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Abstract: Conducting a scientifically rigorous resilience assessment of urban infrastructure is crucial 

for maintaining the stability of essential urban functions. By analyzing the underlying meaning of 

urban infrastructure resilience, an evaluation index system was developed, encompassing five key 

dimensions: transportation, communication, water supply and drainage, sanitation, and energy. 

Leveraging index data from 2018 to 2022, training and testing datasets were generated using random 

sampling techniques. The classification model used for assessment was refined through feature 

selection and parameter optimization processes, and the enhanced model was subsequently applied to 

evaluate the resilience across the entire study region. The findings indicate the following: (1) The 

performance of the optimized model has improved across all five metrics, including the F1 score, with 

all values exceeding 0.94; (2) Upon assessing the resilience of each subsystem, the water supply and 

drainage resilience exhibited relatively stable trends within a narrow fluctuation range. 

Communication and energy resilience both demonstrated steady upward trajectories, whereas 

transportation and sanitation resilience followed a pattern of "decline – recovery – stabilization"; (3) 

Over the study period, the resilience of urban infrastructure in Hebei Province varied both temporally 

and spatially. The spatial distribution of the results revealed a pattern characterized by "higher values 

in central regions and lower values in northern and southern areas," accompanied by localized 

clustering effects. The overall regional resilience experienced fluctuations but showed improvement, 

particularly in northwest cities. Areas with fluctuating changes exhibited relatively larger 

discrepancies in resilience assessment outcomes. These methodologies and findings hold significant 

implications for the development of resilient cities and the strategic planning of urban infrastructure. 
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1. Introduction 

Hebei Province, situated in northern China, is encircled by Beijing and Tianjin and faces the Bohai 

Sea to the east. Its strategic geographical position makes it a crucial component of the national 

initiative for coordinated development in the Beijing-Tianjin-Hebei region, contributing to the 

formation of a world-class urban cluster. Consequently, advancing new urbanization and promoting 

high-quality integrated construction are pivotal steps in implementing the "Outline Plan for 

Coordinated Development of the Beijing-Tianjin-Hebei Region" [1]. The province's geological and 

topographical characteristics are highly diverse and dynamic. Influenced by the typical summer 

monsoon climate, Hebei frequently experiences heavy rainfall, resulting in well-established river 

systems. Meanwhile, human activities related to production and daily life have intensified, leading to 

frequent occurrences of various disasters and accidents with significant impacts. Over the past two 

decades, the urbanization rate has surged dramatically, rising from 26.08% at the start of the century to 

63.77%, reflecting rapid urban expansion. These disaster-related interference factors have created 

overlapping risks, exacerbating the challenges of risk prevention [2]. To ensure effective high-quality 

construction and coordination within the Beijing-Tianjin-Hebei urban agglomeration, evaluating and 

enhancing the resilience of urban infrastructure in Hebei Province holds substantial significance for 

decision-making in disaster prevention infrastructure planning and construction. 

Urban infrastructure resilience assessment involves systematically evaluating a system's capacity to 

sustain essential functions, adapt to environmental changes, endure sudden disruptions, and facilitate 

functional restoration and enhancement within a disturbed context. As a critical component of urban 
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resilience assessment, evaluating urban infrastructure resilience aids in identifying vulnerabilities 

within the facility network, ensuring the stable and reliable functioning of urban systems and their 

associated operations. Presently, the primary methodologies employed for analyzing urban 

infrastructure resilience encompass simulation approaches, empirical techniques, and index-based 

frameworks, among others. The index-based framework identifies influential indicators impacting 

urban infrastructure, establishes a risk evaluation system, refines it through weight allocation, and 

ultimately determines the risk level. Notably, scholars such as She Shuo [3] and Yan Weidong [4] have 

developed evaluation frameworks from dimensions like energy, transportation, drainage, network 

infrastructure, and health sanitation assessments. Despite variations in the academic community’s 

definition of urban infrastructure boundaries [5], energy, water supply and drainage, and transportation 

systems are widely acknowledged as core components. Common techniques for determining weights 

within the index framework include the Delphi method [6], Analytic Hierarchy Process (AHP) [7], 

Entropy Method [8]. Frequently utilized assessment models consist of PSR [9], DSR [10], and DPSIR [11]. 

The index evaluation approach employs multi-dimensional metrics and influencing factors to 

characterize infrastructure resilience, aiding in pinpointing strengths and weaknesses. However, this 

method often oversimplifies the intricate interactions within the infrastructure system by treating them 

as a linear aggregation of indicators, thereby neglecting the system's inherent complexity and failing to 

comprehensively account for all relevant factors. Machine learning, leveraging nonlinear modeling, 

dynamic learning, and implicit relationship extraction, overcomes the linear simplification constraints 

of the index-based approach[12]. Random Forest, with its strengths in nonlinear modeling, 

high-dimensional data processing, noise tolerance, interpretability, and practical efficiency, is especially 

well-suited for addressing the challenge of quantifying resilience in complex urban-scale systems [13]. 

Drawing on the theory of urban infrastructure resilience, this study develops an evaluation 

framework that incorporates various dimensions, including transportation, communication, water 

supply and drainage, sanitation, and energy. Leveraging data from 2018 to 2022, a resilience 

assessment model for infrastructure is established, utilizing the random forest classification algorithm 

for its development, training, and testing phases. The model undergoes refinement by integrating the 

selected F1 score and recall rate metrics. Subsequently, it is employed to evaluate the resilience of 

urban infrastructure in Hebei Province, aiming to offer insights and recommendations for the effective 

planning of infrastructure and resource optimization in the region. 

2. Research Theory and Methodology 

2.1 Definition of Urban Infrastructure Resilience  

The concept of "resilience," originating as a basic physical principle, was initially presented by 

Holling to characterize an ecosystem's capacity to preserve or recover its initial functions following a 

disturbance [14]. It was later incorporated into the 2013 New York City Resilience Master Plan. Urban 

infrastructure, which serves as the tangible, organizational, systematic, and service-based support for 

the structured progression of urban society and economy, significantly influences the organization of 

urban production and daily activities, as well as ensuring the dependable provision of essential public 

services [15]. 

Thus, urban infrastructure resilience can be understood as a city's capacity to efficiently withstand, 

adjust to, rebound from, and gain insights from the stresses and shocks brought by internal and external 

disasters, accidents, and other critical events. This ensures the continuity of essential urban functions 

and services while supporting the sustainable development of the socio-economy [16]. Consequently, 

evaluating urban infrastructure resilience can aid in pinpointing vulnerabilities and major risks within 

urban infrastructure systems. This holds substantial importance for refining infrastructure planning and 

construction decisions and strengthening the city's overall ability to withstand risks. 

2.2 Methods for Optimizing and Assessing Random Forest Models 

2.2.1 Basic Principles and Construction Process of Random Forest Algorithm 

Random Forest is an ensemble learning method designed to improve the accuracy and stability of 

classification and regression tasks. By aggregating multiple decision trees (base classifiers), it 

addresses the limitations of a single decision tree. During its construction, the algorithm generates 

multiple training subsets through random sampling from the original dataset. Decision trees are then 

built on each subset, with features being randomly chosen at each split [17]. Finally, the predictions from 
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all individual decision trees are combined to produce the overall output. The process of constructing 

decision trees relies on information gain to determine the best attribute for splitting, and the data 

continues to be divided until a stopping criterion is reached. For a dataset D containing n classes of 

samples, the proportion of its kth sample is denoted as Pk, and its information entropy is typically 

defined as: 

 Ent(D) = − ∑ pk
n
k=1 lbPk                            (1) 

In the formula, the smaller Ent(D) is, the more concentrated the category distribution in the dataset 

is; conversely, the more chaotic it is. 

If the attribute set D is split into V subsets D1, D2, ..., DV according to attribute a, the information 

entropies of these subsets will be Ent(D1), Ent(D2), ..., Ent(DV). Consequently, upon incorporating 

attribute a to divide the dataset, the resulting entropy becomes: 

Ent(D, a) = ∑
|Dv|

|D|
v
v=1 Ent(Dv)                          (2) 

Information gain indicates the difference in information entropy prior to and following the 

introduction of an attribute. The larger the gain, the more effective the outcome. It can be described as: 

     Gain(D,  a ) = Ent(D) − ∑
|Dv|

|D|
v
v=1 Ent(Dv)                     (3) 

2.2.2 Random Forest Feature Selection 

In the application phase, to improve model performance and simplify model complexity, this study 

aims to determine the optimal number of features and assess the importance of each feature using 

recursive feature elimination. Through evaluating correlations, an optimized feature set will be selected, 

which is expected to enhance training efficiency and improve the model's fitting performance. 

(1) Recursive Feature Elimination 

Recursive Feature Elimination determines the worst feature to be removed from the running results 

by calculating the average purity reduction of each feature in all decision tree node splits, and repeats 

the process of removing the remaining features and ranking their importance [18]. 

(2) Pearson Correlation Analysis 

The Pearson correlation coefficient is primarily used to evaluate the linear association between two 

variables. When two variables share a linear relationship, their patterns of change will follow a specific 

consistency that can be expressed numerically through the correlation coefficient. The formula for this 

numerical expression is: 

   rxy=
∑ (xi−x̅)(yi−y̅)n

i=1

√∑ (xi−x̅)2n
i=1 √∑ (yi−y̅)2n

i=1

                             (4) 

In the formula, and represent the observed values of two variables, while and denote their mean 

values. A value of r > 0 suggests a positive correlation, r < 0 implies a negative correlation, and r = 0 

means there is no linear association. The closer the absolute value of R is to 1, the stronger the 

correlation; conversely, the closer the absolute value of r is to 0, the weaker the correlation. 

2.2.3 Random Forest Hyperparameter Tuning 

Adjusting the hyperparameters of a random forest, such as the number of decision trees and the 

maximum depth, can affect the model's complexity, diversity, and fit, thereby influencing its 

generalization ability. Considering the characteristics of common hyperparameter optimization, to 

avoid getting stuck in local optima and improve computational efficiency [19], the study intends to first 

use random search to roughly explore the parameter space and identify promising regions, and then 

conduct more refined optimization within these regions using grid search. 

2.2.4 Evaluation Method of Random Forest Model 

To effectively analyze and evaluate the performance and characteristics of the classification model 

and determine its classification effect on different categories, the confusion matrix method will be 

adopted, combined with accuracy, recall rate, precision rate, F1 value and other indicators to assess the 

generalization ability of the model. The horizontal direction represents the true classification, and the 

vertical direction represents the classification result of the model. The description of each indicator is 

as follows. The basic form of the confusion matrix for a four-classification problem is shown in Table 
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Table 1 The Basic Form of the Four-Class Confusion Matrix 

 Category 1 Category 2 Category 3 Category 4 

Category 1 TP1 FN2 FN3 FN4 

Category 2 FP1 TP2 FN3 FN4 

Category 3 FP1 FP2 TP3 FN4 

Category 4 FP1 FP2 FP3 TP4 

In the table, TPi denotes the count of samples that truly belong to the i-th category and are correctly 

predicted as belonging to the i-th category (true positive). FPi represents the count of samples that do 

not actually belong to the i-th category but are incorrectly predicted as belonging to it (false positive). 

FNi refers to the count of samples that truly belong to the i-th category but are mistakenly predicted as 

not belonging to it (false negative). Among these, accuracy indicates the ratio of samples that the model 

predicts correctly to the overall number of samples. For a four-class classification problem, the formula 

for calculating it is: 

Accuracy=
∑ (TPi)4

i=1

∑ (TPi+FPi+FNi)4
i=1

                           (5) 

Recall measures the proportion of actual positive samples that the model successfully identifies, 

while precision measures the proportion of samples predicted as positive by the model that are actually 

positive. 

The calculation formulas for the precision and recall of the i-th class are: 

Precision_i=
TPi

(TPi+FPi)
                             (6) 

Recall_i=
TPi

(TPi+FNi)
                              (7) 

The F1 value is a performance metric that comprehensively considers precision and recall. The F1 

value for the i-th class is calculated using the following formula: 

F1_i=
2∗(Precision_i∗Recall_i)

(Precision_i+Recall_i)
                           (8) 

3. Overview of the Study Area and Data Sources 

3.1 Overview of the Study Area 

Hebei Province is situated in the central and eastern regions of northern China, encircling the 

municipalities of Beijing and Tianjin. To the east, it borders the western and northern coasts of the 

Bohai Bay and administers the Xiongan New Area along with 11 prefecture-level cities. As a key 

component of the Beijing-Tianjin-Hebei urban cluster, Hebei benefits from notable geographical 

advantages. The landscape features higher elevations in the northwest and lower areas in the southeast. 

The northern and western sections consist of mountains and hills, whereas the southeastern part forms 

part of the North China Plain. The region experiences a temperate continental monsoon climate, 

characterized by clearly defined seasons and significant annual fluctuations in precipitation. The 

primary rivers within the Hai River system flow from the north and west toward the eastern coastal 

regions, often resulting in frequent flooding[20]. Located in the northern section of the North China 

Seismic Zone, the area is influenced by multiple fault systems trending NE-NNE and NW-SW, leading 

to strong tectonic activity and a high frequency of seismic events[21]. Nevertheless, rapid urbanization 

has triggered a sharp rise in population, uneven distribution, and heightened interdependence and 

vulnerability within urban systems, presenting substantial challenges to sustainable urban development. 

Consequently, assessing the resilience of urban infrastructure plays a crucial role in enhancing cities' 

disaster resistance capabilities, optimizing planning and resource allocation, and fostering sustainable 

growth. 

3.2 Data source 

This collection and collation covers 23 indicators across five dimensions - transportation, 

communication, water supply and drainage, sanitation, and energy - for all cities in Hebei Province 

from 2018 to 2022. Among them, the data for water supply and drainage, sanitation, and energy are 
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sourced from the publicly available data of the Ministry of Housing and Urban-Rural Development; the 

transportation data are from the "China Urban Statistical Yearbook"; and the communication data are 

derived from the "China Construction Statistical Yearbook".  

4. Construction of the Evaluation Index System 

Urban infrastructure is generally categorized into two types: engineering infrastructure and social 

infrastructure. As defined in the "Standard for Basic Terminology of Urban Planning" (GB/T50280-98) 
[22], engineering infrastructure consists of six primary systems: transportation, water supply and 

drainage, communication, energy, disaster prevention, and urban environment. Among these, energy, 

water supply and drainage, and transportation are considered the core components. Social 

infrastructure,on the other hand, covers areas such as education, research, and healthcare. Despite 

growing recognition of the importance of social infrastructure, existing studies and planning practices 

predominantly emphasize engineering infrastructure [23-24]. Consequently, this study aims to integrate 

both engineering and social infrastructure. Drawing on relevant literature [25-26], it proposes a 

framework for evaluating the resilience of urban infrastructure across five dimensions: water supply 

and drainage, transportation, energy, environmental sanitation, and communication. The backbone of a 

city's efficient functioning and sustainable development is rooted in the integration of its critical 

infrastructure systems. The water supply and drainage system plays a vital role in ensuring safe water 

access for both residents and industries, managing sewage treatment, handling rainwater, and 

preserving environmental cleanliness. Meanwhile, the transportation network facilitates the movement 

of people and goods, maintaining social order and fostering regional economic and commercial growth. 

The energy system, including electricity and gas, supplies stable power to support urban infrastructure 

and daily life while driving industrial and economic progress. The sanitation system contributes to 

maintaining the city’s appearance and public health through cleaning services and waste management, 

protecting residents' well-being and enhancing the city’s reputation. Additionally, the communication 

system establishes a platform for information sharing, encouraging social cooperation and knowledge 

dissemination. These interconnected systems collectively form the foundation for ensuring a city 

operates safely, efficiently, and as an attractive place to live. 

Based on a comprehensive analysis of domestic and international research progress, and following 

the principles of systematicness, scientificity, typicality and data availability, this study selected 24 

positive indicators (see Figure 1 for details): 

 

Figure 1: Assessment Framework for Urban Infrastructure Resilience 
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5. Construction and Assessment of Random Forest Model 

5.1 Data Processing 

(1) Grading Standards for Urban Infrastructure Resilience 

In order to create training and testing samples for each grade in a reasonable manner, this study 

applied the natural break method. This method categorized the data values of each urban infrastructure 

resilience indicator across cities in Hebei Province in 2018 into four distinct levels. The grading criteria 

for evaluating urban infrastructure resilience indicators are illustrated in Table 2. 

Table 2 Assessment Criteria for Urban Infrastructure Resilience Indicators 

Grade Very High High Moderate Low 

C1/(Km.km-2) [98.30,100.00] [96.77,98.29] [92.73,96.76] 92.72 

C2/Km [47.01,148.60] [26.31,47.00] [22.01,26.30] [18.50,22.00] 

C3/Km [24234.01,42792.00] [14023.01,24234.00] [6396.01,14023.00] [4020.00,6396.00] 

C4/(Vehicle/104 Person) [15944.96,34274.79] [6466.02,15944.95] [4925.26,6466.01] [4693.48,4925.25] 

C5/Vehicle [9.83,10.81] [8.29,9.82] [5.89,8.28] [4.58,5.88] 

C6/104T [10.46,11.69] [8.39,10.45] [4.93,8.38] 4.92 

C7/104 Person [99.0,99.91] [97.87,99.00] [92.09,97.86] 92.08 

C8/% [8.09,8.55] [7.36,8.08] [6.48,7.35] [5.83,6.47] 

C9/% [2012.87,2529.22] [1142.98,2012.86] [642.37,1142.97] [525.31,642.36] 

C10/% [20.49,27.95] [18.55,20.48] [18.14,18.54] [18.02,18.13] 

C11/(104m3) [3.06,4.62] [2.30,3.05] [1.54,2.29] [1.20,1.53] 

C12/104m3 [5207.01,8677.00] [4204.01,5207.00] [2863.01,4204.00] [1470.00,2863.00] 

C13/104m3 [1470.00,2863.00] [13770.01,24952] [6697.01,13770] [3870.00,6697] 

C14/(Km.km-2) [4022.01,9907.00] [1842.01,4022.00] [942.01,1842.00] [768.00,942.00] 

C15/(Km.km-2) [37.37,42.86] [29.70,37.36] [24.48,29.69] [21.87,24.47] 

C16/% [129.00,135.22] [102.63,128.99] [83.41,102.62] 83.4 

C17/% [44.01,47.26] [42.32,44.00] [40.38,42.31] [38.88,40.37] 

C18/m2 [20.23,26.60] [15.78,20.22] [12.48,15.77] [9.40,12.47] 

C19/% [99.73,100.00] [98.86,99.72] [96.20,98.85] 96.19 

C20/104m2 [8850.91,19765.10] [5208.51,8850.90] [3545.01,5208.50] [2224.60,3545.00] 

C21/104m3 [78903.59,110890.82] [48587.22,78903.58] [13382.08,48587.21] [4279.48,13382.07] 

C22/km [3100.01,5818.83] [1982.01,3100.00] [1058.89,1982.00] [253.93,1058.88] 

C23/104kWh [5469998.01,8615362] [2926301.01,5469998] [1888415.01,2926301.00] [1504480.00,1888415.00] 

(2) Creation of Training and Testing Samples 

In accordance with the references[27-28], based on Table 2, 5,000 data sets were randomly generated 

within each evaluation grade threshold. Subsequently, random interpolation was applied to produce a 

total of 20,000 data sets. These were then split into two subsets: 15,000 for training purposes and 5,000 

designated as testing samples. The design of the urban infrastructure resilience evaluation samples and 

their anticipated outcomes is presented in Table 3. 

Table 3 Sample Design for Urban Infrastructure Resilience Evaluation and Expected Output Design 

Sample group Target output Evaluation level 

1-5000 1 Level 1 

5001-10000 2 Level 2 

10001-15000 3 Level 3 

15001-20000 4 Level 4 

(3) Data Normalization Processing 

In order to maintain the diversity of applicable models and remove the impact of varying 

measurement units within the data for subsequent machine learning modeling, this study applies 

extreme value normalization as a preprocessing method to the raw data. This approach effectively 

removes the effects of measurement units and ensures that all influencing factors are brought to a 

unified scale. 

                                       𝑋∗ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                (9) 

In the equation, represents the normalized data, while X stands for the original data. To ensure that 

each evaluation index carries equal weight, is set to twice the upper limit threshold of each evaluation 

index, and is determined as one-tenth of the lower limit threshold of each evaluation index.  

5.2 Assessment of Key Influencing Factors in the Model 

5.2.1 Identification of Key Factors 

The horizontal axis denotes the number of feature variables, while the vertical axis indicates the 
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variation in model accuracy, showcasing the calculation outcomes of the recursive feature elimination 

method (see Figure 2). It is evident that when 15 feature variables are selected, the model achieves its 

peak accuracy, yielding the most optimal performance. 

 

Figure 2: Relationship between the Number of Features and Model Accuracy 

5.2.2 Key Factor Analysis 

The significance of each feature was determined, and their importance rankings are presented as 

follows: C19 (0.15) holds the highest rank, followed by C16 (0.11). C3 and C9 (0.10) share the third 

position, while C10 (0.07) ranks lowest among the non-zero values. Subsequently, C15 and C22 (0.06), C6 

and C14 (0.05), C2, C8, and C23 (0.04), C4 and C17 (0.03), C13 and C18 (0.02), and finally C1, C5, C20, and 

C21 (0.01) decrease progressively in importance. Notably, C7, C11, and C12 exhibit no importance, with a 

value of 0 (as shown in Figure 3). 

 

Figure 3: Values of the Importance of Each Feature 

The correlation analysis heatmap presented in Figure 4 illustrates the relationships between 

different feature variables. In this visualization, darker shades represent stronger correlations, while 

lighter tones indicate weaker associations. The values span from -1 to 1, with 1 denoting a perfect 

positive relationship, -1 signifying a perfect negative relationship, and 0 reflecting no correlation at all. 

A higher absolute value closer to 1 suggests a stronger connection, whereas values nearer to 0 imply a 

weaker link. As depicted in Figure 4, C3 and C9, along with C16 and C19, demonstrate a significant 

positive association. Meanwhile, C5 and C12, as well as C7 and C11, exhibit some level of negative 

correlation. The remaining features show relatively minimal correlations. 
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Figure 4: Heatmap of Correlation Analysis of Feature Variables 

5.2.3 Ultimate Feature Determination 

Following the determination of feature quantities, importance ranking, and correlation analysis, the 

recursive feature elimination method suggests that the optimal number of features is approximately 15. 

Subsequently, based on the analysis of feature importance, those with an importance value of 0 were 

removed. Additional correlation analysis was then performed for further screening. The final set of 

retained features comprises: C1, C2, C3, C4, C6, C8, C9, C10, C13, C14, C15, C16, C17, C22, and C23. The 

excluded features include: C5, C7, C11, C12, C18, C20, and C21.  

5.3 Model for Optimizing Urban Infrastructure Resilience 

5.3.1 Optimization of Model Parameters 

The hyperparameters such as n_estimators, max_depth, min_samples_split, and min_samples_leaf 

directly affect the complexity, bias, variance, and final prediction performance of the model. First, set 

reasonable values for the above hyperparameters: n_estimators = [200, 300, 400, 500, 600, 700, 800, 

900, 1000, 1100], max_depth = [10, 20], min_samples_split = [2, 5, 10], min_samples_leaf = [1, 2, 4]. 

Use three-fold cross-validation to obtain the optimal values of each hyperparameter combination under 

random search: n_estimators: 400, max_depth: 10, min_samples_split: 2, min_samples_leaf: 1. Then, 

use grid search to arrange and combine the parameters generated by random search, and traverse these 

combinations. With the help of three-fold cross-validation, obtain the optimal values of each 

hyperparameter combination: n_estimators: 400, max_depth: 13, min_samples_split: 5, 

min_samples_leaf: 1. 

5.3.2 Results of Model Assessment 

The optimized inspection data model achieved an overall accuracy of 95.8%, along with a weighted 

F1 score of 94.9%. Specifically, the recall rates across the four categories were as follows: 97.5% for 

Category 1, 96.8% for Category 2, 97.3% for Category 3, and 97.1% for Category 4. Precision rates 

were recorded at 96.2%, 96.8%, 97.1%, and 97.3% respectively, while the corresponding F1 scores 

were 96.3%, 96.5%, 96.9%, and 97.0%. Additionally, the distribution of samples among the resilience 

levels was 24.88%, 25.50%, 25.08%, and 24.40%, respectively. The confusion matrix of the test data is 

shown in Table 4. 
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Table 4 Confusion Matrix of Test Data 

 1 2 3 4 Recall rate Proportion 

1 1120 0 0 0 97.5% 24.88% 

2 5 1185 0 0 96.8% 25.50% 

3 0 2 1168 0 97.3% 25.08% 

4 0 0 0 1145 97.1% 24.40% 

Accuracy rate 96.2% 96.8% 97.1% 97.3% Accuracy rate: 95.8% 

F1 score 96.3% 96.5% 96.9% 97% Weighted F1 score: 94.9% 

5.3.3 Effects of Model Optimization 

Of these, prior to optimization (Baseline), the accuracy was 89.2%, precision was 88.9%, recall was 

87.6%, and the F1 score was 88.3%. Following hyperparameter adjustment, each metric improved to 

92.7%, 91.5%, 92.3%, and 91.9%, respectively. After combined optimization, the best performance was 

achieved, with an accuracy of 95.8%, precision of 94.7%, recall of 95.1%, and an F1 score of 94.9%. 

The model's performance saw varying degrees of improvement after feature selection and parameter 

fine-tuning. Figure 5 shows the final optimization result of the model. 

 

Figure 5: Optimization Outcome of the Model 

6. Outcomes of Resilience Analysis 

6.1 Time series analysis of single-system resilience 

Figure 6 shows the time series analysis of five single systems，From the viewpoint of the water 

supply and drainage subsystem, several cities form a primary tier, including Shijiazhuang, Tangshan, 

Qinhuangdao, Handan, Xingtai, Zhangjiakou, and Cangzhou. These cities exhibit relatively stable 

fluctuations in their water supply and drainage resilience scores, with a steady trend in construction and 

management development. In contrast, Hengshui, Baoding, Langfang, and Chengde are positioned at a 

somewhat lower level. Notably, Hengshui has experienced a substantial rise in its water supply and 

drainage resilience score during the study period, increasing by 8.48%. The variations in water supply 

and drainage resilience among these prefecture-level cities remain within limited ranges, reflecting 

strong adaptability and stability. 

From the viewpoint of the communication subsystem, Langfang City demonstrates remarkable 

performance, experiencing the highest increase in communication resilience from 2018 to 2022, with 

an 8.74% growth. Shijiazhuang City and Qinhuangdao City constitute a mid-level group, maintaining 

an average resilience value of roughly 0.14 during the five-year period. In comparison, the 

communication infrastructure resilience of other prefecture-level cities remains relatively 

underdeveloped. In general, the communication infrastructure resilience of all prefecture-level cities 

exhibits a stable upward trend, indicating ongoing investment and progressive enhancement in regional 

communication infrastructure development. 

In terms of the transportation subsystem, Shijiazhuang and Tangshan lead the rankings, maintaining 

an average score above 0.35 over the past five years. In contrast, the other nine prefecture-level cities 

exhibit relatively weaker transportation resilience, with average scores remaining below 0.35. The 

overall development trend follows a "decline - recovery - stabilization" pattern. In 2020, the resilience 



Academic Journal of Environment & Earth Science 

ISSN 2616-5872 Vol.7, Issue 3: 55-67, DOI: 10.25236/AJEE.2025.070308 

Published by Francis Academic Press, UK 

-64- 

scores for transportation infrastructure across all prefecture-level cities dropped by 6.002% compared 

to 2018, after which they started to recover gradually. Notably, Hengshui, Xingtai, and Qinhuangdao 

demonstrated more pronounced recovery progress. 

From the viewpoint of the energy subsystem, Tangshan City, endowed with plentiful traditional 

energy resources like coal, oil, and natural gas, stands out with one of the highest energy infrastructure 

resilience scores among prefecture-level cities in Hebei Province. In contrast, the energy resilience 

levels of other prefecture-level cities in Hebei are relatively lower, averaging less than 0.16. Across all 

cities, there has been a consistent upward trend in energy resilience, reflecting ongoing enhancements 

in regional energy infrastructure development. 

In terms of the sanitation subsystem, Shijiazhuang City ranks at the forefront, with an average 

resilience score exceeding 0.15 over the past five years. Zhangjiakou City, Chengde City, Qinhuangdao 

City, and Tangshan City constitute the second tier, sustaining an average score of approximately 0.135. 

The resilience of sanitation infrastructure in the remaining prefecture-level cities is relatively lower. 

From 2018 to 2022, the resilience of sanitation infrastructure in each prefecture-level city experienced 

an evolutionary process characterized by "decline - improvement - fluctuation - stability." 

 

Figure 6: Time Series Chart of Urban Infrastructure Subsystem Resilience Levels 

6.2 Characteristics of Spatial Differentiation in Compound Resilience 

The composite infrastructure resilience scores for each city in Hebei Province were determined by 

calculating the weighted average of various indicators across the five subsystems: water supply and 

drainage, transportation, communication, environmental sanitation, and energy. For analysis, the results 

from 2018, 2020, and 2022 were chosen, and a spatio-temporal dynamic evolution map (Figure 7) was 

created. The natural break point method was applied to categorize the infrastructure resilience of Hebei 

Province's prefecture-level cities into four levels. The findings indicate that: 

(1) During the early and middle stages of the study period, the overall spatial distribution of the 

assessment results generally exhibited a pattern of "high in the center and low in the north and south," 

accompanied by localized spatial clustering effects. In contrast, during the recent period, the spatial 

clustering of infrastructure resilience diminished, yet the originally high-resilience areas in the central 

region continued to maintain relatively high resilience levels. 
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(2) Across the region, the overall trend of urban infrastructure resilience demonstrated a fluctuating 

upward trajectory. The proportion of cities with medium and high resilience levels increased over time, 

with the percentages of cities achieving medium and above resilience levels being 9.10%, 54.54%, and 

81.81%, respectively. Notably, the resilience levels of cities such as Langfang, Zhangjiakou, and 

Shijiazhuang improved significantly compared to the earlier and middle stages. By 2022, Langfang and 

Zhangjiakou had advanced from low and medium resilience levels to high resilience levels, while 

Shijiazhuang progressed from a relatively high resilience level to a high resilience level. 

(3) The disparities in resilience levels within the fluctuating change regions were pronounced. Cities 

like Cangzhou, Baoding, and Tangshan in the central area experienced fluctuations between medium 

and high resilience levels, whereas Xingtai's resilience oscillated between low and relatively low levels. 

Qinhuangdao displayed the most significant fluctuations, initially starting at a high resilience level 

before decreasing and subsequently rebounding. Meanwhile, the resilience levels of Hengshui and 

Chengde exhibited a slight downward trend. 

 

Figure 7: Spatial and Temporal Variations in Urban Infrastructure Resilience in Hebei Province 

7. Conclusion 

Evaluating the resilience of urban infrastructure plays a crucial role in recognizing the weaknesses 

within urban infrastructure systems and enhancing the development of resilient cities. Grounded in the 

theory of urban infrastructure resilience, this study establishes an index system comprising 23 

indicators initially chosen from five key areas: transportation, energy, communication, sanitation, and 

water supply and drainage. Through the approach of randomly generating samples for both training and 

testing purposes, along with integrating hyperparameter tuning and feature selection to optimize the 

model, the refined model is utilized to assess the performance of urban infrastructure across all 

prefecture-level cities in Hebei Province from 2018 to 2022. The findings are summarized as follows: 

(1) Following the process of feature selection and analysis, it was concluded that retaining 15 

features yielded the highest model accuracy. By removing features with zero importance and high 

correlation, as well as fine-tuning the model parameters, there was a marked enhancement in model 

performance, with all evaluation metrics surpassing 0.94. 

(2) The resilience performance across different subsystems exhibits variation. Water supply and 

drainage resilience remains generally stable, showing minimal fluctuations. Communication and energy 

resilience both demonstrate a consistent upward trend. In contrast, transportation and sanitation 

resilience initially decline, recover during the middle phase, and eventually stabilize in the later stages. 

(3) The resilience of urban infrastructure in Hebei Province reveals pronounced spatiotemporal 

differentiation characteristics. Spatially, it forms a pattern characterized by higher values in the central 

region and lower values in the northern and southern areas, accompanied by localized clustering effects. 

Temporally, it displays an overall fluctuating upward trend, with particularly notable improvements 

observed in northwestern cities. The resilience assessment values differ significantly across regions 

with varying fluctuation patterns. 
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