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Abstract: Gas turbine generator units operate in high-risk environments with a high incidence of 
failures, necessitating an effective and timely alarm system to ensure their safe operation. However, 
existing alarm systems commonly use fixed-threshold alarms and lack correlation analysis between 
variables, leading to false negatives or false positives at certain normal operating points. This paper 
proposes applying the Dynamic Multivariate State Estimation Technique (DMSET) for real-time 
assessment of thermal power equipment operational states. The intelligent warning algorithm based on 
DMSET is designed to evaluate the health status of systems and equipment. Testing results indicate that, 
under normal operation, the Euclidean distance between the estimated vector and the real-time 
observation vector is short, resulting in high prediction accuracy; whereas, in abnormal conditions, the 
Euclidean distance is significantly larger than that in normal states. The study demonstrates that the 
proposed DMSET intelligent warning algorithm can sensitively detect abnormal information in 
equipment. 
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1. Introduction 

Under the 3060 target, China's power system is continuously increasing the proportion of renewable 
energy and accelerating the deep transformation towards a new type of power system. To achieve this, 
the grid requires stable, low-carbon baseload power sources as well as a high proportion of flexible 
power sources, with gas turbine power generation unit to play a crucial role[1]. However, the strong 
coupling between gas turbine power generation equipment and process systems, the complexity of 
these systems, and the specialized working environments (high temperature, high pressure, high-speed 
rotation) make gas turbine power plants high-risk areas with significant potential for failures. Any 
shutdown accident caused by a fault can result in substantial economic losses and severe social 
consequences. Therefore, ensuring the safe production and efficient operation of gas turbine power 
plants is of great importance, with the alarm system playing a critical role. 

When the production process deviates from the normal range, alarms can timely alert operators to 
take corresponding actions to bring the production process back to normal[2]. However, existing alarm 
systems typically use fixed-threshold alarms, where alarm thresholds are set independently without 
considering the relationships between relevant process variables. This can lead to false alarms at certain 
normal operating points and missed alarms at some abnormal points, failing to effectively ensure the 
safe operation of the unit over the entire load range[3]. Additionally, in actual production, due to the 
interrelationship and coupling between variables, once an abnormal condition arises, a large number of 
process variables may trigger alarms in a short period, resulting in alarm flooding[4]. This severely 
impacts the efficiency of fault handling by operators, making it difficult and unreliable to manually 
identify the root cause of alarms based on experience[5], highlighting the urgent need for scientific 
methods to assist in this process. 

The intelligent alarm system for gas turbine generator units relies on the industrial internet platform, 
using historical operational data of gas turbine generator units as the source of data analysis. It 
categorizes and classifies equipment across the entire plant, performing comprehensive analysis on 
multiple related variable measurement points within the model. The system dynamically monitors the 
operational status of critical equipment and process systems. It can issue alarms before abnormalities 
deteriorate into serious faults and helps operators quickly identify the fault location through root cause 
and degradation point analysis, historical data storage, and visualization functions. This enables timely 
intervention measures to prevent faults or minimize their impact, significantly enhancing the safety, 
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reliability, and economic efficiency of gas turbine power generation. 

2. Modeling Principles of DMSET Intelligent Early Warning Algorithm 

2.1 Establishment of Static Historical Matrix 

Select M mutually correlated measurement parameters of a certain device as monitoring variables. 
The vector composed of these M variables under a certain normal operating condition of the device is 
denoted as the observation vector X(j), that is 

𝑋𝑋(𝑗𝑗) = [𝑥𝑥1(𝑗𝑗), 𝑥𝑥2(𝑗𝑗), 𝑥𝑥3(𝑗𝑗), … , 𝑥𝑥𝑖𝑖(𝑗𝑗), … , 𝑥𝑥𝑀𝑀(𝑗𝑗)]𝑇𝑇                     (1) 

where xi(j) is the measurement value of measurement point i in normal state j. 

Select N historical normal states of the device. These N states cover the entire range of normal 
operation of the device. The observation vectors under these N states form the static historical memory 
matrix D, that is, 

𝐷𝐷𝑀𝑀×𝑁𝑁 = �

𝑥𝑥1(1) 𝑥𝑥1(2) … 𝑥𝑥1(𝑘𝑘) … 𝑥𝑥1(𝑁𝑁)
𝑥𝑥2(1) 𝑎𝑎𝑎𝑎𝑎𝑎; 𝑥𝑥2(2) …

⋮
𝑥𝑥𝑀𝑀(1) 𝑥𝑥𝑀𝑀(2) …

𝑥𝑥2(𝑘𝑘) … 𝑥𝑥2(𝑁𝑁)
⋮

𝑥𝑥𝑀𝑀(𝑘𝑘) … 𝑥𝑥𝑀𝑀(𝑁𝑁)

�                  (2) 

The static historical memory matrix is the foundation for modeling the MSET intelligent early 
warning algorithm. Each column observation vector in the historical memory matrix represents a 
normal operating state of the device. The N historical observation vectors selected after preprocessing 
the historical data cover the entire dynamic process of full-load operation of the device. 

2.2 Normalization of Static Historical Matrix Data 

The data of each measurement point of the equipment are normalized based on their respective 
extreme values, transforming the measurement values to the [0,1] interval. The normalized static 
historical matrix is D,

M×N. The normalization algorithm is: 

𝑥𝑥𝑖𝑖
, (𝑗𝑗) = 𝑥𝑥𝑖𝑖(𝑗𝑗)−𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
                                  (3) 

𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 = max [𝑥𝑥𝑖𝑖(1), 𝑥𝑥𝑖𝑖(2), … , 𝑥𝑥𝑖𝑖(𝑘𝑘), … , 𝑥𝑥𝑖𝑖(𝑁𝑁)]                     (4) 

𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 = min [𝑥𝑥𝑖𝑖(1), 𝑥𝑥𝑖𝑖(2), … , 𝑥𝑥𝑖𝑖(𝑘𝑘), … , 𝑥𝑥𝑖𝑖(𝑁𝑁)]                     (5) 

Where xi
, (j) is the normalized value of xi(j); xi,max and xi,min are the maximum and minimum 

values of xi(j) respectively. 

2.3 Dynamic Modeling 

If the real-time observation vector of the device at a certain moment is Xobs , and after 
normalization it becomes Xobs

, . First, calculate the Euclidean distance between this observation vector 
Xobs

,  and each column vector in the static historical memory matrix D,
M×N. Select Z historical 

observation vectors with smaller Euclidean distances to the real-time observation vector to form the 
dynamic matrix Dd. Therefore, the memory matrix is dynamically changing with each calculation. 

𝐷𝐷𝑑𝑑 = �

𝑥𝑥1
,,(1) 𝑥𝑥1

,,(2) … 𝑥𝑥1
,,(𝑘𝑘) … 𝑥𝑥1

,,(𝑍𝑍)
𝑥𝑥2

,, (1) 𝑥𝑥2
,, (2) …
⋮

𝑥𝑥𝑀𝑀
,, (1) 𝑥𝑥𝑀𝑀

,, (2) …

𝑥𝑥2
,, (𝑘𝑘) … 𝑥𝑥2

,, (𝑍𝑍)
⋮

𝑥𝑥𝑀𝑀
,, (𝑘𝑘) … 𝑥𝑥𝑀𝑀

,, (𝑍𝑍)

�                        (6) 

Let the weight vector be W = [w1, w2,··· wZ]T. The estimated vector Xest
,  of the current state of 

the device is a linear combination of the Z historical observation vectors in the dynamic matrix, that is, 

𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒
, = 𝐷𝐷𝑑𝑑 ⋅ 𝑊𝑊                                   (7) 

The weight vector W can be obtained when the Euclidean distance between the estimated vector 
Xest

,  and the real-time observation vector Xobs
,  is minimized. Let the residual vector between the 

estimated vector Xest
,  and the observation vector Xobs

,  be ε, which exists as in equations (8) to (9). 
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𝜀𝜀 = 𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒
, − 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

,                                     (8) 

||𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒
, − 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

, ||2 = 𝜀𝜀𝑇𝑇𝜀𝜀                                 (9) 

Therefore, when εTε is minimized, the weight vector W can be calculated using the least squares 
method. By deriving, we get 

𝑊𝑊 = (𝐷𝐷𝑑𝑑𝑇𝑇 ⋅ 𝐷𝐷𝑑𝑑)−1 ⋅ (𝐷𝐷𝑑𝑑𝑇𝑇 ⋅ 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜)                            (10) 

However, equation (10) has limitations, as it is difficult to ensure the linear in dependence of the 
column vectors in Dd, and therefore, it is also difficult to ensure the invertibility of the matrix Dd

T ⋅ Dd. 
To expand the applicability of equation (10), this paper uses a nonlinear operator ⊗ based on 
Euclidean distance to replace the dot product of matrices. The corresponding weight calculation 
formula is: 

𝑊𝑊 = (𝐷𝐷𝑑𝑑𝑇𝑇 ⊗𝐷𝐷𝑑𝑑)−1 ⋅ (𝐷𝐷𝑑𝑑𝑇𝑇 ⊗ 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜) ⊗ (𝑋𝑋,𝑌𝑌) = [∑ (𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘)2𝐿𝐿
𝑘𝑘=1 ]0.5        (11) 

where X and Y are two vectors of length L; xk  and yk  are the k-th elements of X and Y 
espectively. 

After obtaining the weight vector W, the calculation formula for the estimated vector Xest
,  is 

𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒
, = 𝐷𝐷𝑑𝑑 ⋅ [(𝐷𝐷𝑑𝑑𝑇𝑇 ⊗ 𝐷𝐷𝑑𝑑)−1 ⋅ (𝐷𝐷𝑑𝑑𝑇𝑇 ⊗ 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜)]                     (12) 

After de-normalizing Xest
, , the actual estimated vector Xest of each parameter can be obtained. 

3. Application and Verification 

The project is implemented based on an Industrial Internet platform, with its functional architecture 
shown in Figure 1. This platform achieves the modeling, standardization, software implementation, and 
reuse of industrial technology, experience, and knowledge by building a precise, real-time, and efficient 
data acquisition and interconnection system. It establishes a development environment oriented towards 
the storage, integration, access, analysis, and management of industrial big data. 

 
Figure 1: Functional Architecture of the Platform 

The platform provides no-code visual configuration and data presentation tools for engineers, aimed 
at scenarios such as production, monitoring, and business analysis. The intelligent alarm system relies 
on this platform to achieve data processing, model building, and real-time computation. Additionally, it 
allows for convenient subsequent functional expansion and customized upgrades. 

The platform is built on data servers and analysis servers and uses internationally recognized OPC 
and modbus communication protocols for data communication with the DCS (Distributed Control 
System). The specific communication methods are illustrated in Figure 2. The data server reads the 
measurement point data transmitted from the DCS host system via the OPC communication protocol. 
Considering the large number of measurement points and the substantial volume of data required for 
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the intelligent alarm system's calculations, the OPC communication method ensures the stable 
transmission of a large amount of real-time measurement point data to the platform. The analysis server 
reads operational data from the data server and transmits the calculation results in real-time back to the 
data server for storage. The data server then uses the modbus communication protocol to write the data 
back to the lower-level DCS system. The data computed by the intelligent alarm system is 
characterized by a lower volume but requires high real-time accuracy. The modbus communication 
protocol effectively ensures the timeliness and stability of data write-back. 

Upper Switch

Lower Switch Switch

Data Server

Analysis 
Server

DCS Intelligent Alarm System

DCS

OPC

ModBus

Firewall

Firewall

 
Figure 2: Communication implementation of intelligent alarm system 

4. Operational Effectiveness 

The intelligent alarm system has established 83 health models for various equipment and processes. 
Here, we use the turbine body temperature model as an example to demonstrate the effectiveness of the 
health calculations. This model includes measurement points for inter-turbine temperature, turbine 
exhaust temperature, and unit load. The predicted health during a specific period of gas turbine 
operation is shown in Figure 3. 

 
Figure 3: Health curve during stable operation of gas turbine 

During stable operation of the gas turbine, its health level also remains high, indicating normal 
operating conditions, which aligns with the actual situation and is considered reasonable. 

An experiment was designed to artificially alter the input measurement data to see if the model can 
accurately identify anomalies. The selected change point was the first stage turbine blade outer surface 
temperature. At time point 165, an abnormal value was introduced using the formula x′ = x + 10 +
10 ∗ rand(0,1), meaning random noise in the range of [10, 20] was added. At point 585, another 
abnormal value was introduced using the formula x′ = x + 5 + 5 ∗ rand(0,1), meaning random noise 
in the range of [5, 10] was added. Normal data was restored and random errors removed at point 1124. 
The altered measurement data is shown in Figure 4(a), and the calculated health level is shown in 
Figure 4(b). 
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(a) Measuring point temperature curve       (b) corresponding health curve 

Figure 4: Measurement point curve and corresponding health curve after the addition of abnormality 

At time point 165, significant random noise was added, resulting in a notable health decline at the 
corresponding point on the health curve. After reducing the noise amplitude at point 585, the health 
level began to increase but remained below normal operating levels. Once the random noise was 
removed at point 1124, the health curve returned to match the normal data health curve. This 
experiment demonstrates that the model accurately identifies the timing of anomaly introduction, 
increases the health level as anomalies decrease, and returns to normal health levels once anomalies are 
removed, verifying the model's validity. 

After implementation in a power plant, the system detected a lower health level in the gas turbine 
equipment, traced back to the turbine body temperature's low health level. Inspection of related 
measurement points revealed a fault in the inter-turbine temperature reading. This shows the system's 
capability to promptly detect operational faults. 

5. Summary 

The intelligent alarm system categorizes the gas turbine generator unit into three levels, associating 
various measurement points and establishing a correlation distribution model. Based on this, it 
calculates equipment health in real-time using operational data and presents it visually, allowing 
operators to grasp the overall operational status in real-time. Upon detecting anomalies, the system 
automatically analyzes which measurement points primarily caused the health decline at the first alarm 
and identifies the most deteriorated points at the current time, storing relevant data in a database. This 
helps operators quickly locate the measurement points affecting equipment health and aids in fault 
diagnosis. The system has the following features: 

(1) Integrates isolated analog values into their respective subsystems, performing comprehensive 
analysis with multiple related variables in conjunction with system operational status, achieving 
dynamic equipment monitoring and overcoming the risks of false or missed alarms due to isolated 
threshold settings. 

(2) After detecting anomalies, the system can automatically identify the primary and deteriorated 
measurement points. Combined with real-time stored health data, it assists operators in pinpointing 
fault locations and determining fault origins, improving efficiency. 

(3) The equipment health model covers the main and auxiliary systems and equipment of the gas 
turbine generator unit, including the gas turbine, heat recovery boiler, and steam turbine, creating a 
comprehensive plant equipment model. 

(4) Leveraging a low-code development platform facilitates further in-depth, customized function 
expansions and system upgrades, such as excluding non-critical anomalies from health calculations. 
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