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Abstract: In this paper, a new four-parameter exponential-transmuted exponential (ETE) distribution is 
proposed based on the T-X transformation method, which extends and improves the existing ETE 
distribution by introducing an additional shape parameter. Several important properties of the new 
distribution are systematically explored in the paper, including the construction of moments, mother-of-
moment function and risk function. In order to verify the applicability of the new distribution in real data, 
the paper uses the great likelihood estimation method to fit the new distribution to the payout data with 
heavy-tailed characteristics in the U.S. compensation loss dataset. By comparing with the classical 
models such as the original three-parameter ETE distribution, the Weibull exponential (WE) distribution 
and the exponential (E) distribution, the results show that the newly proposed ETE distribution 
outperforms other models in terms of fitting effect and information criterion, which further validates its 
robustness and applicability in complex data processing. 
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1. Introduction 

In statistical modelling and data analysis, classical probability distributions such as normal, t and 
exponential distributions have long been important tools in research and practice due to their theoretical 
simplicity and wide range of applications. However, these traditional distributions often face certain 
limitations when dealing with complex data in the real world. For example, the distribution of asset 
returns in financial markets tends to be thick-tailed, while environmental data may exhibit asymmetry 
and heteroskedasticity, which make it difficult for standard distributions to effectively capture the true 
characteristics of the data. To solve this problem, the T-X family of distributions was created. The T-X 
distribution introduces greater flexibility by introducing transformations or extensions to the classical 
distribution, allowing it to accommodate a wider range of data characteristics. In recent years, T-X 
distributions have been applied to a variety of fields including risk management, engineering reliability, 
and life sciences. In particular, the exponential-transmuted exponential (ETE) distribution in the family 
of T-X distributions has received a lot of attention due to its great flexibility and applicability. However, 
the existing form of T-X distribution still exhibits shortcomings in dealing with some specific data 
patterns, especially when dealing with extreme asymmetric or multi-peaked distributions, and its 
flexibility is still limited. In view of this, a new form of ETE distribution is proposed in this paper, which 
further extends the scope of application of ETE distribution by introducing a new transformation 
mechanism. The new distribution not only has greater theoretical flexibility, but also shows stronger 
adaptability when dealing with complex data [1-2]. 

2. Literature Review 

Alzaatreh et al. (2013) proposed a method for generating a family of continuous distributions, called 
T-X distributions, which set a precedent for later scholars to study families of T-X distributions. Tahir et 
al. (2016) defined a special lifetime model called the Poisson power-Cauchy based on the T-X 
distribution and investigated some of its properties with flexible hazard rate shapes such as increasing, 
decreasing, bathtub and upside-down bathtub. Moolath et al. (2017) investigated a special case of the T-
X family of distributions: exponential-transmuted exponential (ETE) distribution, and demonstrated the 
effectiveness and flexibility of this distribution in modelling and predicting lifetime data by analysing 
two real lifetime datasets. Aslam et al. (2020) proposed an improved family of T-X distributions and 
discussed the estimation of the parameters in the framework of classical methods and Bayesian 
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framework, and verified through empirical analyses that the proposed new family of distributions has 
better flexibility and can be applied to the study of survival analysis and reliability theory. Ahmad et al. 
(2021) proposed exponential T-X (ETX) family, on the basis of which a new extension of the Weibull 
model was made to make it more flexible in modelling heavy-tailed data. Baharith and Aljuhani (2021) 
obtained an alpha power Weibull–exponential distribution based on the T-X distribution and the alpha 
power transformation approaches, which is highly adaptable for time data and material property data. 
Haiyue Wang (2021) constructed two families of generalised exponential Weibull distributions and 
investigated their statistical properties based on two methods, T-X transformation and cubic 
transformation, using the exponential Weibull distribution as the base distribution. Shah et al. (2022) 
proposed a member of the T-X family, which contains heavy-tailed distributions and is referred to as “a 
new exponential-X family of distribution”. Kamal et al. (2023) introduced generalised exponential-U 
family of distributions as a new approach to improve the flexibility of existing classical and modified 
distributions. Their combination of the T-X family approach with an exponential model yields a new 
distribution family, which has wider and more extensive applications in the field of prediction and 
modelling of healthcare phenomena[3-5]. 

3. Exponential-Transmuted Exponential (ETE) Distribution Based on T-X Distribution 

3.1. T-X distribution 

Alzaatreh (2013) defines the cumulative distribution function (cdf) of the T-X family as 
( ( ))

( ) ( )
W F x

a
J x r t dt= ∫ ,                                (1) 

where ( )F x  is the distribution function of any random variable X R∈ , ( ( ))W F x  is a 

function of the distribution function ( )F x ; ( )r t  is the probability density function of the random 

variable [ , ]T a b∈ . At the same time to meet the following conditions: 

(1) ( ( )) [ , ]W F x a b∈ , 

(2) ( ( ))W F x  is absolutely continuous and monotonically non-decreasing, 

(3) ( ( ))W F x a→  as x →−∞  and ( ( ))W F x b→  as x →∞ . 

3.2. Exponential-Transmuted Exponential (ETE) Distribution 

In particular, in the T-X family of distributions, let ( ( )) ln[1 ( )]W F x F x= − − , and ( )F x  is 
defined by the quadratic rank transmutation map (QRTM) approach of Shaw and Buckley (2009) as 

2( ) (1 ) ( ) [ ( )] ,  | | 1F x G x G xλ λ λ= + − ≤ ,                       (2) 

where ( )G x  is the baseline distribution. At this point the distribution function of the family of T-
X distributions is 

ln[ ( )[1 ( )]]

0
( ) ( )

G x G x
J x r t dt

λ− −
= ∫ .                            (3) 

Let the distribution functions ( )G x  and ( )R t  both be exponentially distributed, i.e.,
( ) 1 xG x e β−= − , 0x > , 0β > . ( ) 1 tR t e θ−= − , 0t > , 0θ > . The exponential-transmuted 

exponential (ETE) distribution can be obtained with the following distribution function 

( ) 1 (1 ) ,  0, 0, 0,| | 1x xJ x e e xθβ β θλ λ θ β λ− −= − − + > > > ≤ ,              (4) 

its probability density function (pdf) is 
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1

1 2( ) ,  0, 0, 0,| | 1
(1 )

x
x

x

ej x e x
e

β
θβ

β θ

λ λθβ θ β λ
λ λ

−
−

− −

− +
= > > > ≤

− + .           (5) 

For the convenience of the later description, we refer to this ETE distribution as the three-parameter 
ETE distribution. Figure 1 shows the trend of the probability density function image of the ETE 
distribution with respect to different parameters. 

 
Figure 1: Different plots for the pdf of the three-parameter ETE distribution. 

4. Improved ETE Distribution 

4.1. Model Construction 

The survival function of the distribution function in Equation (2) can be expressed as  

( ) 1 ( ) ( )[1 [1 ( )]]F x F x G x G xλ= − = − − ,                    (6) 

In this paper, a shape parameter r  is introduced on the basis of this survival function to generate a 
new distribution, which has greater flexibility and can be effectively adapted to a variety of complex data, 
the new survival function is given by the following equation 

( ) 1 ( ) ( )[1 [1 ( )]],  0
r

F x F x G x G x rλ λ= − = − − + ≥ .               (7) 

Let ( ( )) ln[ ( )]W F x F x= − , it is easy to prove that ( ( ))W F x  satisfies the three conditions for 
generating a family of T-X distributions, then then the distribution function of the family of T-X 
distributions becomes 

ln[ ( )[1 [1 ( )]]]

0
( ) ( )

rG x G x
J x r t dt

λ− − −
= ∫ ,                         (8) 

Let the distribution functions ( )G x  and ( )R t  both be exponentially distributed, i.e.,
( ) 1 xG x e β−= − , 0x > , 0β > . ( ) 1 tR t e θ−= − , 0t > , 0θ > . Then the distribution function of the 
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four-parameter ETE distribution can be obtained as 

( ) 1 (1 )r x xJ x e eθβ β θλ λ− −= − − + ,                        (9) 

where 0x ≥ , 0θ > , 0β > , | | 1λ ≤ , r λ≥ − . Derivation of this distribution function yields the pdf 
of the four-parameter ETE distribution as 

1

(1 ) ( 1)( )
(1 )

x
r x

x

r e rj x e
e

β
θβ

β θ

λ λθβ
λ λ

−
−

− −

− + +
=

− + .                   (10) 

Figure 2 shows the image of the probability density function of this distribution for different 
parameters. 

 
Figure 2: Different plots for the pdf of the four-parameter ETE distribution. 

To simplify the derivation of the relevant properties later, the cdf of the new ETE distribution can be 
obtained with the help of the generalised binomial distribution theorem as 

( )

0
( ) 1 ( , ) r k x

k
k

J x S e θ βθ λ
∞

− +

=

= −∑
,                         (11) 

where 
( , ) ( 1)i k i

k
i k

i
S

i k
θ

θ λ λ
∞

+

=

  
= −   

  
∑

, the derivation process is 
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4.2. Properties of the New ETE Distribution 

4.2.1. Moments 

Moments are used in probability distributions to quantify their basic characteristics, including 
centrality (mean), dispersion (variance), symmetry (skewness) and cuspiness (kurtosis), providing an 
important basis for statistical analysis and modelling. 

Theorem 1: The nth order moments of the new ETE distribution as 

( )

0
0

0

( ) ( )

( , )( )

1( , )( )
( )

tX
X

tx r k x
k

k

k
k

M t E e

e S r k e dx

S r k
r k t

θ βθ λ θ β

θ λ θ β
θ β

∞∞ − +

=

∞

=

=

= +

= +
+ −

∑∫

∑
.                   (12) 

4.2.2. Moment Generating Function 

The moment generating function is an important tool to characterise the distribution of random 
variables, especially in the study of the distribution of random variables and the sum of independently 
and identically distributed random variables, the moments function has unique advantages. 

Theorem 2: The moment generating function of the new ETE distribution as 

( )

0
0

0

( ) ( )

( , )( )

1( , )( )
( )

tX
X

tx r k x
k

k

k
k

M t E e
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θ βθ λ θ β

θ λ θ β
θ β

∞∞ − +

=

∞

=

=

= +

= +
+ −

∑∫

∑
.                   (13) 

4.2.3. Hazard Rate Function 

The hazard rate function is used in statistical decision theory to assess the performance of a decision 
rule. It measures the expected value of the actual loss or cost under a given decision rule. With the hazard 
rate function, the advantages and disadvantages of different decision rules can be compared and the rule 
that minimises the risk can be selected, thus improving the validity and reliability of the decision. 

Theorem 2: The hazard rate function of the new ETE distribution as 

( ) (1 ) ( 1)( )
1 ( ) 1

x

x

j x r r eh x
F x e

β

β

λ λθβ
λ λ

−

−

− + +
= =

− − + .                  (14) 

Figure 3 illustrates the variation of the risk function with different values of the parameters. 
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Figure 3: Hazard rate function of the four-parameter ETE distribution for various parameter values 

4.2.4. Maximum Likelihood Estimation of the Parameters 

The likelihood function is an important tool for estimating model parameters, and by measuring the 
likelihood of an observation occurring for a given parameter value, it helps us to find the parameter 
estimates that are most likely to lead to the data, and is used in model evaluation and selection. The 
likelihood function for the four-parameter ETE distribution is 

1 1

1 1

( ; , , , ) ( ) (1 ) [ (1 ) ( 1)]

n

i
i i i

n nr x
x xn

i i

L x r e e r e r
θβ

β βθθ β λ θβ λ λ λ λ=

−
− −−

= =

∑
= − + − + +∏ ∏

    (15) 

The log likelihood function is 

1 1

1

( ) ln( ) ln( ) ( 1) ln(1 )

ln[ (1 ) ( 1)]

i

i

n n
x

i
i i

n
x

i

ln L n n r x e

r e r

β

β

θ β θβ θ λ λ

λ λ

−

= =

−

=

= + − + − − +

+ − + +

∑ ∑

∑
        (16) 

Maximising the above equation yields maximum likelihood estimates for θ , β , λ  and r  with 
the following derivatives respectively 

1 1

ln ln(1 )i

n n
x

i
i i

L n r x e ββ λ λ
θ θ

−

= =

∂
= − + − +

∂ ∑ ∑
,                    (17) 
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5. Application 

In order to evaluate the performance of the four-parameter ETE distribution proposed in this paper, 
it is compared with the exponential distribution (E), the original ETE distribution and the Weibull 
exponential (WE) distribution to see how well they fit the heavy-tailed data. The density functions of the 
exponential (E) distribution and the Weibull exponential distribution (WE) are, respectively: 

( ) , 0, 0xf x e xθθ θ−= > > ,                            (21) 

1 ( 1)( ) ( 1) , , , , 0
xx x ef x e e e x

λ βλ λ β αθβλ θ β λ− − − − −= − > .               (22) 

In this paper, we use the payout data from the U.S. Compensation Losses dataset in the R language 
package, which contains a total of 1,500 pieces of data. The data were reduced by a factor of 1000 for 
ease of computation, and the parameters of these four distribution models were fitted by maximum 
likelihood estimation, and the AIC (Akaike Information Criterion), AICC (Amended AIC), BIC 
(Bayesian Information Criterion), and HQIC (Hannan-Quinn Information Criterion) values were 
computed separately to fully assess the model fit. The comparison of these criteria will further 
demonstrate the advantages of the new distribution in complex data processing[6-9]. 

AIC and AICC focus on the balance between model complexity and goodness-of-fit, with AICC 
correcting for AIC when the sample is small. bIC has a stricter penalty for model complexity and is 
suitable for use with large samples, while HQIC falls between AIC and BIC, providing an alternative 
balance. Smaller values of these metrics indicate that the model performs better in balancing goodness-
of-fit and complexity. They are expressed as 

2 ln( ) 2AIC L k= − + ,                              (23) 

22 ln( )
1

knAICC L
n k

= − +
− − ,                          (24) 

2 ln( ) ln( )BIC L k n= − + ,                            (25) 

2 log 2 log(log( ))HQIC L k n= − + ⋅ .                      (26) 

where ln( )L  is the maximum value of the log-likelihood function, k  is the number of parameters, 
and n  is the sample size. 

Table 1: Descriptive statistics of the loss of compensation dataset 

n Min Max Mean Median Sd Kurtosis Skewness 
1500 10 2713595 41208 12000 102747.7 9.15 141.98 
The descriptive statistics of this dataset are shown in Table 1, the kurtosis of this dataset is obtained 

to be 9.15 and skewness to be 141.98, which indicates that the data has obvious heavy-tailed 
characteristics and extremes, and the heavy-tailed distribution model should be used to describe this 
dataset. Next, the normal Q-Q plot of this data set is drawn, as shown in Figure 4. If the data conforms 
to a normal distribution, the sample quartiles should be aligned roughly along the red reference line. It is 
clear that the data are closer to the theoretical normal distribution in the middle section of the distribution, 
but significantly deviate from the reference line in the right tail, showing extreme large values much 
higher than predicted by the normal distribution. This phenomenon indicates that the data has a longer 
right tail and more outliers in the tail, suggesting that there are more significant extreme values in the 
sample, again validating the heavy-tailed nature of the data. 
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Figure 4: Normal Q-Q plots for the loss of compensation dataset 

The results of model parameter estimation are shown in Table 2, and the results of model fitting 
indexes are shown in Table 3. By comparing the various information criteria (AIC, AICC, BIC, HQIC), 
Table 1 shows that the values of the newly proposed four-parameter ETE distribution are lower than 
those of the traditional ETE, WE, and E distributions under all the evaluation criteria, which suggests 
that it has a better performance and less model complexity in fitting the data. 

Table 2: Model parameter estimation results 

Model 
ML estimates 

θ  β  λ  r  
NEW ETE 48.686 0.037 0.034 0.004 

ETE 0.020 0.943 0.999  
WE 73.199 0.626 0.00004  
E 0.024    

Table 3: Results of model fit indicators 

Model ln L−  AIC AICC BIC HQIC 
NEW ETE 6579.81 13167.61 13167.64 13188.87 13175.53 

ETE 6820.14 13646.27 13646.29 13662.21 13652.21 
WE 6660.05 13326.10 13326.11 13342.03 13332.03 
E 7077.96 14157.93 14157.93 14163.24 14159.91 

6. Conclusion 

The empirical evidence shows that the four-parameter ETE distribution performs superiorly with 
respect to all types of information criteria (AIC, AICC, BIC, HQIC), and the values of all assessment 
metrics are significantly lower than those of other traditional models. This means that the new model is 
able to fit the data better when modelling data with heavy-tailed distributions, while maintaining the 
simplicity of the model and avoiding the problem of overfitting. In particular, when dealing with data 
with high skewness and kurtosis, the four-parameter ETE distribution demonstrated a greater ability to 
capture extreme values and data complexity. Future research can explore the potential applications of the 
model in areas such as risk management, insurance actuarial and financial modelling, and assess its 
applicability to different types of data to further extend its theoretical and practical impact. 
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