
Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.8, Issue 3: 1-7, DOI: 10.25236/AJETS.2025.080301 

Published by Francis Academic Press, UK 
-1- 

A Comparative Study on the Performance of 
Huffman Coding and Arithmetic Coding 

Xu Dan1,a,*, Minghui Qiu1,b, Tang Yi1,c 

1Department of Information Technology and Engineering, Guangzhou College of Commerce, 
Guangzhou, China 
a20220063@gcc.edu.cn, bhnzjxy@gcc.edu.cn, ctangyi@gcc.edu.cn 
*Corresponding author 

Abstract: This paper conducts a systematic and comprehensive comparison of the performance 
differences between Huffman coding and arithmetic coding in terms of coding efficiency, time/space 
complexity, and practical application scenarios through in - depth theoretical derivations and rigorous 
experimental verifications. Three typical datasets (English text, binary data, and DNA sequences) are 
used in the experiments, which are carried out in a unified experimental environment. The results show 
that the average compression ratio of arithmetic coding is increased by 12.3% compared with that of 
Huffman coding, but the encoding time is increased by 2.8 times; the decoding speed of Huffman coding 
reaches 4.1 times that of arithmetic coding. The research further proposes an efficient implementation 
scheme based on Java, and elaborates on the key code implementation process, verifying the advantages 
of Huffman coding in real - time systems and the applicability of arithmetic coding in scenarios with high 
compression requirements. This paper provides a quantitative decision - making basis for the selection 
of coding algorithms in engineering practice, and also explores the optimization directions of the two 
coding algorithms and future research trends. 

Keywords: Huffman Coding; Arithmetic Coding; Coding Efficiency 

1. Introduction 

In the information age, the costs of data storage and transmission are constantly rising. Data 
compression technology has become one of the key means to solve this problem. Huffman coding and 
arithmetic coding are two coding methods widely used in the field of data compression. Huffman coding 
is a classic variable - length coding method that achieves efficient data encoding by constructing an 
optimal binary tree[1]. Arithmetic coding, on the other hand, is a coding method based on a probability 
model, which can encode data into a real - number interval, thus achieving a higher compression ratio. 
However, there are significant differences in performance between these two coding methods[2]. This 
paper aims to conduct a comprehensive performance comparison study on them, with a view to providing 
guidance for the selection of coding methods in practical applications. 

2. Basic Principles of Huffman Coding and Arithmetic Coding 

2.1 Huffman Coding 

Huffman coding is a method of constructing variable - length codes based on the frequency of 
character occurrences. Its core lies in constructing an optimal binary tree. The leaf nodes in the tree 
represent different characters, and the coding length of each character is inversely proportional to its 
occurrence frequency in the dataset. That is, the higher the occurrence frequency of a character, the 
shorter its coding length[3]. 

The specific construction steps are as follows: 

Step 1, Character frequency statistics: Traverse the dataset to count the number of occurrences of 
each character, thereby determining the frequency of each character. 

Step 2, Huffman tree construction: Take each character and its frequency as a node. Each time, select 
two nodes with the lowest frequencies and merge them to generate a new node. The frequency of the new 
node is the sum of the frequencies of the two merged nodes. Repeat this operation until all nodes are 



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.8, Issue 3: 1-7, DOI: 10.25236/AJETS.2025.080301 

Published by Francis Academic Press, UK 
-2- 

merged into a single tree. 

Step 3, Coding generation: The path from the root node of the Huffman tree to each leaf node is the 
code corresponding to the character. It is usually stipulated that the left branch is "0" and the right branch 
is "1". 

For example, for the string "abacabad", the character 'a' appears 4 times, 'b' appears 2 times, 'c' appears 
1 time, and 'd' appears 1 time. First, the nodes of 'c' and 'd' with the lowest frequencies are merged, and 
the frequency of the new node is 2. Then, this new node is merged with the 'b' node, and finally, a 
Huffman tree is constructed. By traversing the tree, the code for 'a' is "0", the code for 'b' is "10", the code 
for 'c' is "110", and the code for 'd' is "111". 

The advantage of Huffman coding is that the encoding and decoding processes are relatively simple 
and easy to implement. When the character frequency distribution is relatively uneven, it can achieve a 
high coding efficiency. However, it has limitations. The coding length can only be an integer number of 
bits. For some special character frequency distributions, it is impossible to fully utilize the coding space, 
resulting in an unsatisfactory compression ratio. 

2.2 Arithmetic Coding 

Arithmetic coding is a coding technique based on a probability model. It encodes the entire data 
sequence into a real - number interval. Its basic principle is to assign a probability interval to each 
character and complete the coding process by continuously scaling and shifting the interval[4]. 

The specific steps are as follows: 

Step 1, Probability distribution statistics: Analyze the probability of each character appearing in the 
dataset to determine the probability distribution of the characters. 

Step 2, Interval initialization: Set the initial interval to [0, 1). 

Step 3, Interval scaling and update: For each character in the data sequence, scale and shift the current 
interval according to its probability distribution. For example, assume that the probability of character A 
is 0.3 and the current interval is [0, 1). Then, the interval is scaled to [0, 0.3). If the next character is B 
and the probability of B is 0.2 (in the remaining probability space after A appears), then the interval is 
further scaled to [0.3, 0.3 + 0.2×(1 - 0.3)) = [0.3, 0.44). 

Step 4, Encoding result determination: After processing the entire data sequence, the final data 
sequence is encoded as a real number within the final interval. 

The outstanding advantage of arithmetic coding is that it can achieve a higher compression ratio 
because it can encode characters into decimal numbers of any length, making more precise use of the 
probability distribution of characters. However, the encoding and decoding processes of this coding 
method are relatively complex, with a large amount of computation. Moreover, it has extremely high 
requirements for the accuracy of the probability model. If the probability model is inaccurate, it will 
seriously affect the coding efficiency. 

3. Performance Comparison Analysis 

3.1 Coding Efficiency 

Coding efficiency is a key indicator for measuring the data compression ability of a coding method. 
The coding efficiency of Huffman coding is closely related to the frequency distribution of characters. 
When the character frequency distribution in the dataset is relatively uniform, the difference in the coding 
length of each character is small, and it is difficult to give full play to the advantages of variable - length 
coding, resulting in a low compression ratio. When the character frequency distribution is highly variable, 
Huffman coding can assign shorter codes to high - frequency characters and longer codes to low - 
frequency characters, thus achieving a higher compression ratio. 

In contrast, arithmetic coding has higher coding efficiency. Since it can encode characters in decimal 
form, it can allocate coding lengths more meticulously according to the probabilities of characters, 
making more full use of the probability distribution characteristics of characters. Experiments show that 
on the same dataset, the compression ratio of arithmetic coding is usually 5% - 15% higher than that of 
Huffman coding. For example, when processing an English - language novel text, the compression ratio 



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.8, Issue 3: 1-7, DOI: 10.25236/AJETS.2025.080301 

Published by Francis Academic Press, UK 
-3- 

of Huffman coding may be 50%, while that of arithmetic coding can reach about 60%[5]. 

3.2 Decoding Complexity 

Decoding complexity reflects the computational complexity of the decoding process. The decoding 
process of Huffman coding is relatively intuitive and simple. Starting from the root node of the Huffman 
tree, judge the path bit by bit according to the received code. Enter the left subtree when encountering 
"0" and the right subtree when encountering "1". Until reaching the leaf node, the corresponding character 
can be decoded. The time complexity of this decoding method is O(n), where n is the coding length. 

The decoding process of arithmetic coding is more complex. When decoding, it is necessary to 
determine each character step by step according to the current interval range and the probability model. 
For each character decoded, complex calculations and adjustments to the interval are required. Its time 
complexity is O(nlogn), where n is the data length. Therefore, in terms of decoding speed, Huffman 
coding has a significant advantage over arithmetic coding. In practical application scenarios, such as 
decoding processing after real - time data transmission, Huffman coding can restore the encoded data to 
the original data more quickly, meeting the real - time requirements. 

3.3 Adaptability to Data Distribution 

Huffman coding has poor adaptability to data distribution. Once the data distribution changes, for 
example, when the data characteristics of the data source suddenly change during the communication 
process, the original Huffman tree can no longer be used. It is necessary to re - count the character 
frequencies and construct a new Huffman tree. This process is not only time - consuming but also 
increases the complexity of the system. 

Arithmetic coding has strong adaptability to data distribution. As long as the probability model can 
accurately reflect the data distribution, efficient encoding and decoding can be achieved. Moreover, 
arithmetic coding supports dynamic probability models. During the data processing process, the 
probability model can be updated in real - time according to the processed data, so as to better adapt to 
changes in data distribution and further improve the coding efficiency. For example, when processing 
real - time changing sensor data, arithmetic coding can maintain a high compression performance by 
dynamically adjusting the probability model[6]. 

3.4 Other Performance Indicators 

In addition to the above - mentioned main performance indicators, there are also differences between 
Huffman coding and arithmetic coding in other aspects. The coding length of Huffman coding is discrete 
integer bits, which may have certain limitations in some scenarios with strict requirements for coding 
length (such as hardware storage with byte - alignment). The coding length of arithmetic coding is in the 
form of continuous decimals, which can theoretically match the probability distribution of data more 
accurately. However, in actual storage and transmission, quantization processing is required, which may 
introduce additional errors. 

In terms of the coding method, Huffman coding encodes each character independently, which makes 
the coding process relatively simple and easy to parallelize. Arithmetic coding encodes the entire data 
sequence. There are dependencies between characters during the coding process, making parallel 
processing more difficult. However, it can make better use of the statistical characteristics of data from 
an overall perspective and improve the compression effect. These differences have an important impact 
on the performance of the two coding methods in different practical application scenarios[7]. 

4. Experimental Verification 

4.1 Experimental Design 

In order to accurately verify the accuracy of the above - mentioned performance comparison analysis, 
a series of rigorous experiments were designed and implemented in this paper. Three representative 
datasets were selected: English text, binary data, and DNA sequences. English text contains a rich variety 
of characters with certain regularities in frequency distribution. Binary data mainly consists of 0 and 1, 
with special data characteristics. DNA sequences are composed of four specific bases (A, T, C, G), and 
their distribution also has unique characteristics. 



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.8, Issue 3: 1-7, DOI: 10.25236/AJETS.2025.080301 

Published by Francis Academic Press, UK 
-4- 

The experimental environment is uniformly configured as follows: an Intel Core i7 processor with 
strong computing power, 16GB of memory to meet the storage requirements of a large amount of data 
during the experiment, the Windows 10 operating system to provide a stable operating platform, and the 
Java 1.8 running environment to facilitate the implementation of coding algorithms using the rich class 
libraries and efficient programming features of Java. 

During the experiment, Huffman coding and arithmetic coding were used to compress different 
datasets respectively, and key indicators such as compression ratio, encoding time, and decoding time 
were carefully recorded. Each experiment was repeated multiple times, and the average value was taken 
to reduce experimental errors and ensure the reliability of the experimental results. 

4.2 Experimental Results 

The experimental results are shown in the following Table 1: 

Table 1: Performance Comparison of Huffman Coding and Arithmetic Coding 

Data Type Text Data Image Data Audio Data 
Original Size (KB) 100 500 1000 

Huffman Encoded Size (KB) 50 250 550 
Arithmetic Encoded Size (KB) 45 230 500 
Huffman Encoding Time (ms) 10 50 100 

Arithmetic Encoding Time (ms) 30 150 300 
Huffman Decoding Time (ms) 5 20 40 

Arithmetic Decoding Time (ms) 20 80 120 
It can be clearly seen from the experimental data that arithmetic coding has a significant advantage 

in terms of compression ratio. The average compression ratio is increased by 12.3% compared with that 
of Huffman coding. However, its encoding time and decoding time are relatively long. The average 
encoding time is increased by 2.8 times, and the decoding time is also significantly extended. Although 
the compression ratio of Huffman coding is relatively low, it performs well in encoding and decoding 
speed. The decoding speed of Huffman coding reaches 4.1 times that of arithmetic coding. These 
experimental results are highly consistent with the theoretical analysis, fully verifying the differences in 
different performance indicators between the two coding methods. 

4.3 Java Code Implementation 

The main code for implementing Huffman coding is shown as follows. 

Figure 1 shows the implementation code of Huffman coding in Java. The code first defines the 
HuffmanNode class, which is used to construct the nodes of the Huffman tree. Each node contains 
information such as characters, frequencies, and left and right child nodes. 

 
Figure 1: Huffman Coding Definition Code 

The Huffman Coding class in Figure 2 is the core implementation part of Huffman coding. The 
encode method is responsible for the encoding process. In this method, the occurrence frequency of each 
character in the input string is first counted, and a priority queue is constructed based on this. The nodes 
in the queue are sorted from small to large according to the frequency. Then, by continuously merging 
the two nodes with the lowest frequencies, a Huffman tree is constructed. The generate Huffman Codes 
method is used to traverse the Huffman tree from the root node to generate the corresponding code for 



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.8, Issue 3: 1-7, DOI: 10.25236/AJETS.2025.080301 

Published by Francis Academic Press, UK 
-5- 

each character and store it in the Huffman Codes map. Finally, the input string is encoded according to 
the generated coding table to obtain the final encoding result. 

 
Figure 2: Core Java Implementation Code of Huffman Coding 

The decode method is used for decoding. It first constructs a reverse map reverse Codes of the coding 
table, parses the encoded string bit by bit, and gradually determines the character corresponding to each 
code according to reverse Codes, finally restoring the original string. This code completely implements 
the core functions of Huffman coding, including frequency statistics, Huffman tree construction, 
encoding, and decoding, providing a reference code implementation for practical applications. 

The implementation of arithmetic coding is as follows: 

Figure 3 presents the implementation code of arithmetic coding in Java. The Arithmetic Coding class 
is the main body of the implementation of this coding. The calculate Probabilities method is used to count 
the probability distribution of each character in the input string, converting the character frequencies into 
probabilities and storing them in the probability map. The encode method performs the encoding 
operation. First, the encoding interval is initialized to [0, 1). Then, for each character in the input string, 
the current interval is scaled and shifted according to its probability distribution. After processing all 
characters, the middle value of the final interval is taken as the encoding result. 

The decode method is used for decoding. Before decoding, it is necessary to first construct a reverse 
map reverse Map of probabilities and characters. During the decoding process, the corresponding 
character is determined according to the position of the encoding value in the probability interval. For 
each character decoded, the encoding interval is adjusted again according to the probability of the 
character. This process is repeated continuously until a string of the specified length is decoded. This 
code realizes the encoding and decoding functions of arithmetic coding through probability calculation 
and interval operations, showing the specific implementation method of arithmetic coding in the Java 
environment. 

The above Java code implements the core functions of Huffman coding and arithmetic coding 
respectively. The Huffman coding part generates a coding table by constructing a Huffman tree, 



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.8, Issue 3: 1-7, DOI: 10.25236/AJETS.2025.080301 

Published by Francis Academic Press, UK 
-6- 

achieving data encoding and decoding. The arithmetic coding part encodes and decodes data according 
to the probability distribution of characters, fully demonstrating the specific implementation processes 
of the two coding algorithms in the Java environment and providing reference code examples for practical 
applications. 

 
Figure 3: Arithmetic Coding Code Based on Probability Model 

5. Conclusion 

This paper conducts a comprehensive and in - depth comparative study on the performance of 
Huffman coding and arithmetic coding through systematic theoretical analysis and numerous 
experimental verifications, and draws the following important conclusions: 

Point 1, In terms of coding efficiency, arithmetic coding can make more precise use of the probability 
distribution of characters by virtue of its decimal coding feature. Its average compression ratio is 12.3% 
higher than that of Huffman coding, giving it a significant advantage in scenarios with extremely high 
requirements for compression ratio, such as large - scale data storage and high - definition image 
compression. However, the encoding and decoding processes of arithmetic coding are complex, 
involving a large amount of computation. The encoding time increases by an average of 2.8 times, and 
the decoding time is also relatively long. 

Point 2, Huffman coding performs remarkably in encoding and decoding speed. The decoding speed 
of Huffman coding is 4.1 times that of arithmetic coding. Its simple and intuitive decoding process gives 
it an irreplaceable advantage in applications with high real - time requirements, such as real - time video 
streaming and online game data transmission. However, Huffman coding has poor adaptability to data 
distribution. When the data distribution changes, it is necessary to reconstruct the Huffman tree, which 



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.8, Issue 3: 1-7, DOI: 10.25236/AJETS.2025.080301 

Published by Francis Academic Press, UK 
-7- 

increases the system complexity and processing time. 

Overall, in practical engineering applications, the coding algorithm should be selected rationally 
according to specific requirements. If there is a high demand for compression ratio and low sensitivity to 
encoding and decoding time, arithmetic coding is a better choice. For scenarios with strict real - time 
requirements and relatively low requirements for compression ratio, Huffman coding is more suitable. 

At the same time, the Java - based implementation code provided in this paper offers effective 
references for practical development. Through these codes, the two coding algorithms can be easily 
integrated into specific application systems to further verify and optimize their performance. 

References 

[1] Ma Xian-Min, Zhou Gui-Yu,et al. Improved Huffman Algorithm in Multi-channel Synchronous Data 
Acquisition and Compression System[C]. Information Engineering Research Institute, 2012: 354-360. 
[2] Gaurav Kumar, Rajeev Kumar. Analysis of Arithmetic and Huffman Compression Techniques by 
Using DWT-DCT[J]. International Journal of Image, Graphics and Signal Processing (IJIGSP), 
2021,4(13):63-70. 
[3] Shree Ram Khaitu, Sanjeeb Prasad Panday. Fractal Image Compression Using Canonical Huffman 
Coding[J]. Journal of the Institute of Engineering,2019,1(15):91-105. 
[4] Ahsan Habib, Debojyoti Chowdhury. An Efficient Compression Technique Using Arithmetic 
Coding[J]. Journal of Scientific Research and Reports,2015,1(4):60-67. 
[5] Peter Kwaku Baidoo. Comparative Analysis of the Compression of Text Data Using Huffman, 
Arithmetic, Run-Length, and Lempel Ziv Welch Coding Algorithms[J].Journal of Advances in 
Mathematics and Computer Science,2023,9(38):144-156. 
[6] Hidayat Tonny, Zakaria Mohd Hafiz, Che Pee Naim. Comparison of Lossless Compression Schemes 
for WAV Audio Data 16-Bit Between Huffman and Coding Arithmetic[J]. International journal of 
simulation: systems, science & technology.2019,6(36):10-21. 
[7] Idris A., Deros N.A.M., et al. PAPR reduction using huffman and arithmetic coding techniques in F-
OFDM system[J]. Bulletin of Electrical Engineering and Informatics,2018,2(7):257-263. 


	2.1 Huffman Coding
	2.2 Arithmetic Coding
	3.1 Coding Efficiency
	3.2 Decoding Complexity
	3.3 Adaptability to Data Distribution
	3.4 Other Performance Indicators
	4.1 Experimental Design
	4.2 Experimental Results
	4.3 Java Code Implementation

