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Abstract: A model closer to real life and applicable to a wider range of scenarios and conditions is 
obtained by adding internal and external disturbance factors based on the original SIS infectious disease 
model when the differences between different individuals and environments, such as health status, 
protection measures and uncertainty of model parameters, are considered. The equilibrium point of the 
SIS infectious disease model with correlated noise and the steady-state solution of the Fokker-Planck 
equation are solved through linearized approximate numerical methods. The steady-state probability 
distribution function of the SIS infectious disease model are plotted by using Geometer’s Sketchpad, the 
impact of various parameters on the SIS infectious disease model and the fluctuations of the equilibrium 
point of the SIS infectious disease model are dynamically examined. The results show that the SIS 
infectious disease model can effectively improve the fitting accuracy of the real epidemic transmission 
by regulating the noise intensity parameter and color correlation characteristics (including correlation 
strength and duration), and provide theoretical support and quantitative basis for the formulation of 
public health intervention measures. 
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1. Introduction 

In the context of rapid development of contemporary science and technology, the popularization and 
application of electronic computers have greatly promoted the deep integration of mathematical methods 
in biological research. This interdisciplinary integration trend has become an important development 
direction in modern biology, especially in the field of medical research. With the continuous 
improvement of public health system, the remarkable improvement of medical technology and the 
continuous progress of human civilization, infectious diseases such as smallpox, monkeypox and novel 
coronavirus, which caused global public health crises in history, have been effectively contained. 
However, in some economically underdeveloped countries and regions, local outbreaks of infectious 
diseases still occur from time to time. 

In 2014, Jiang Daqing et al. carried out a long-term dynamics study on a random SIS infectious 
disease model included in the vaccination mechanism, systematically derived the sufficient conditions 
for the average extinction and persistence of the disease, and strictly proved that the basic reproduction 
number as a key threshold played a decisive role in the outcome of disease transmission when the 
intensity of environmental white noise was low. In 2016, Meng Xinzhu et al. constructed a stochastic 
SIS model containing nonlinear incidence function and double hypothesis conditions, determined the 
dynamic characteristics of the equilibrium point of the system through stability analysis, revealed the 
double threshold conditions for the extinction and persistence of infectious diseases, and innovatively 
demonstrated the promoting effect of high intensity random disturbance on disease elimination [1]. In 
2021, the Lahrouz team studied the classical SIS model with a generalized transmission mechanism 
(covering non-monotonic infection rate), focusing on the impact mechanism of white noise interference 
on the dynamic change of disease transmission rate, which provided a new theoretical perspective for 
understanding the transmission law of infectious diseases under complex environmental disturbances. 
Foreign researchers have made rich achievements in the study of SIS model. They not only deeply 
discussed the dynamic characteristics and stability conditions of the model, but also put forward a variety 
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of optimization prevention and control strategies, such as vaccination and isolation measures. These 
prevention and control measures have been widely implemented in practice, and the results are very 
significant. 

This paper derives a more practical one-dimensional Langmuir equation based on the nonlinear 
transmission of infectious diseases under the mechanism of organism immunity. It introduces external 
and internal factors affecting the spread of infectious diseases into the model as white noise and colored 
noise, respectively, and explores the impact of these two types of noise on SIS infectious disease 
transmission under different color correlation strengths and color correlation times. Using linear 
approximation method, the steady-state probability distribution function of the system was derived and 
calculated. By observing the change of two noise intensities and the color correlation strength and color 
correlation time between the noises, it was investigated whether the SIS model could better simulate the 
disease transmission in the real world, which provided scientific support for the construction of effective 
prevention and control strategies. 

2. Model construction 

According to the transmission mechanism of diseases, the transmission that is similar to the spread 
of cold virus and can be infected multiple times but can be cured and cannot be immune is summarized 
as SIS virus transmission, and its transmission mechanism is shown in Figure 1. 

 
Figure 1 Mechanism of transmission of classic SIS class infectious diseases. 

Among them, S represents the healthy state and I represents the infected state. After contact between 
S individuals and I individuals, they will be transformed into infected individuals with a certain 
probability , and then they will be transformed into S individuals with a probability  after being 
cured. 

According to the actual situation, infectious diseases are transmitted through contact. The number of 
times a healthy person comes into contact with a patient in a unit time is called contact rate, which has a 
close relationship with the number of individuals N in the network, denoted as C(N). We call the contact 
rate of the probability of infection β the effective contact rate, that is , which can reflect the 
disease resistance of healthy individuals, environmental conditions and other practical factors. The 
proportion of susceptible people S is S/N, so the average infection rate of susceptible people is 

. 

According to the above analysis, the number of susceptible persons converted into infected persons 
at time t is . If we assume that the contact rate is linearly related to the total number of 
individuals in the network, the proportional coefficient is k, i.e, 

                                     (1) 

Thus, the rate of infection is obtained as follows: 

                             (2) 

The classical SIS model is obtained as follows [2]: 

                                 (3) 

It is clear that the transmission and proliferation of infectious disease pathogens are also inevitably 
profoundly affected by external environmental factors, which involve many aspects [3]. In this paper, the 
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external and internal factors affecting the spread of infectious diseases are introduced into the model in 
the form of white noise and color noise respectively [4]. After the above influencing factors are brought 
into the equation, the Langvin equation which is more consistent with the SIS infectious disease model 
is obtained as follows: 

                             (4) 

Based on the above equation, the following expression of deterministic potential function can be 
obtained by calculation as follows: 

                             (5) 

 
Figure 2 Potential function graph. 

The sum in the above equation represents white noise and color noise with zero mean, respectively, 
and they have the following statistical relationship as follows: 

                                (6) 

                            (7) 

                           (8) 

                  (9) 

In the above formula, the size of D and Q values represents the noise intensity, λ represents the color 
correlation strength between the two noises, and t represents the time,  represents the color correlation 
time between the two noises[5]. 

3. Fokker-Planck equation and its steady state solution 

Fokker-Planck equation and its steady-state solution are simplified according to the method of 
relevant literature, and written in the following form as follows: 

                     (10) 

                          (11) 
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The corresponding Fokker-Planck equation is obtained by using Liu’s equation[6]: 

                  (13) 

The steady-state probability distribution function in the model is expressed by A(x) and B(x), which 
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can be expressed as follows: 

                   (14) 

                    (15) 

According to the reflection boundary condition, the steady state solution of the Fokker-Planck 
equation, i.e., Eq.(13), can be obtained [7]: 

                  (16) 

Take the solution when >1 or <-1 is taken, where: 

               (17) 

                 (18) 

                  (19) 

4. Numerical analysis and discussion 

In the theoretical analysis work carried out in the early stage, all kinds of factors that may affect the 
research results have been taken into consideration, and these influencing factors have been organically 
integrated with the relevant variables in the formula [8]. Figure 2 shows the relationship between the 
deterministic potential function and the correlation coefficient k between the contact rate and the total 
number of individuals in the network. It can be seen from Figure 2 that the value of the correlation 
coefficient significantly affects the distribution of the potential function. 

The numerical simulation of the steady-state probability distribution function Pst(x) is carried out by 
keeping other variables unchanged and only changing the value of noise intensity D. The results are 
shown in Figure 3. It can be found that when the intensity D of white noise gradually increases from the 
analysis of Figure 3, especially the specific value changes from D=0.89 to D=0.9, and then further 
increases to D=0.91, the curve shape corresponding to the steady state probability distribution function 
changes. On the whole, the peak position of the curve has a certain movement, and the width and other 
morphological characteristics of the curve have also changed. This shows that the increase of white noise 
intensity has an obvious influence on the shape of the steady state probability distribution. 

By comparing the function values of these points under different D values, the influence of white 
noise intensity change on the steady state probability in a specific state can be quantitatively seen. For 
example, at a specific horizontal coordinate value, as D increases from 0.89 to 0.91, the corresponding 
function value may decrease or increase, which reflects the change of steady-state probability in this state 
with the increase of white noise intensity. It can be found from the change trend of the curve in the figure 
that when the value of the independent variable on the horizontal axis gradually increases (that is to say 
that the curve extends to the right), the steady-state probability distribution function corresponding to 
different D values all tend to 0, but the speed of convergence is different. Curves with large D values 
(e.g., D=0.91) may approach 0 more quickly at relatively small independent variable values, which means 
that the probability of the system being in a larger state value decreases more quickly at higher white 
noise intensity.  

In general, the influence of the white noise intensity parameter D on the steady state probability 
distribution function can be clearly defined by numerical analysis of the shape of the curve, specific 
points and asymptotic behavior in the figure. 
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Figure 3 Influence of white noise intensity D on steady state probability distribution function. 

Figure 4 shows the numerical analysis of the influence of color noise intensity Q on the steady-state 
probability distribution function. With the increase of color noise intensity Q (from Q=1.01 to Q=1.02 
and then to Q=1.03), the peak of steady-state probability distribution function curve gradually increases. 
This indicates that with the increase of color noise intensity, the probability of the system being in the 
state corresponding to the peak of the probability distribution increases. The curve corresponding to a 
larger Q value is relatively wider, indicating that with the increase of color noise intensity, the distribution 
range of system state presents an expanding trend. 

By comparing the values of steady-state probability distribution function under different Q values, it 
can be found that as Q increases from 1.01 to 1.03, the function values of these specific points may 
increase, reflecting that in these specific states, the steady-state probability of the system increases with 
the increase of color noise intensity. From the change trend of the curve in Figure 4, the steady state 
probability distribution function corresponding to different Q values all tend to 0 as the value of the 
independent variable on the horizontal axis increases to both sides (to the left and right). However, the 
curve with a large Q value (such as Q=1.03) tends to 0 at a slower rate than the curve with a small Q 
value (such as Q=1.01) when the independent variable is relatively small, which means that the 
probability of the system being far away from the peak state decreases relatively slowly under the 
condition of large color noise intensity. 

In general, the change of color noise intensity Q significantly affects the peak, width and asymptotic 
behavior of steady-state probability distribution function. 

 
Figure 4 Influence of color noise correlation strength Q on steady state probability distribution 

With the increase of the correlation strength λ (from λ=-50.10 to λ=-50.20 and then to λ=-50.60), the 
peak of the steady-state probability distribution function curve increases first and then decreases, as 
shown in Figure 5. For example, the peak value of the curve corresponding to λ=-50.60 is higher than 
that of the curve corresponding to λ=-50.20 and λ=-50.10, indicating that within a certain range, the 
change of correlation strength will change the probability of the system being in the most likely state, 
and it is not a simple monotonic relationship. The overall shape of the curve also changes, and the width 
of the curve seems to vary with λ, indicating that the correlation strength affects the distribution range of 
the system state, and the probability distribution of the system in different states changes with the change 
of λ. 

As can be seen from Figure 5, with the change of λ from-50.10 to-50.60, the function values of these 
specific points change correspondingly, reflecting that in these specific states, the steady-state probability 
of the system changes with the change of correlation strength, which may increase at some points and 
decrease at some points. From the trend of the curve, as the value of the independent variable on the 
horizontal axis increases to both sides (extending to the left and right), the steady-state probability 
distribution function corresponding to different λ values all tend to 0. However, when the λ value is 
different, the speed of approaching 0 is different. The curve corresponding to λ=-50.60 approaches 0 
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relatively slowly when it is far away from the peak region, which means that the probability of the system 
being far away from the peak state decreases more slowly under a large correlation strength. 

 
Figure 5 Influence of noise correlation strength λ on steady state probability distribution function. 

In general, when the intensity of color noise Q changes, it will significantly affect the steady state 
solution, width and asymptotic trend of the steady state probability distribution function. 

5. Conclusion 

This paper considers the internal and external influencing factors starting from the SIS model, 
introduces them in the form of noise to obtain the Langvin equation, and then uses the nonlinear 
approximation method to obtain the steady-state probability distribution function. By adjusting the color 
correlation strength and correlation duration between the noise, this paper explores the influence of the 
noise on the transmission of SIS infectious disease under different circumstances. The results show that 
the intensity of white noise D and color noise Q, the observation of the change of two noise intensities 
and the color correlation strength and color correlation time between noises can better simulate the 
disease transmission in the real world by SIS model, which provides a good scientific basis for the 
formulation of effective prevention and control strategies. 
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