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Abstract: Large language models (LLMs) face two major obstacles in integrating external tools defined 
by the evolving Model Context Protocol (MCP): prompt redundancy and the complexity of tool selection. 
To overcome these limitations, we introduce GraphRAG-MCP, a framework that reimagines tool 
discovery as a graph-based retrieval task. By representing the MCP tool repository as a semantic graph 
and leveraging graph neural networks to capture dynamic relations among tool nodes, GraphRAG-MCP 
enables efficient and context-aware tool selection. Upon receiving a query, the system retrieves the most 
relevant MCP subgraphs via graph embeddings and injects only compact representations into the LLM 
prompt. Compared to standard vector-based retrieval, this approach reduces prompt token usage by 62% 
and improves tool selection accuracy to 51.8%. These results underscore the promise of graph-structured 
knowledge representations in enabling scalable and precise tool integration for LLMs. 
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1. Introduction 

Large Language Models (LLM) have demonstrated remarkable performance in tasks such as dialogue, 
reasoning, and code generation. However, their static parameter knowledge and limited context window 
inherently confine them to the knowledge base from which they were trained, making it challenging to 
dynamically update information or effectively utilize external tools[3][5][10]. To overcome this limitation, 
researchers have been exploring the integration of external tools to expand the capabilities of LLMs. 
However, with the rapid expansion of the tool ecosystem, traditional methods face significant challenges: 
simply listing all tool descriptions quickly exhausts valuable context space, and the abundance of 
functionally similar APIs increases the likelihood of incorrect calls[11].  

The GraphRAG-MCP framework proposed in this paper provides an innovative solution to this 
problem. The framework models the entire MCP tool ecosystem as a dynamic graph, leveraging graph-
based indexing tools[2]. Specifically, it abstracts tools as nodes and uses edges to precisely capture 
functional dependencies, input/output compatibility, and other relationships between tools. When a user 
makes a query, the system does not directly list all tools but instead performs intelligent multi-hop 
retrieval in the graph topology space using graph neural networks to dynamically locate the tool subgraph 
most aligned with the task semantics. Only the feature information of this critical subgraph is injected 
into the LLM's context window.  

This graph-driven precise localization mechanism significantly outperforms traditional methods. 
Experiments demonstrate that when faced with a massive tool repository, GraphRAG-MCP reduces 
prompt information by 62% and improves tool selection accuracy to 51.8%, significantly higher than the 
43.13% achieved by vector retrieval-enhanced generation (RAG) methods. It effectively avoids the 
inefficient “needle in a haystack” screening in traditional function calls. More importantly, by explicitly 
modeling the relationships between tools, it endows LLMs with the ability to plan and execute complex 
multi-tool collaboration processes. Although current mainstream AI platforms support plug-in tools, their 
underlying mechanisms mostly rely on flattened vector retrieval or manual rules. The graph structure 
paradigm of GraphRAG-MCP, along with its dynamic subgraph injection and relationship-aware 
reasoning capabilities, points the way toward the next generation of LLM agents that can efficiently 
navigate open tool ecosystems, transitioning from passively invoking single tools to actively planning 
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collaborative workflows.  

2. Related work 

2.1 Use of tools in LLM 

Large language models (LLMs) have been augmented with external tools to address inherent 
limitations in arithmetic reasoning, information retrieval, and code execution[5][6]. Toolformer introduces 
a self-supervised approach that enables models to autonomously learn when and how to invoke external 
APIs—such as calculators or search engines—thereby enhancing zero-shot performance across diverse 
tasks[11]. ReAct integrates chain-of-thought reasoning with executable actions, allowing the model to 
interact dynamically with external environments and generate more interpretable, step-wise solutions. 
WebGPT fine-tunes GPT-3 within a simulated browser setting, training the model to search, navigate, 
and cite reliable sources for long-form question answering, effectively mitigating hallucinations through 
evidence-grounded retrieval[3][8]. 

2.2 Enhanced image retrieval generation 

Retrieval-Augmented Generation (RAG) introduces a paradigm shift by decoupling memory access 
from text generation, coupling parameterized large language models with non-parameterized vector 
indices to support knowledge-intensive tasks. Building upon this foundation, GraphRAG-MCP advances 
the architecture by transforming conventional dense vector indices into dynamic, multi-relational 
semantic graphs. In this framework, MCP tools are represented as heterogeneous nodes enriched with 
functional attributes, protocol constraints, and historical interaction metadata. The graph structure is 
further refined through the incorporation of functional collaboration edges and protocol competition 
edges, yielding a dynamic topological network that captures complex tool interdependencies[2][3]. 

2.3 Model Context Protocol 

The Model Context Protocol (MCP) standardizes interactions between large language models and 
external APIs by encapsulating resource hints, authentication credentials, and parameter schemas within 
a modular MCP server. Functionally analogous to OpenAI’s function call API, the MCP serves as an 
extensible interface for function invocation, offering broader community adaptability and integration 
flexibility[1]. The rapid expansion of the MCP tool repository underscores an urgent need for scalable 
mechanisms for tool discovery, selection, and validation[4][7].  

3. Methods 

This study identifies a strong positive correlation between the topological density of tool nodes—
reflected in an increase in average node degree from 2.7 to 15.4—and the decision-making performance 
of large language models, as revealed through the construction of a dynamic relationship graph among 
MCP servers. To harness this structural insight, the GraphRAG-MCP framework is introduced, 
reimagining traditional MCP retrieval as a multi-hop routing problem in graph space. During query 
processing, the system employs graph embedding propagation algorithms to identify an optimal subgraph 
within a dynamically load-aware topology, effectively reducing the candidate node set to 18% of its 
original size. Graph attention mechanisms are then applied to synthesize protocol-constrained contextual 
prompts, ensuring both relevance and compliance in downstream tool invocation. 

3.1 Graph-structured stress test 

In order to rigorously assess the challenges of effective selection in large and interconnected toolkits 
(MCPs), this paper designs and implements a graph-structured stress test. This test extends the "haystack" 
paradigm of RAG-MCP, which prioritizes the number of tools (N) and semantic similarity, by 
incorporating the complexity of inter-tool relationships as a pivotal variable. The underlying assumption 
of this paper is that, in practical scenarios, tools do not function in isolation but rather form a complex 
dependency graph through relationships such as call dependencies (e.g., The output of tool A is the input 
of tool B. Functional exclusions are indicated when tools C and D cannot be used simultaneously for the 
same task. Synergistic combinations are demonstrated when tools A and B are used together. It is 
noteworthy that tools E and F are frequently designated as a pair.As the number of tools N and the number 
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of relationship edges E in the graph increase, the difficulty for LLMs to accurately identify and coordinate 
the required tool chains from prompts containing all tool descriptions and relationship constraints will 
sharply increase, i.e., The present study confronts the challenge of "Graph-Structured Prompt Bloat 
(GSST)." 

In GSST, this paper methodically augments N (the number of tool nodes) and E (the number of 
relationship edges, simulating varying graph densities), and generates test scenarios for each (N, E) 
configuration. These scenarios include a "golden toolchain," defined as the correct sequence of tools and 
their relationships, and a multitude of interfering tools with random relationships, as illustrated in Figure 
1. 

 

Figure 1: GSST Results Heatmap (Toolchain Recognition Accu-racy). 

The tasks of LLM are: 

1) Identify the subset of tools required for the task; 

2) Understand and comply with the dependencies or constraints between tools; 

3) Generate the correct call sequence. 

This paper measures the changes in toolchain accuracy, constraint adherence rate, and average prompt 
token length as (N, E) increases. 

3.2 Flow chart 

The overall workflow of GraphRAG-MCP is shown in Figure 2: 

 
Figure 2: GraphRAG-MCP flowchart 
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1) Input: The user submits a natural language task query. 

2) Graph Neural Retriever (GNN Retriever): 

 Query Encoding: Encodes the user query into a vector Q. 

 Graph Injection & Propagation: Inject Q into the MCP knowledge graph. GNN performs message 
passing on the graph to update node representations H_v, integrating graph structure information and 
query semantics. 

 Relevance Scoring: Calculate the similarity score S_v between each node v's representation H_v 
and Q. 

 Subgraph Extraction: Select the top-K core nodes based on S_v and expand to obtain relevant 
neighbor nodes based on graph relationships to form a task-relevant subgraph. 

3) Subgraph Serialization: Convert the node (tool) metadata and edge (relationship) information of 
the subgraph into a structured text description. 

4) LLM Prompt Construction: Construct the final prompt by using the serialized subgraph description 
as context and combining it with the user's original query. 

5) LLM Reasoning & Output: The LLM generates a tool invocation plan based on the context 
enriched with relationship information, executes the invocation, and returns the final results to the user. 

3.3 Framework design 

This paper proposes the GraphRAG-MCP framework to effectively address the challenges posed by 
graph-structured prompt expansion and complex relationships between tools. The core idea is to model 
the large MCP toolset and its relationships as a knowledge graph (KG) and use a graph neural network 
(GNN)-driven retrieval mechanism to dynamically extract the most relevant tool subgraphs at runtime 
based on user queries. This significantly compresses prompts and simplifies the decision logic of large 
language models (LLMs) by extracting more than single tools or simple lists. The framework consists of 
the following key components: 

1) MCP Knowledge Graph Construction (MCP-KG Construction): Abstract all registered MCP tools 
into nodes in the graph. Each node contains metadata, such as the tool name, functional description, 
input/output patterns, and so on (similar to the content of the RAG-MCP index). The key innovation lies 
in defining and extracting relationship edges. Based on tool documentation, historical call logs, or 
predefined rules, edges are established to represent semantic relationships between tools. These 
relationships include dependencies (depends_on), mutual exclusions (mutually_exclusive_with), and 
commonly used combinations (commonly_combined_with). 

2) Graph Neural Retriever (GNN-based Retriever): This is the core engine of GraphRAG-MCP. User 
queries are first encoded into a query vector. This vector is "injected" into the pre-built MCP-KG. A 
lightweight GNN model then performs multiple rounds of message passing on the KG. First, each tool 
node updates its representation based on its own features, the features of its neighboring nodes, and the 
type/weight of the connecting edges. Second, the query relevance is propagated. The query vector's 
semantic information is propagated through the graph structure, affecting the activation state of relevant 
nodes. Finally, each node obtains a graph-context-aware representation vector and an association score 
with the query. 

3) Relevant subgraph extraction: The top K most relevant tool nodes are selected based on their 
association scores. More importantly, the retriever automatically includes neighboring tool nodes that are 
directly connected (one- or two-hop) and closely related (e.g., strong dependencies or frequent use in 
combination) to these core nodes, based on the relationship edges in the graph. This forms a coherent, 
task-relevant subgraph. This subgraph contains the core tools needed to perform the task and their 
potential collaborative or constrained partners. 

4) Subgraph validation and compression: Lightweight validation is performed on the extracted 
subgraphs to check if critical dependencies are satisfied and if there are conflicting constraints. Then, the 
nodes and edges in the subgraph are serialized into a concise, structured format. 

5) LLM Execution & Reasoning: Only inject the serialized, task-relevant subgraph description into 
the LLM prompt. The LLM will then perform task planning, tool selection, and sequence generation 
based on this concise, relationship-rich context. The presence of relationship information significantly 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 7: 95-104, DOI: 10.25236/AJCIS.2025.080712 

Published by Francis Academic Press, UK 
-99- 

reduces the risk of violating tool constraints. 

3.4 Discussion 

The following text is intended to provide a comprehensive overview of the subject matter. 

The fundamental design of GraphRAG-MCP entails the explicit modeling of intricate relationships 
between tools through graph structures, along with the attainment of context reduction by means of 
semantic understanding through GNN-driven retrieval. A comparison of the two approaches reveals 
several notable advantages of the former over the latter. 

In addition to semantic similarity, the consideration of functional dependencies is imperative. RAG-
MCP's vector retrieval is predicated on the semantic congruence between tool descriptions and queries. 
GraphRAG-MCP's GNN retrieval process represents a significant advancement in this field. During 
graph propagation, a tool node with a high degree of relevance "activates" its dependent or collaborative 
tool nodes, even if the latter's descriptions exhibit a low direct semantic match with the query. This 
approach is more aligned with the real-world necessity for toolchain collaboration[12]. 

Secondly, explicit modeling of constraints has been demonstrated to reduce execution risks. By 
incorporating constraints, such as mutual exclusivity, into the graph and the subgraph descriptions of the 
final prompt, LLMs can directly recognize these constraints during planning. This results in a significant 
reduction of the risk of selecting conflicting tools or violating the call order. Attaining this objective with 
RAG-MCP based solely on semantic retrieval is challenging. 

Thirdly, the context compression ratio has been optimized. While subgraphs may contain slightly 
more nodes than the Top-K list in RAG-MCP, their high relevance and structure result in an extremely 
high "signal-to-noise ratio." Large language models (LLMs) have been shown to exhibit an enhanced 
capacity for focusing on and comprehending this coherent small world.GSST results are anticipated to 
demonstrate that in scenarios where relationship complexity (E) is elevated, GraphRAG-MCP can exert 
a more efficacious control over prompt expansion in comparison to RAG-MCP, while concurrently 
preserving or even enhancing accuracy (notably with regard to constraint compliance rate). 

Fourthly, the provision of support for complex workflows is imperative. The extracted subgraphs 
inherently suggest the potential for tool combinations. LLM employs the existing dependencies and 
combination relationships in the graph to facilitate the generation of multi-step workflow invocation 
plans. 

4. Experiment 

4.1 Experimental setup and benchmark testing 

In order to provide a comprehensive evaluation of the performance advantages of the GraphRAG-
MCP framework, this paper has designed a rigorous experimental plan and constructed the 
MCPGraphBench dataset. This dataset contains more than 4,500 MCP tools covering 12 different fields, 
including data retrieval, text processing, image generation, and scientific computing. Each tool is 
annotated with detailed metadata (functional descriptions, input/output patterns) and relationships with 
other tools (dependencies, mutual exclusions, synergistic combinations), forming a knowledge graph 
with over 38,700 relationship edges, whose density distribution is shown in Figure 3. The present paper 
employs a hierarchical sampling method to construct an evaluation set of 1,200 test tasks, ranging from 
simple queries (single-tool requirements) to complex workflows (multi-tool chained invocations), with 
40% of the tasks containing explicit tool-to-tool constraints. A series of experiments were conducted 
using Qwen-max-0125 as the base LLM, with five methods compared:  

(1) Blank Conditioning: in which all tool descriptions were input into the LLM simultaneously;  

(2) Keyword Match: a pre-filtering of tools based on keyword matching; 

(3) RAG-MCP: a top-k tool selection based on vector retrieval;  

(4) GraphRAG-MCP (w/o GNN): a simplified version using graph structures but without GNN;  

(5) GraphRAG-MCP (Full): the complete framework. The evaluation metrics encompass a range of 
parameters, including toolchain identification accuracy (TCA), constraint adherence rate (CAR), average 
prompt length (APL), task success rate (TSR), and average response latency (ARL). 
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Figure 3: MCPGraphBench Tool Relationship Density Distribution Heatmap 

4.2 Experimental results and performance comparison 

The experimental results demonstrate that GraphRAG-MCP exhibits significant advantages in 
complex tool selection scenarios. As demonstrated in Figure 4, on a standard test set of 500 tools, the 
complete framework attained a toolchain recognition accuracy of 68.42%, which is 58.6% higher than 
that of RAG-MCP (43.13%) and significantly exceeds that of Blank Conditioning (13.62%).In terms of 
constraint compliance rate, GraphRAG-MCP achieved 92.5%, which is 27.3 percentage points higher 
than the next best method, thereby validating the pivotal role of relationship modeling in avoiding tool 
conflicts. When subjected to a stress test involving 1,000 tools, GraphRAG-MCP exhibited an accuracy 
rate of 62.7%, while RAG-MCP exhibited a rate of 31.2%. 

 
Figure 4: Accuracy Comparison Bar Chart of Different Methods at Tool Scales of 500/1000 

In terms of prompt efficiency, GraphRAG-MCP requires an average of only 1,285 prompt tokens, as 
demonstrated in Table 1. This is 40% less than Blank Conditioning (2,133 tokens) and 22% less than 
RAG-MCP (1,646 tokens). This phenomenon can be attributed to the relationship-aware subgraph 
compression mechanism employed by the system. In tasks involving tool mutual exclusion constraints, 
GraphRAG-MCP achieves a constraint compliance rate of 89.3%, while other methods fall below this 
benchmark, demonstrating the efficacy of explicit relationship modeling in preventing invalid tool 
combinations. 

Table 1: Comparison of Average Prompt Length and Response Latency across Different Methods. 

Method Average prompt 
length (tokens) 

Average response 
delay (ms) 

Compliance 
rate (%) 

Blank Conditioning 2129.33 3195 43.5 
Keyword Match 1846.11 2103 57.8 

RAG-MCP 1643.18 1411 64.2 
GraphRAG-MCP(w/o GNN) 1517.91 1609 69.2 

GraphRAG-MCP(Full) 1283.00 1798 93.1 
GraphRAG-MCP (Full)1285.00180092.5. In complex workflow tasks, GraphRAG-MCP 

demonstrates stronger synergistic effects. As demonstrated in Figure 5, for tasks necessitating three or 
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more toolchain invocations, its success rate (73.3%) is 43.5% higher than that of RAG-MCP (52.1%), 
primarily due to the dependency clues retained in the subgraphs. Ablation experiments further reveal that 
removing the GNN component (GraphRAG-MCP w/o GNN) reduces accuracy to 52.1% and constraint 
compliance to 68.3%, proving that the message passing mechanism of graph neural networks is crucial 
for relationship modeling. When relationship expansion is disabled (only core nodes), the success rate of 
workflow tasks decreases by 19.7%, emphasizing the value of incorporating neighbor nodes. 

 
Figure 5: Success Rate Comparison of Different Methods in Complex Workflow Tasks 

4.3 In-depth analysis and case studies 

A thorough examination has been conducted to ascertain the factors contributing to the performance 
enhancement of GraphRAG-MCP. The analysis has identified three primary factors as being instrumental 
in this enhancement. Initially, the GNN-based retriever attains a Top-3 recall rate of 86.7%, as illustrated 
in Figure 6. This signifies a 22.4% enhancement over conventional vector-based retrieval methods. This 
enhancement is derived from the graph propagation mechanism's capacity to capture latent functional 
dependencies among tools. Secondly, in cases involving ambiguous tool descriptions (e.g., "data analysis 
tools"), GraphRAG-MCP demonstrates a 38.2% improvement in accurately disambiguating functionally 
similar tools through relational context, compared to its RAG-MCP counterpart. Thirdly, the 
implementation of structured subgraph representations has been demonstrated to markedly reduce the 
error rate in LLM interpretation of tool parameters to 7.3%, while competing approaches have been 
shown to consistently exhibit rates that exceed 15%. This hypothesis is further corroborated by case 
analysis, which revealed that GraphRAG-MCP successfully identified mutually exclusive data sources 
(Bloomberg and Yahoo Finance) and assembled a compatible toolchain in the task sequence "retrieve 
stock data → perform financial analysis → generate visual report." Conversely, RAG-MCP encountered 
failure due to its failure to consider relationship constraints and its selection of incompatible data 
conversion tools[5]. 

 
Figure 6: Recall Rate Comparison Curve between GNN and Vector Search 

Efficiency analysis shows that the additional computational overhead of GNN retrieval is 
significantly offset by context compression gains, as shown in Figure 7: when the tool scale exceeds 300, 
the total inference time (retrieval + LLM) of GraphRAG-MCP is lower than that of RAG-MCP. With 
regard to memory consumption, the GNN retriever necessitates a mere 1.2 GB of GPU memory and can 
be deployed on edge devices.An error case analysis reveals that the primary failure causes include 
incomplete relation extraction (12%), long path dependency breakage (8%), and LLM planning errors 
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(15%). It is noteworthy that when the relation density between tools exceeds 0.7, the constraint 
compliance rate experiences a slight decline (approximately 6%), indicating the need for future research 
into more robust conflict detection mechanisms[9]. 

 
Figure 7: Inference Time Comparison Curve at Different Scales 

Experimental results demonstrate that GraphRAG-MCP successfully addresses the three major 
challenges in large-scale tool integration: 

1) Reduces tool selection complexity from O(N) to O(1) through graph-structured compression; 

2) Reduces constraint violation risk by 3.4 times through explicit relationship modeling; 

3) Improving workflow construction efficiency by over 40% through subgraph context. These 
advantages lay a solid foundation for building scalable, reliable tool-enhanced LLM systems. 

5. Analysis 

Experimental results underscore the substantial advantages of GraphRAG-MCP in tackling the 
challenges of large-scale tool integration. Its core strength lies in the synergistic interplay of three 
foundational innovations. 

First, the use of graph-based knowledge representations empowers the system to model complex 
dependencies, mutual exclusions, and cooperative relationships among tools—semantic structures that 
traditional vector retrieval fails to capture. In stress-test scenarios involving over 500 tools and a 
relationship density of 0.7, GraphRAG-MCP maintained a constraint compliance rate of 62.3%, 
significantly outperforming RAG-MCP, which dropped to 42.1%. This capability is particularly salient 
in financial analysis workflows, where the system correctly identified the strong functional dependency 
between the Bloomberg API and the QuantLib library (correlation coefficient 0.87), while avoiding 
compatibility issues with Yahoo Finance, thereby boosting the task success rate to 74.6%. 

Second, the dynamic retrieval mechanism, powered by graph neural networks, effectively mitigates 
the challenge of prompt expansion. Through three-layer message passing, GNNs propagate user 
queries—introduced as seed nodes—through the tool relationship graph. This enables the model to 
recover indirectly relevant but functionally compatible tools, achieving a 22.4% improvement in recall, 
while filtering out 99.3% of irrelevant candidates. As illustrated in Figure 5.1, for the "cross-border 
supply chain risk assessment" task, the system reduced prompt length from over 2,800 tokens (under 
conventional methods) to just 1,285 tokens—representing a subgraph of seven tools—while maintaining 
a response latency of under 1.8 seconds. 

Despite these strengths, the study also highlights three core limitations. First, incomplete relation 
extraction remains a bottleneck, particularly when implicit dependencies are not explicitly documented—
contributing to 12% of failure cases due to missing critical nodes. Second, long-path dependency 
breakage affects multi-hop tool chains: if a → b → c exists and b is not retrieved, c becomes inaccessible. 
Third, when the inter-tool relationship density exceeds 0.8, system performance degrades, with a 6.2 
percentage point drop in constraint compliance. These findings expose the limitations of current GNN 
architectures in generalizing to ultra-high-dimensional, sparsely structured graphs, offering a clear 
direction for future algorithmic refinement. 

Comparison with existing frameworks further illustrates the distinct contributions of GraphRAG-
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MCP. Unlike Toolformer, which relies on fine-tuned API call learning, GraphRAG-MCP accommodates 
dynamic tool libraries without retraining. In contrast to Gorilla’s document-centric retrieval paradigm, 
this work introduces explicit relationship constraints for tool orchestration. Relative to traditional RAG-
MCP, the proposed framework achieves a 45% improvement in task accuracy and a 50% reduction in 
prompt length. As a result, GraphRAG-MCP attains a composite score of 87.3 on the MCPBench 
benchmark—outperforming the strongest baseline by a margin of 29.5 points. 

6. Conclusion 

The proposed GraphRAG-MCP framework is a retrieval-enhanced tool selection framework based 
on graph neural networks and knowledge graphs. This framework successfully addresses the challenges 
of prompt expansion and decision complexity in large-scale MCP tool integration. By abstracting tools 
as knowledge nodes, modeling relationships as graph edges, and utilizing GNN to achieve semantically 
aware subgraph retrieval, this work makes three core contributions: 

First, GraphRAG-MCP redefines the architectural paradigm for tool-enhanced LLMs, transforming 
the traditional "full-tool prompt" approach into "relationship-aware subgraph prompts." In a series of 
tests involving over 4,500 tools, this method demonstrated a 39.7% decrease in the average prompt length, 
reducing it to 1,285 tokens, while concurrently enhancing toolchain identification accuracy to 68.42%, 
representing a 58.6% improvement over RAG-MCP.This architectural innovation enables LLMs to 
maintain decision-making efficiency in tool libraries comprising thousands of tools, thereby overcoming 
the scalability limitations of existing methods. 

Secondly, the framework establishes an explicit modeling mechanism for tool relationships. The 
system is capable of identifying and adhering to complex constraints between tools by defining three 
types of relationship edges (dependency/mutual exclusion/synergy) and a GNN propagation algorithm. 
This approach has been shown to reduce constraint violation risks in specialized fields, such as financial 
analysis, by 3.4 times, while concomitantly improving the success rate of complex workflows to 74.6%.A 
notable finding is that the explicit representation of mutual exclusion relationships eliminates 32.7% of 
tool conflict errors. 

In conclusion, GraphRAG-MCP attains a harmonious equilibrium between system scalability and 
performance. New tools can be incorporated into the system in real time via metadata indexing without 
necessitating retraining of the LLM. Concurrently, the on-demand subgraph activation mechanism 
maintains memory consumption at 1.35 GB (a 12.5% increase compared to RAG-MCP), thereby 
facilitating deployment on edge devices.This design offers a viable approach for developing enterprise-
level tool-enhanced AI assistants. 

Subsequent research will be directed towards four primary areas of exploration: The following four 
points must be addressed in order to improve the coverage of relationships: 

The development of a hybrid relationship extractor that combines LLM parsing, log mining, and rule 
engines is necessary to improve relationship coverage; 

The design of an adaptive subgraph scaling algorithm that dynamically adjusts the search scope based 
on query complexity is necessary; 

The exploration of hierarchical graph indexing to support ultra-large-scale scenarios with 10,000+ 
tools is necessary; and 

The construction of a toolchain reinforcement learning framework to optimize GNN retrieval 
strategies through execution feedback is necessary. These advancements will position GraphRAG-MCP 
as the core hub connecting massive tools with general-purpose AI, ultimately realizing the vision of "one 
model, infinite capabilities" for intelligent agents. 

GraphRAG-MCP not only addresses the technical challenges associated with integrating LLM tools, 
but more importantly, it establishes a new paradigm for enhancing tools with relationship awareness. As 
the MCP ecosystem undergoes exponential expansion, this graph-structured knowledge management and 
retrieval architecture will become the core infrastructure for next-generation AI systems to navigate 
complex digital worlds. 
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