5 Selection and Construction of Vegetation Indices 

Using vegetation indices to indirectly infer soil salinity is an effective method[7]. Based on previous 
research, this study selected and constructed four vegetation indices. These indices were then correlated 
with measured soil salinity at three different soil depths. The most sensitive vegetation index to soil 
salinity was selected for model construction. The formulas for calculating the vegetation indices are 
shown in Table 1. 

Table 1 Calculation formula of vegetation index required for the study 

Vegetation Index Formula 
Normalized Difference Vegetation Index (NDVI) NDVI=(NIR−R)

(NIR+R)
 

Canopy-Scaled Vegetation Index (CRSI) CRSI=�𝑁𝑁𝑁𝑁𝑁𝑁×𝑅𝑅−𝐺𝐺×𝐵𝐵
𝑁𝑁𝑁𝑁𝑁𝑁×𝑅𝑅+𝐺𝐺×𝐵𝐵

 

Ratio Vegetation Index (RVI) RVI=𝑁𝑁𝑁𝑁𝑁𝑁
𝑅𝑅

 
Difference Vegetation Index (DVI) DVI=NIR − R 

Note: Landsat TM/ETM+ sensor bands: band 1 = blue (B); band 2 = green (G); band 3 = red (R); band 4 
= near-infrared (NIR) 



Academic Journal of Agriculture & Life Sciences 
ISSN 2616-5910 Vol. 6, Issue 1: 17-24, DOI: 10.25236/AJALS.2025.060103 

Published by Francis Academic Press, UK 
-19- 

2.6 Selection and Construction of Vegetation Indices 

In this study, cross-validation is used for model construction and optimization. Random numbers were 
generated and sorted for the 49 sampling points in Excel, dividing the points into 7 groups, each 
containing 7 samples. One group of samples is selected as the validation set (Validation Data), while the 
remaining 6 groups are used as the training set (Train Data). The model is then constructed sequentially 
using each of the 7 training sets, and the average R2 of the 7 models is used as the evaluation criterion to 
optimize the model selection. Afterward, the validation set is used to test the models, and the Root Mean 
Square Error (RMSE) and Mean Absolute Error (MAE) are calculated for each model. This process 
results in 7 sets of error values, and the average of these values is taken as the model's prediction error. 
This value is then used to assess the performance of the model. 

 
MAE =

1
𝑛𝑛
��𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗� (1) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑�𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗�
2

𝑛𝑛
 (2) 

In the formula, yi represents the measured soil salinity, and yj represents the predicted soil salinity. A 
smaller RMSE indicates less fluctuation in the salinity error, suggesting better inversion results. Similarly, 
a smaller MAE means the absolute error between the actual and predicted salinity values is smaller, 
indicating better inversion performance. 

After optimization, the best model is selected, and then all 49 sampling points are used as the training 
set to train the model. This results in the final function for soil salinity inversion, which is applied to the 
study area. 

2.7 Soil salinity classification 

Soil salinity inversion is carried out based on the optimal inversion model. The salinity levels are then 
classified according to the "Northwest China Soil" standards (see Table 2). 

Table 2: Soil salinity classification standard 

Level Non-
Salinized 

Slightly 
Salinized 

Moderately 
Salinized 

Heavily 
Salinized 

Salt 
Soil 

Salt Content 
(g/kg) <3 3~6 6~10 10~20 >20 

3. Results and Discussion 

3.1 Correlation analysis between soil salinity and vegetation index 

The five vegetation indices obtained for each year were analyzed for their correlation with soil salinity 
at three depths: 0-30 cm, 30-60 cm, and 60-100 cm (Figure 1). The results show that the correlation 
between soil salinity in the 0-30 cm layer and the vegetation indices is generally low, which does not 
meet the modeling requirements. However, the correlation between soil salinity at depths of 30-60 cm 
and 60-100 cm with the vegetation indices is relatively better. Overall, the 30-60 cm soil layer exhibits 
the strongest correlation with the vegetation indices, suggesting that the middle soil layer in the study 
area is more sensitive to changes in vegetation indices. 

NDVI, CRSI, RVI, and DVI all show negative correlations with soil salinity. Among these, NDVI 
and CRSI exhibit a stronger sensitivity to soil salinity compared to the other indices. 

The correlation between soil salinity at varying depths and vegetation indices exhibits significant 
interannual variability, primarily due to the influence of numerous factors such as soil salinity, 
precipitation, temperature, and biotic stressors (e.g., pests and diseases). These factors impact vegetation 
growth differently each year, resulting in fluctuating responses of vegetation indices to soil salinity. 

Research suggests that using single-year remote sensing data for soil salinity inversion increases the 
likelihood of erroneous conclusions[8, 9]. In contrast, employing multi-year averages as the dependent 



Academic Journal of Agriculture & Life Sciences 
ISSN 2616-5910 Vol. 6, Issue 1: 17-24, DOI: 10.25236/AJALS.2025.060103 

Published by Francis Academic Press, UK 
-20- 

variable in model construction leads to more reliable and objective results. This is because salinity 
conditions tend to stabilize over several years, and averaging vegetation indices over time mitigates the 
influence of transient factors, thereby more accurately reflecting the relationship between vegetation and 
soil salinity[10]. 

 
Figure 1: Correlation between soil salinity at different depths and vegetation index. (a) surface soil; (b) 

middle soil; (c) deep soil. 

In this study, the multi-year average vegetation index was computed, and a correlation analysis was 
conducted between this average and soil salinity. The results demonstrate that the multi-year average 
vegetation index shows a stronger and more consistent correlation with soil salinity at various depths 
compared to single-year data. As a result, NDVI was selected as the key vegetation index for constructing 
the soil salinity inversion model for the two soil layers in the study area. 

3.2 Inversion model construction 

Through correlation analysis, it was found that the correlation between surface soil salinity and 
vegetation index was poor, with the maximum determination coefficient being only 0.1937. Therefore, 
this paper only inverted the soil salinity in the middle and lower layers. 

3.2.1 Inversion model construction 

Table 3 presents four models constructed from seven different modeling datasets. Except for 
Modeling Set 3, the R² values for the other six sets are all greater than 0.48, indicating good model fit 
and statistical significance. However, it is also evident that the models constructed from different datasets 
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exhibit substantial differences. Taking the binary linear model as an example, the model constructed from 
Modeling Set 5 has an R2 of 0.704, while the model from Modeling Set 3 only has an R² of 0.409, 
showing a considerable discrepancy. This suggests that there is some randomness in the sample selection 
process. Therefore, to objectively evaluate the predictive capability of the models, it is necessary to use 
multiple sets of modeling and testing datasets for a more comprehensive assessment. In this study, the 
mean R² value across the seven sets of models is chosen for comparison, allowing for an initial selection 
of the most suitable model. 

The mean R2 values of the four models are calculated and presented in Table 4. Among the four 
models, the binary linear model has the best fit, with an R2 of 0.595. However, as shown in Table 4, the 
F-value of the logarithmic model is higher than that of the binary linear model, indicating that the 
logarithmic model is more statistically significant. To obtain an accurate and reasonable model, it is 
necessary to conduct precision validation by performing regression analysis between the predicted and 
observed values. The evaluation criteria, including R², RMSE, and MAE, will be used to identify the 
optimal model. 

Table 3: Middle layer soil salinity inversion model 

Modeling set Model R2 F-value Significance 

M1 

Y=-12.705NDVI+2.025ln(sand)+2.388 0.607 30.17 P<0.01 
Y=-4.73ln(NDVI)-0.244 0.571 53.32 P<0.01 
Y=-13.221NDVI+9.933 0.553 49.543 P<0.01 
Y=12.28e-3.052NDVI 0.530 45.127 P<0.01 

M2 

Y=-13.202NDVI+1.744ln(sand)+3.709 0.593 28.444 P<0.01 
Y=-4.788ln(NDVI)-0.142 0.571 53.242 P<0.01 
Y=-13.755NDVI+10.29 0.554 49.772 P<0.01 
Y=12.722e-3.03NDVI 0.512 42.029 P<0.01 

M3 

Y=-11.014NDVI+1.205ln(sand)+4.281 0.409 13.52 P<0.01 
Y=-4.066ln(NDVI)+0.083 0.404 27.109 P<0.01 
Y=-10.77NDVI+8.491 0.386 25.186 P<0.01 
Y=9.607e-2.655NDVI 0.354 21.959 P<0.01 

M4 

Y=-12.955NDVI+1.909ln(sand)+2.864 0.649 36.069 P<0.01 
Y=-4.8ln(NDVI)-0.374 0.633 69.071 P<0.01 
Y=-13.453NDVI+10.004 0.601 60.303 P<0.01 
Y=12.331e-3.115NDVI 0.551 49.146 P<0.01 

M5 

Y=-15.562NDVI+0.738ln(sand)+8.404 0.704 46.314 P<0.01 
Y=-5.423ln(NDVI)-0.75 0.695 91.094 P<0.01 
Y=-15.929NDVI+11.269 0.700 93.38 P<0.01 
Y=16.527e-3.692NDVI 0.669 80.748 P<0.01 

M6 

Y=-13.413NDVI+2.094ln(sand)+2.305 0.588 27.776 P<0.01 
Y=-5.257ln(NDVI)-0.719 0.580 55.257 P<0.01 
Y=-14.037NDVI+10.205 0.530 45.098 P<0.01 
Y=12.842e-3.23NDVI 0.488 38.192 P<0.01 

M7 

Y=-13.696NDVI+2.048ln(sand)+2.759 0.613 30.943 P<0.01 
Y=-4.915ln(NDVI)-0.291 0.583 55.837 P<0.01 
Y=-14.275NDVI+10.542 0.578 54.760 P<0.01 
Y=13.266e-3.209NDVI 0.513 42.058 P<0.01 

Table 4: Middle layer soil salinity inversion model 

Model Average R2 
Binary Linear Model 0.595 
Logarithmic Model 0.577 

Simple Linear Model 0.557 
Exponential Model 0.517 

3.2.2 Construction of deep soil salinity inversion model 

Table 5 shows three deep inversion models constructed by seven modeling sets. Except for modeling 
sets 3 and 6, the determination coefficients R2 of the other five models are all higher than 0.4, and the 
model fit is good. 
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Table 5: Deep soil salinity inversion model 

Modeling set Model R2 F-value Significance 
M1 Y=-10.384NDVI+8.566 0.414 28.262 P<0.01 

Y=-3.653ln(NDVI)+0.625 0.413 28.190 P<0.01 
Y=9.667e-2.489NDVI 0.401 26.811 P<0.01 

M2 Y=-10.529NDVI+8.651 0.437 31.069 P<0.01 
Y=-3.583ln(NDVI)+0.736 0.430 30.224 P<0.01 
Y=9.941e-2.472NDVI 0.441 31.581 P<0.01 

M3 Y=-9.439NDVI+7.993 0.354 21.919 P<0.01 
Y=-3.667ln(NDVI)+0.546 0.392 25.768 P<0.01 
Y=8.67e-2.284NDVI 0.298 16.948 P<0.01 

M4 Y=-9.939NDVI+8.140 0.475 36.250 P<0.01 
Y=-3.549NDVI+0.471 0.501 40.223 P<0.01 
Y=8.91e-2.407NDVI 0.449 32.591 P<0.01 

M5 Y=-11.297NDVI+9.12 0.470 35.403 P<0.01 
Y=-3.785ln(NDVI)+0.647 0.451 32.909 P<0.01 
Y=11.022e-2.683NDVI 0.452 32.985 P<0.01 

M6 Y=-9.598NDVI+8.044 0.341 20.703 P<0.01 
Y=-3.387ln(NDVI)+0.747 0.331 19.821 P<0.01 
Y=9.001e-2.394NDVI 0.345 21.051 P<0.01 

M7 Y=-10.363NDVI+8.599 0.423 29.332 P<0.01 
Y=-3.537ln(NDVI)+0.762 0.419 28.844 P<0.01 
Y=9.753e-2.46NDVI 0.415 28.333 P<0.01 

The average R2 of the three models was calculated, as shown in Table 6. The univariate linear model 
and the logarithmic model have a better fit, but in order to obtain an accurate and reasonable model, the 
model accuracy needs to be verified and evaluated based on R2, RMSE, and MAE to select the optimal 
model. 

Table 6: Deep layer soil salinity inversion model 

Model Average R2 
Simple Linear Model 0.416 
Logarithmic Model 0.420 
Exponential Model 0.400 

3.3 Model accuracy verification and optimization 

The validation set was used to verify the binary linear model and univariate logarithmic model of soil 
salinity in the middle and lower layers. It was found that the univariate logarithmic model had higher 
inversion accuracy, so this paper selected the univariate logarithmic model as the inversion model of soil 
salinity in the middle and lower layers. The full set was used as the training set for training, and the 
middle layer soil salinity model Y=-4.902ln(NDVI)-0.379, R2 was 0.577, and the lower layer soil salinity 
model Y=-3.601ln(NDVI)+0.641, R2 was 0.482. 

3.4 Soil salinity remote sensing inversion 

Based on the optimal inversion model, remote sensing inversion of soil salinity in the middle and 
deep layers of the study area was carried out, and the inversion map of soil salinity in the middle and 
deep layers of the Anjihai irrigation area was obtained (Figure 2). 

 
Figure 2: Soil salinity distribution map of the Anjihai irrigation area 
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As shown in Figure 2 and Table 7, the two layers of soil in the study area are mainly non-salinized 
and light-to-moderately salinized, with less severely salinized soil.  

Table 7: Statistics of soil salinity in Anjihai Irrigation Area 

Salinity Level Middle soil Deep soil 
Pixel Count Percentage Pixel Count Percentage 

Non-salinized (<3 g/kg) 413843 42.05% 394770 40.11% 
Lightly Salinized (3~6 g/kg) 237411 24.12% 315568 32.07% 
Moderately Salinized (6~10 

g/kg) 235284 23.91% 253819 25.79% 

Heavily Salinized (10~20 
g/kg) 97163 9.87% 19845 2.02% 

Saline Soil (>20 g/kg) 439 0.04% 138 0.01% 

In terms of spatial distribution, salinized soil is mainly distributed in the northwest, central, and 
eastern parts of the irrigation area, and the soil salt content in most areas of the south and north is low. In 
summary, the threat of soil salinization is prevalent in the study area, and soil salinization prevention and 
control should be strengthened, and irrigation, planting, and reclamation should be carried out reasonably 
to prevent the aggravation of soil salinization. 

4. Conclusion 

This study conducted a correlation analysis between three layers of measured soil salinity data and 
four vegetation indices—NDVI, CRSI, RVI, and DVI—constructed from multi-year Landsat data. The 
results showed that, except for the surface soil layer, there is a high correlation between soil salinity in 
the middle and deep layers and the vegetation indices. Further analysis revealed that using the multi-year 
average of vegetation indices as a covariate significantly improves the accuracy of soil salinity remote 
sensing inversion in the study area. 

The soil in the study area is primarily non-salinized and lightly to moderately salinized, with heavily 
salinized soils being relatively rare. In terms of spatial distribution, salinized soils are mainly found in 
the northwestern, central, and eastern parts of the irrigation area, while most regions in the south and 
north have low soil salinity levels. 
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