
Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-53-

Improvement of Algebraic Models of
Abstract Pipelines for Formal Verification

Feng Zhang, Wensheng Niu

School of Computer Science and Engineering, Beihang Univerisity, Beijing, China

ABSTRACT. A systematic approach to model microprocessors and their correctness
is useful and necessary for practical projects of formal verifications. We extend
existing models to support non-superscalar pipelines with dynamic stalling. We
introduce a set of algebraic tools and methods to model the specification,
implementation and verification, to define formal correctness condition in formal
verification and guide the actual work of microprocessors formal verification. This
method is a general basis of a uniform theoretical framework for modeling
microprocessors, not limited to specific reasoning systems. We consider the
microprocessors determined by iterated maps that data abstractions evolve over
time from some initial state, at different levels of temporal and data abstraction. We
apply this method to model a pipelined microprocessor with dynamic stalling and
verify it using algebraic equations.

KEYWORDS: Algebraic models, a uniform theoretical framework, time and data
abstraction, formal verification

1. Introduction

This paper analyses the nature of initialization, data and time abstraction in
pipelined microprocessors. With this basic of pipelines and algebra preliminary, the
task of this paper is to present an effective algebraic model of correctness for non-
superscalar pipelined microprocessors design and formal verification, but not
restricted to specific reasoning software (such as some term rewriting systems,
theorem prover etc.). We do not concern the specific works on microprocessors
formal verification using specific software tools. This algebraic model is a general
method, and may be represented in a range of machine reasoning systems. It forms a
basis of uniform theoretical frameworks for modeling microprocessors, and
simplifies the actual processes of formal verification.

We apply this algebraic method to the specification, implementation and
verification of a system. The microprocessors can be seen a system determined by
iterated maps that data abstractions evolve over time from some initial states, at
different levels of temporal and data abstraction.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-54-

Our interest is algebraic models of time and data abstraction, and complex
temporal relations when a system evolving from states to states at different levels of
abstraction. This involves temporal logic and state machine. We emphasize on the
application of this method to an abstract non-superscalar pipeline with dynamic
stalling.

In this paper, we introduce the method of correctness for modeling and
verification of microprocessors with algebraic tools, and revise some points with
vague meaning. Our work is based on the theory presented in [1]. In [3], Harman
started to use algebraic method to model digital system, and emphasize on the
specifications for digital systems. Previous to this, they have done many works on
temporal logic and formal specification in [4] [5] [6]. In [6], they present the theory
of time-consistency which is applied in the correctness proof. In [7], they introduce
a model of temporal logic and abstraction for synchronous digital hardware. [8] [9]
[10] [11] systematically present the algebraic method for modeling microprocessors,
and the correctness equation for proof. This method introduced the temporal
abstraction, the relationship between time at different levels of abstraction, and the
concept of the correctness of the implementation with respect to its specification. In
addition, they applied their theory to a case study of a microprocessor. [12] [13]
present an application of this method for formal verification of superscalar
computers. To prove the correctness of this method, [14] used HOL to prove an
application. [15] introduces an overview of progress on the formal specification and
verification of a commercial processor – ARM6 with the application of algebraic
theory of this method, using HOL proof system. [16] applies Maude to a simple
pipelined microprocessor. [17] introduces an algebraic framework for the
verification of correctness of hardware with input and output, using HOL. In [18]
and [19], Harman extend its model of correctness for non-superscalar
microprocessors to SMT and CMT processors and multithreaded and multi-core
processors respectively.

The above is about the algebraic method in formal verification for digital system.
There are many other interesting works on pipeline microprocessors. The concept of
[20] [21] is from [22] whose verification is on a simple pipelined processor. In [22],
specification and implementation evolve as states stream, but time is not explicitly
present; multiple copies of states of specification should be inserted to synchronize
the specification and implementation.

[23] presents a new HOL4 formalization of the current ARM instruction set
architecture, ARMv7, which is a modern RISC architecture with many advanced
features. [24] presents a direction in ISA for producing detailed models of
Instruction Set Architectures.

2. Algebra Preliminary

In this section, we present the basic algebraic theory for modeling time and
computer systems. We omit the details of universal algebra for computer science,
which can be referred to [25] [26] [27] [28] [29]. Computer systems are modelled by

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-55-

an algebraic framework using primitive recursive functions. Clock algebra models
time and state-stream algebra models computer systems.

First, we present the correct models of implementation with respect to a
functionality specification.

[1] defines the concept of the correctness of mapping between microprocessors
at two level of abstraction. The programmer’s model PM can be regarded as a
microprocessor’s functional or requirements specification, or architecture. The
abstract circuit AC is the implementation of a design and describes the main factors
of an actual circuit. Definition 2.1 (see [7] [8]) introduces the correctness model for
the implementation AC with respect to a functional or requirements specification
PM. This definition of correctness with respective to data and temporal abstractions
specifies exactly how an implementation is correct to a specific design.

Definition 2.1 A state function G: S×B→B can be called a correct
implementation of a state function F: T×A→A with respect to data abstraction map
ψ:B→A and a state-dependent retiming λ∈Ret (B, S, T) if, and only if, for all b∈B
and s = start (λ(b, s))

F(λ(b, s), ψ(b)) = ψ(G(b, s)),

Illustrated as Figure 1

Figure. 1 A Correct Implementation Model

In a practical formal verification of pipelined microprocessors, F:T×A→A is the
state function of functionality specifications and G: S×B→B is the state function of
abstract circuit, with respect to A and B representing corresponding state set. The
state-dependent retiming λ is a state-dependent time abstraction from a state with
respect to time clock S to time clock T. In addition, we consider that S is faster than
T, or S is as fast as T, because S represents the time clock cycles of abstract circuits
and T represents the instruction clock cycles.

2.1 Temporal Abstraction: Retimings and Immersions

[29] defines a method of time abstraction and iterated mapping. It models time
using clocks which divide time into discrete clock cycles, see definition 2.2.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-56-

Definition 2.2 A clock is an algebra (T|0, t+1) where: (i) T={0,1,2, … } is a set
of clock cycles, which is natural number; (ii) 0 is the initial clock cycle; and (iii) t+1
denotes the successor cycle function..

The purpose of clock is to denote the discrete time intervals or clock cycles. A
clock may not represent a constant subdivision of time, but should denote an interval
between significant states. For example, we might use an instruction cycle to
represent the execution of instructions in a microprocessor. In reality, the length of
each clock here are often different amounts of real time, because of variations of
instruction execution times in many processor implementations.

In order to relate multiple clocks, method of retiming and immersion is
introduced. We first introduce the retiming mapping, which has two properties: (i)
cycle 0 of one clock is always mapped to cycle 0 of the other; (ii) the mapping is
surjective and monotonic. The purpose of monotonic is to ensure there is never a
discrepancy in the temporal ordering of states after abstraction, because for all s, 𝑠𝑠′
∈T if 𝑠𝑠′> s, then λ(𝑠𝑠′) ≥ λ(s), where λ is a retiming mapping. For convenience, we
introduce the Definition 2.3:

Definition 2.3 A clock S is faster than clock T, or S is as fast as T, in a retiming
map from S to T.

Definition 2.4 Let S and T be clocks. A retiming map λ: S→T is a subjective
map with λ(0) = 0.The set of all retimings from clock S to clock T is represented by
Ret(S, T).

Definition 2.5 Immersion 𝜆̅𝜆 of a retiming λ∈Ret (S,T), represented by Imm (T,
S), is defined by

𝜆̅𝜆(t) = least s ∈ S such that λ(s) = t.

The set of all immersion from clock T to clock S is represented by Imm (T,
S).The meaning of 𝜆̅𝜆 is to search the first s∈S such that λ(s) = t. We can give
another λ definition as follows:

λ(s) = t ∈ T such that 𝜆̅𝜆(t) ≤ s,

We also recognize 𝜆̅𝜆 as an inverse function to λ.

According to definition 2.5, the notion of start is present and defined as follows:

Definition 2.6 Given a retiming λ∈Ret (S, T) and a time s∈S, the function start,
parameterized by λ and s, returns the first time 𝑠𝑠′∈S such that λ(s′) = λ(s), is
defined as follows:

start (λ, s) = 𝜆̅𝜆(λ(s)).

The role of s = start (λ (b, s)) is to ensure that the correctness at all ‘start’ clock
is hold. When an initialization function h: B→A is determined, then the functionality
of an implementation G is restricted in a specific way with respect to the
initialization function h (s) = start (λ(b, s)).

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-57-

Now, based on the above definition, the length function, which represents the
length of a retimed clock T with respect to the numbers of clock S, is introduced as
follows:

Definition 2.7 Given a retiming λ∈Ret (S, T) and its immersion function 𝜆̅𝜆∈
Imm (T, S), the length function len, parameterized by λ and t, returns the number of
cycles 𝑠𝑠′∈ 𝑆𝑆+= S-{0}, is defined as follows:

len (λ, t) = 𝜆̅𝜆(t+1) - 𝜆̅𝜆(t).

Definition 2.4 - 2.7 are illustrated in Figure 2.

Figure. 2 Retimings, Immersions, start and len

2.2 Data Abstraction and Iterated Maps

Microprocessors can be modeled as evolving systems of states from a set A,
generated by the recursive application of a next-state function f: A→A, starting from
some initial state a∈A. A state function F: T×A→A, for some clock T, computes
the state of a microprocessor at time t∈T, giving staring state a∈A. The implication
of A depends on the level of data abstraction of microprocessors. Typically A will be
a Cartesian product of components abstraction representing registers and memories.
The clock T depends on the level of time abstraction. For example, if each cycle of a
clock T corresponds with an instruction, the T is suitable for architecture, or a
programmer’s model PM; if each cycle of T corresponds with a system clock, T is
suitable for an implementation, or an abstract circuit model AC.

Definition 2.8 Given clock T, non-empty set A, and primitive recursive function
f: A→A, an iterated map F: T×A→A is a primitive recursive function defined as
follows, for all t ∈T and a∈A:

F (a, 0) = a,

F (a, t+1) = f (F (a, t)).

The above definition acquiesces the starting state is a constant state, we also
consider the iterated maps generalized by an initialization function h: A→A.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-58-

Definition 2.9 Given clock T, non-empty set A, and primitive recursive function
h: A→A and f: A→A, an iterated map F: T×A→A is a primitive recursive function
defined as follows, for all t∈T and a∈A:

F (a, 0) = h (a),

F (a, t+1) = f (F (a, t)).

Section 4.1.1 of [1] denotes that, the purpose of initialization functions is to
eliminate unwanted starting states, not to describe the initial behavior of a system.

2.3 Data Abstraction and Iterated Maps

System states can be ‘abstracted’ or ‘specified’ by an abstraction mapping ψ. For
example, if a state b represents a state of a microprocessor’s micro-architecture, the
state ψ (a) can represent a state of the processor’s architecture. Through the state
transition and abstraction, a notion of temporal abstraction is induced. For example,
if the mapping

ψ (𝑏𝑏0)=ψ(𝑏𝑏5)=𝑎𝑎0 and ψ(𝑏𝑏1)=ψ(𝑏𝑏2)=ψ(𝑏𝑏3)= ψ(𝑏𝑏4)=𝑎𝑎1

Is applied to the state sequence

𝑏𝑏0 → 𝑏𝑏1 → 𝑏𝑏2 → 𝑏𝑏3 → 𝑏𝑏4 → 𝑏𝑏5 → ⋯,

Then the state sequence will be

𝑎𝑎0 → 𝑎𝑎1 → 𝑎𝑎1 → 𝑎𝑎1 → 𝑎𝑎1 → 𝑎𝑎0 → ⋯,

Which has only two abstracted state changes and can be recognized as the
following sequence

a0 → a1 → a0 → ⋯.

We consider that, time is determined by considering the transition of distinct
states; if no states transition occurs, or sates cease to change, time is redundant
indeed.

By this example, we know that temporal abstraction may occur when there are
some data abstraction and state transition. We consider time to be determined by
events which can be the occurrence of something significant at the level of
abstraction under consideration. For example, we may only consider the start/end of
machine instructions to be events at the level of a microprocessor abstraction, and
register or memory transfer operations to be events at a lower level.

3. State Iterated Maps and Time Abstraction

Section 3.1, 3.2, and 3.3 present the concepts and conditions required to simplify
the verification process of an implementation.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-59-

3.1 Time-Consistent Iterated Maps

Section 3.2.1 of [13] specifies the details of theory of time-consistency. The
property of time-consistent is that it is not possible from the state of F to distinguish
any time t∈T from any other time 𝑡𝑡 ′∈T. The definition of time-consistent is
defined as follows.

Definition 3.1 An iterated function F: T×A→A is time-consistent if, and only if,

F (a, 𝑡𝑡1 + 𝑡𝑡2) = F (F (a, 𝑡𝑡2), 𝑡𝑡1),

For all a∈A and t1, t2∈T.

There is no initialization function in Definition 3.1. Now we consider the
situation of existing initialization function, see also Section 2.3.1 of [13].

Corollary 3.2 F: T×A→A is an iterated map with next-state function f: A→A
and initialization function h: A→A. Map F is time-consistent if and only if for all a
∈A and t∈T

F(a, t)=h(F(a, t)).

3.2 State-Dependent and Uniform Retimings

For each state of an implementation there will be an associated state-dependent
retiming according to the theory of Section 2.3.

Retimings, and associated immersions, should be determined relative to states
transition. The sequence of states is generated by recursive function F and the
initialization state G (0, b) ∈B, so the retiming λ: S→T with respect to F: S×B→B
and G: T×A→A (clock S is faster than clock T) should also be determined by the
initialization state G (0, b) ∈B (Details of Definition 3.2 and 3.3 are in [1, 10]).

Definition 3.2 A state-dependent retiming λ: B→Ret (S, T) is a map from states
to retimings. The set of all state-dependent retimings is denoted as Ret (B, S, T).

Definition 3.3 An immersion 𝜆̅𝜆 with respect to a state-dependent retiming λ is
defined as follows:

𝜆̅𝜆 (a, t) = least s ∈S such that λ (a, s) = t.

The set of all immersions relative to retimings in the set Ret (B, S, T) is denote d
by Imm (A, S, T).

Refer to definition 2.6 and 2.7, we will get the state-dependent function start and
length function len as follows:

Definition 3.4 Given a time s∈S, a starting state b∈ B and the associated state-
depended retiming λ∈Ret (B, S, T) and its associated immersion function λ�∈Imm
(A, T, S), the function start, parameterized by b, λ and s, returns the first time 𝑠𝑠′∈ S
such that λ (b, 𝑠𝑠′) = λ (b, s), is defined as follows:

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-60-

start (b,λ,s) = 𝜆̅𝜆(b, λ(b, s)).

Now, based on the above definition, the length function, which represents the
length of a retimed clock T with respect to clock S, is defined as follows:

Definition 3.5 Given a time s∈S, a starting state a∈A, a retiming λ∈Ret (B, S,
T) and its associated immersion function 𝜆̅𝜆∈Imm (A, T, S), the length function len,
parameterized by a, λ and t, returns the number of cycles 𝑠𝑠′∈𝑆𝑆+= S-{0}, is defined
as follows:

len (a, λ, t) = 𝜆̅𝜆 (a, t+1) – 𝜆̅𝜆 (a, t).

We can get another one definition and two lemmas as follows.

According to Definition 3.1 and Corollary 3.1, Definition 3.6 is given.

Definition 3.6 An iterated map G: S×B→B is time-consistent with respect to a
retiming λ∈ Ret (B, S, T) if, and only if,

G(b, 𝜆̅𝜆(𝑝𝑝2, 𝑡𝑡1) + 𝜆̅𝜆(b, 𝑡𝑡2)) = G(𝑝𝑝2, 𝜆̅𝜆(𝑝𝑝2, 𝑡𝑡1))

Where 𝑝𝑝2 = G (b, 𝜆̅𝜆 (b, 𝑡𝑡2)), for all b ∈ B and 𝑡𝑡1, 𝑡𝑡2∈ T.

Lemma 3.1 F: T×A→A be a iterated map with next-state function f: A→A and
initialization function h: A→A. The map F is time-consistent with respect to λ ∈Ret
(B, S, T) if and only if , for all a∈A and t ∈T

F (a, 𝜆̅𝜆 (a, t)) = h (F (a, 𝜆̅𝜆(a, t)))

Lemma 3.2 All iterated maps that do not have initialization functions are time-
consistent.

Now, we introduce the concept of uniformity. Uniform shows the relation
between the length len (a, λ, t) at some clock t ∈ T and the initial state a ∈ A.
According to this concept, given a uniform retiming λ∈Ret (B, S, T), in which the
length len (a, λ, t) should be a function of the state a∈A and its retiming λ,
independent of time t∈T. We call this property of a retiming is uniformity (see
Section 4.4 of [1]).

We define uniform retiming in terms of its immersion using duration function
dur: A→𝑆𝑆+.

Definition 3.7 Let T and S be clocks with clock S faster than clock T, G:
S×B→B and F: T×A→A be any time-consistent functions, data abstraction map ψ:
B→A and dur: A→𝑆𝑆+ be a function mapping states to a positive number of cycles of
clock S, b∈B is an initial state of F and G. A state-dependent retiming λ∈Ret (B, S,
T), with its immersion 𝜆̅𝜆 is said to be uniform with respect to F and dur if, and only
if , 𝜆̅𝜆 is of the form

𝜆̅𝜆 (b, 0) = 0,

𝜆̅𝜆 (b, t+1) = dur (F (b, t)) + 𝜆̅𝜆 (b, t)

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-61-

= dur (ψ (G (b, 𝜆̅𝜆 (b, t))) + 𝜆̅𝜆 (b, t).

According to the definition, the nature of dur is same as len with respect to a
retiming λ and its associated immersion 𝜆̅𝜆.

Suppose that G represents the implementation of some systems over a clock S, F
represents the specification of these systems over clock T, where S is faster than T.
Then specification clock t lasts dur (x) cycles of clock, where x = F (b, t) = ψ (G (b,
𝜆̅𝜆 (b, t)) is the state of F at clock cycle t ∈ T.

Note that, dur is a function only of states, because data abstraction ψ and
immersion 𝜆̅𝜆 is dependent of state, and consequently the number of cycles
corresponding with any states is independent of numerical value of t ∈ T.

In practice, the meaning of uniform is to denote the number of states b ∈ B with
respect to an state of a ∈ A, because the clock s denotes the state transition of B.
With the statically definition of dur, we can make concrete statements about how
many cycles of the implementation clock S correspond with one cycle of the
specification clock T for a possible initial state b∈ B. And because clock S
corresponds the state transition on micro-programmed level, clock T corresponds the
state transition on programmer level, we can use the meaning of uniform and dur to
get the number of states of micro-programmed level with respect to its programmer
level.

3.3 One-Step Theory for Simplifying Verification

[1] particularly specifies the concept of one-step theory for non-superscalar
microprocessors, we briefly describe it here.

The role of time-consistent iterated maps and uniform retimings is to construct a
theorem of one-step for simplifying formal verification. The method of simplifying
formal verification is to eliminate induction over time. The fundamental notion is
that, in real hardware, future state evolution is not dependent on time, but only on
the current state. That is to say that state transition does depend only on the current
state (and inputs at the current time if any). Briefly, given two time-consistent
iterated maps F: T×A→A and G: S×B→B, related by surjective data abstraction
map ψ: B→A and uniform retiming λ ∈ Ret (B, S, T), we can simplify the
verification of G with respect to F by just considering correctness at specification
times t = 0 and t = 1: that is times s=0 and s = start (λ, 1).

Definition 3.8 Let F: T×A→A and G: S×B→B be iterated maps, λ∈Ret (B, S, T)
be a uniform retiming with respect to G, ψ: B→A be a surjective data abstraction
map. If

(1) F is time-consistent; and

(2) G is time-consistent with respect to λ,

Then for all b ∈ B and s = start (λ, b, s)

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-62-

F(ψ(b), λ(b, s)) = ψ(G(b, s))

If and only if
F (ψ (b), 0) =ψ (G (b, 0)) and

F (ψ (b), 1) =ψ (G (b, 𝜆̅𝜆 (b, 1))).

Now, when we formally verify an abstract circuit AC with respect to a design
PM in programmer level, we need only to verify AC at times s= 𝜆̅𝜆 (b, 0)=0 and
s=𝜆̅𝜆 (b, 1).

4. An Abstract Pipeline Example

[1, 3, 15] apply the above concepts to an abstract pipeline case study, and the
author has verified the abstract pipeline using HOL or Maude. Now we exploit the
concept of [1] to a more universal of abstract non-superscalar pipeline.

We introduce an abstract pipeline with four stages to sufficiently demonstrate the
functionality of pipelined designs. The abstract pipeline is illustrated as follows.

Figure. 3 An Abstract Pipeline

The function of the abstract pipeline is to transfer the data of memory source src
to memory destination dst. The memory source register msr and the memory
destination dst address the memories.

4.1 Functionality Specification

From the perspective of programmers, the abstract pipeline system has two
memories and two memory-address registers. The system transfers the data of src at
address msr to dst at mdr. The memory state-space is M= [MAR→W] where W is
any non-empty set, and the memory-address register state-space is MAR. The state-
space of the functionality specification is

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹 = M×MAR×MAR×M.

A state transition function FS: T×𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹→𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹 and next-state function fs:
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹→𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹 is defined as follows:

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-63-

FS (0, src, msr, mdr, dst) = (src, msr, mdr, dst),

FS (t+1, src, msr, mdr, dst) = fs (FS (t, src, msr, mdr, dst))

Where src∈M, msr∈MAR, mdr∈MAR and dst∈M. The next-state function fs
updates the destination memory dst at location mdr with f (src (mdr)),

Fs (src, msr, mdr, dst)=(src, msr+1, mdr+1, dst [f (src (msr)) / mdr]).

The expression dst [f (src(msr))/mdr] is derived from the next memory
substitution function:

Memory [data/a_adress] (b_adress)=� 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑏𝑏_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), 𝑖𝑖𝑖𝑖 𝑏𝑏_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≠ 𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑖𝑖𝑖𝑖 𝑏𝑏_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,

Where the data at a_adress∈MAR is denoted as memory (a_adress); and if the
data∈M is stored at address a_adress, the resultant memory is denoted memory
[data/a_adress]. Then the memory substitution function is determined as the above
equation. (see Section 5.1 of [1])

4.2 Implementation Specification without Dynamic Stalling

We can divide the recursive function fs to four computations 𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3 and 𝑓𝑓4:

f = (𝑓𝑓1 ○ 𝑓𝑓2 ○ 𝑓𝑓3 ○ 𝑓𝑓4)

Where, 𝑓𝑓1 :W→ 𝑊𝑊1 , 𝑓𝑓2 : 𝑊𝑊1 → 𝑊𝑊2 , 𝑓𝑓3 : 𝑊𝑊2 → 𝑊𝑊3 and 𝑓𝑓4 : 𝑊𝑊3 →W, which
functionality is to complete the functionality of fs using four steps. 𝑊𝑊1, 𝑊𝑊2 and 𝑊𝑊3
store intermediate computations of operations. For brevity, 𝑓𝑓2 ○ 𝑓𝑓1 : W→𝑊𝑊2 is
denoted as 𝑓𝑓12, and 𝑓𝑓3 ○ 𝑓𝑓12: W→𝑊𝑊3 is denoted as 𝑓𝑓123.

In previous articles [1, 12, 18] have modeled several kinds of microprocessors,
such as pipelined microprocessors, superscalar-pipeline, SMT/CMT processors.

Now, what we interest is to extend the basic notion of above methods to build a
more universal algebraic model for formal verification of non-superscalar pipelines.
First, we will model an abstract pipelined implementation P1 without dynamic
stalling. We use a counter ctr ∈{1, 2, 3, 4}. If ctr=1, it means only 𝑓𝑓4 is idle and
w1, w2, w3 store valid data; ctr=2 denotes 𝑓𝑓3 and 𝑓𝑓4 are idle and only w3 stores junk
data; ctr=3 denotes 𝑓𝑓2, 𝑓𝑓3 and 𝑓𝑓4 are idle and w2, w3 sotre junk data; ctr=4 denotes
𝑓𝑓1 𝑓𝑓2, 𝑓𝑓3 and f4 are all idle and w1, w2, w3 all store junk data [3].

The state-space of StateP1 is

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃1 = M×MAR×𝑊𝑊1×𝑊𝑊2×𝑊𝑊3×MAR×M.

The iterated state evolution function 𝑃𝑃1: S × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝1→ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝1 is determined as
follows

𝑃𝑃1(0, σ) = 𝑝𝑝10(σ),

𝑃𝑃1(s+1, σ) = 𝑝𝑝1(𝑃𝑃1(s, σ)),

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-64-

Where σ = (ctr, src, msr, 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3, mdr, dst),

𝑝𝑝10(σ)=

⎩
⎪
⎪
⎨

⎪
⎪
⎧

(1, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓1�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚 − 1)�, 𝑓𝑓12�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚 − 2)�,

𝑓𝑓123�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚 − 3)�,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑)
 ,① 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 1,

(2, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓1�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚 − 1)�, 𝑓𝑓12�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚 − 2)�,
 𝐽𝐽𝐽𝐽,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑)

 ,② 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 1,

�3, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓1�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚 − 1)�, 𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑�, ③ 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 3,
(4, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, 𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑), ④ 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 4,

𝑃𝑃1 (s+1, σ) = 𝑝𝑝1 (𝑃𝑃1 (s, σ))=

⎩
⎪
⎨

⎪
⎧⑤ , 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) = 1,
⑥ , 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) = 2,
⑦ , 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) = 3,
⑧, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) = 4,

Where

⑤=(1,src,msr+1,f1(src(msr)),f12(src(msr-1)),

f123(src(msr-2)),mdr+1,dst(f123(src(msr-3)))),

⑥=(1,src,msr+1,f1(src(msr)),f12(src(msr-1)),

f123(src(msr-2)),mdr,dst),

⑦=(2,src,msr+1,f1(src(msr)),f12(src(msr-1)),JD,mdr,dst),

⑧=(3,src,msr+1,f1(src(msr)),JD,JD,mdr,dst).

It can also be denotes as follows

𝑃𝑃1(s+1, σ) = 𝑝𝑝1(𝑃𝑃1(s, σ))=�
⑤, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) = 1,
(𝑐𝑐𝑐𝑐𝑐𝑐 − 1, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 + 1,𝑓𝑓1�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚)�,

𝑓𝑓2(𝑤𝑤1),𝑓𝑓3(𝑤𝑤2),𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑)
,⑨𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) > 1,

Expression ⑨ denotes that if ctr(s)>1, the pipeline will fetch instructions to fill
the pipeline. The notion of 𝑝𝑝1(σ) is to forward the data computed in the pipeline, and
when ctr>1 at a clock time, the ctr will decrement 1 in the next stage.

There is no dynamic stalling, so P1 will fetch one instruction in one cycle of
abstract circuit clock while the msr will plus 1 to fetch the next instruction in the
next clock cycle. If ctr=m<4, the state of 𝑤𝑤𝑖𝑖 (1≤i≤4-m) corresponds with source
data from memory address (msr-i), after the appropriate operations of 𝑓𝑓𝑗𝑗, for all j≤i;
and the component(s) after 𝑤𝑤𝑖𝑖 stores junk data. For example, if the pipeline is empty
or partly empty, 𝑤𝑤3 stores junk data; if the pipeline is full, w3 = f123 (src (msr-
3))= f3 ○ f2 ○ f1 (src (msr-3)). The next-state function 𝑝𝑝1 : 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝1 → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝1
implements a pipeline by forwarding intermediate computed results 𝑤𝑤i to the next
operation 𝑓𝑓i+1 along the pipeline. The last operation with respect to 𝑤𝑤3 stores the
result in the dst at address mdr=msr-3. For any fixed time, in our view, msr in the
specification is the value of msr in the implementation from three clock cycles
earlier.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-65-

Definition 4.1 The map 𝑃𝑃1 is a correct implementation of FS with respect to data
abstraction map ψ: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃1→𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹

ψ(ctr, src, msr, 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 mdr,dst) =

�
(𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 − 3,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑), 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 = 1;
(𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑), 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 > 1,

and uniform retiming λ∈𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃1 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃1, S, T) where duration dur: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆→𝑆𝑆+
is defined by the equation

dur(ctr, src, msr, 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3, mdr,dst) = ctr.

The concept and proof of this definition refers to [1]. The next section, we will
extend this model to a non-superscalar pipeline with dynamic stalling.

4.3 A Model of Non-Superscalar Pipelines with Dynamic Stalling

Now, we introduce our new model of pipelined microprocessors with dynamic
stalling. The method of modelling is same as [1], but we increase some
improvements in this article. We do not discuss the details of stalling in pipelines
here, readers can research it in many other documents. The notion of a pipeline with
stalling is illustrated as Figure 4.

Figure. 4 A Pipeline with Stalling

In this paper, our principle concern is mathematical models, and not the practical
verification. However, our method and model would be advantageous to reduce
practical work of formal verification. The one-step theorem is practical-benefic for
simplifying workloads in practical verification.

According to the concept of pipelines with dynamic stalling, the stalling
component and its previous will detain their states evolution until an event cancels

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-66-

the stalling, nevertheless, the stages of back components will evolves normally. For
example, if a stalling source will affect the computation 𝑓𝑓3 and there is a valid data
in 𝑤𝑤3, the correct value of w3 will store in dst in the next clock cycles, although 𝑓𝑓1
and 𝑓𝑓2 are stalling and the states of w1 and w2 will not change until the source of
stalling is cancelled. In many actual pipelines, the stalling is considered to be a
nop(no-operations) in corresponding components. We now consider the
circumstances that a source of stalling will affect the computation 𝑓𝑓3.To model the
time of stalling source, we introduce a map from S to a Booleans streams using the
next set

Dstl={stl ∈ [S→B] | ∀s ∈ S, ∃𝑠𝑠′∈S such that 𝑠𝑠′>s and stl(𝑠𝑠′) = ff}.

If stl(𝑠𝑠′)=ff, the pipeline will compute normally; and if stl(𝑠𝑠′)=tt, there will be a
source of stalling in corresponding components.

The pipelines with dynamic stalling are named as 𝑃𝑃𝑆𝑆. The iterated state transition
map 𝑃𝑃𝑆𝑆: S×𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑃𝑃1×Dstl→𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 is defined as follows

𝑃𝑃𝑆𝑆(0, σ, stl) = 𝑝𝑝𝑆𝑆0(σ),

𝑃𝑃𝑆𝑆(s+1, σ) = 𝑝𝑝𝑆𝑆(𝑃𝑃𝑆𝑆(s, σ, stl), stl(s)),

Where σ = (ctr,src,msr, 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3,mdr,dst), 𝑝𝑝𝑆𝑆0(σ) = 𝑝𝑝10(σ),

and 𝑃𝑃𝑆𝑆(s+1, σ) = 𝑝𝑝𝑆𝑆(𝑃𝑃𝑆𝑆(s, σ, stl), stl(s)) =

⎩
⎪⎪
⎨

⎪⎪
⎧⑤, if ctr(s) = 1 and stl(s) = ff,
⑨, if ctr(s) = 1 and stl(s) = tt,
⑩, if ctr(s) = 2 and stl(s) = tt,
⑥, if ctr(s) = 2 and stl(s) = ff,
⑦, if ctr(s) = 3 and stl(s) = ff or tt,
⑧, if ctr(s) = 4 and stl(s) = ff or tt.

Where

⑨=(2, src, msr, f1(src(msr)), f12(src (msr-1)), JD, mdr+1,dst (f123 (src (msr-
2))))

⑩=(2, src, msr, f1 (src (msr)), f12 (src (msr-1)), JD, mdr, dst).

We can conclude that, when existing a source of stalling, the pipeline will stop to
fetch instructions until the stalling is canceled. The above equation can be reduced
from the notion of pipeline and stalling. We now define the correct implementation
equation.

Definition 4.2 The map PS is a correct implementation of FS with respect to data
abstraction map ψ: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆→𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐹𝐹𝐹𝐹

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-67-

ψ (ctr, src, msr, 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3, mdr, dst, stl) =

�
(𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 − 3,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑), 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠(0) = 𝑓𝑓𝑓𝑓,
(𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 − 2,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑), 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠(0) = 𝑡𝑡𝑡𝑡.

(𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑), 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) > 1,

and uniform retiming λ ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑆𝑆 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 , S, T) where duration
dur: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆→𝑆𝑆+ is defined by the equation

dur (ctr, src, msr, 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3, mdr, dst, stl) =

�
1, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 1,
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑠𝑠𝑠𝑠𝑠𝑠) + 2, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 2,
4, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) > 2,

Where NextFalse (stl): Dstl→N is defined by

NextFalse (stl) = least s∈S such that stl(s) = ff.

Following the property of our time abstraction (Section 2.3), we should discard
clock cycles where 𝑃𝑃𝑆𝑆 does not change stages. In our example, this is the
circumstance when ctr=2 and stl = tt. We can combine all clock cycles s∈S where
stl(s)=tt into a single cycle of some new abstract clock 𝑆𝑆′. The clock 𝑆𝑆′ disallows
contiguous sequences of more than one tt element:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′={stl∈[S→B] | ∀s ∈ S, ∃𝑠𝑠′ ∈ S such that 𝑠𝑠′>s and stl(𝑠𝑠′) = ff and

∀𝑠𝑠′′∈ S, if stl(𝑠𝑠′′) = tt, then stl(𝑠𝑠′′-1) = stl(𝑠𝑠′′+1) = ff}.

The retiming is necessary to be uniform to apply the one-step theorems in
practical verification. Therefore the function dur is revised to 𝑑𝑑𝑑𝑑𝑑𝑑′ as follows:

𝑑𝑑𝑑𝑑𝑑𝑑′ (ctr, src, msr, 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3, mdr, dst, stl) =

�
1, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 1,
2, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 2,
𝑐𝑐𝑐𝑐𝑐𝑐, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) > 2,

and can be reduced to

𝑑𝑑𝑑𝑑𝑑𝑑′(ctr,src,msr, 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3,mdr,dst,stl) = ctr.

From the different of Definition 4.1 and 4.2, we can conclude that, if we ignore
the clock cycles where the stages of systems do not change, in this example, the
length of state in the functionality specification is not changed.

In our example of 𝑃𝑃𝑆𝑆 which may be stalled in computation 𝑓𝑓3, we analysis its
property and try to model a correct implementation to a specification to simplify the
practical verification.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-68-

5. Further Considerations

The next work we are concerning is modeling some more complex
microprocessors, such as multicore or many-core, superscalar pipelines and other
parallel microprocessors; or some complex components, such as cache and memory
in many-core, which must be of cache-coherency and memory-consistence. The
complex relation between time and data is the most challenge for us to overcome.

References

[1] Fox A C J, Harman N. A. 2003.Algebraic models of correctness for abstract
pipelines[J]. The Journal of Logic and Algebraic Programming, 2003, 57 (1):
71-107.

[2] Harman, N.A.1989. Formal specifications for digital systems. Ph.D. Thesis,
School of Computer Studies, University of Leeds, 1989.

[3] Harman, N.A., Tucker, J.V.1988.Clocks, retimings, and the formal specification
of a UART. In: Milne, G.J. (ed.), The Fusion of Hardware Design and
Verification, pp. 375-396. Amsterdam: North-Holland, 1988.

[4] Harman, N.A., Tucker, J.V.1988. Formal specification and the design of
verifiable computers. In: Proceedings of the 1988 UK IT Conference, pp. 500-
503, University College Swansea, lEE, 1988.

[5] Harman, N.A., Tucker, J.V.1990. The formal specification of a digital correlator
I: Abstract user specification. Theoretical Foundations for VLSI Design, In:
McEvoy, K., Tucker, J.V. (eds.), Cambridge University Press Tracts in
Theoretical Computer Science 10, pp. 161-262 (1990).

[6] Harman, N.A., Tucker, J.V.1992. Consistent refinements of specifications for
digital systems. In: Prinetto, P., Camurati, P. (eds.), Correct Hardware Design
Methodologies, pp.273-295. Amsterdam: North-Holland 1992.

[7] John O’Donnell. 2002.Overview of Hydra: A concurrent language for
synchronous digital circuit design. In Proceedings of the 16th International
Parallel and Distributed Processing Symposium. IEEE Computer Society Press,
2002.

[8] Harman N. A, Tucker J V. 1996.Algebraic models of microprocessors
architecture and organization [J] .Acta Informatica, 1996, 33 (5): 421-456.

[9] Harman, N. A. and Tucker, J. V.1997. Algebraic models of microprocessors: the
verification of a simple computer. In V.Stavridou, ed., Proceedings of the 1995
IMA Conference on Mathematics for Dependable Systems. Oxford University
Press, Oxford, 1997.

[10] Harman N. A, Tucker J V. 1996.Algebraic models and the correctness of
microprocessors [M]. Correct Hardware Design and Verification Methods.
Springer Berlin Heidelberg, 1993: 92-108.

[11] Fox A C J, Harman N. A. 1998.Algebraic models of superscalar microprocessor
implementations: A case study. [M] Prospects for Hardware Foundations.
Springer Berlin Heidelberg, 1998: 138-183.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-69-

[12] Fox A C J, Harman N. A. 2003.Algebraic models of correctness for abstract
pipelines [J]. The Journal of Logic and Algebraic Programming, 2003, 57 (1):
71-107.

[13] Fox A C J. An algebraic framework for modelling and verifying
microprocessors using HOL [M]. University of Cambridge, Computer
Laboratory, 2001.

[14] Fox A C J. 2003. Formal specification and verification of ARM6 [M]. Theorem
proving in higher order logics. Springer Berlin Heidelberg, 2003: 25-40.

[15] Harman N. A.2001. Verifying a simple pipelined microprocessor using Maude.
In M Cerioli and G Reggio, editors, Recent trends in algebraic development
techniques: 15th International Workshop, WADT 2001, Genova, Italy,
April2001. Lecture Notes in Computer Science 2267, pages 128-151, SpringerV
erlag.

[16] Fox A C J. 2005. An algebraic framework for verifying the correctness of
hardware with input and output: a formalization in HOL [M]. Algebra and
Coalgebra in Computer Science. Springer Berlin Heidelberg, 2005: 157-174. }

[17] Harman N. A. 2007.Algebraic models of behaviour and correctness of SMT
and CMT processors [J]. The Journal of Logic and Algebraic Programming,
2007, 74 (1): 32-56.

[18] Harman N. A. 2007.Algebraic models of simultaneous multithreaded and multi-
core processors [M] // Algebra and Coalgebra in Computer Science. Springer
Berlin Heidelberg, 2007: 294-311.

[19] S Miller and M Srivas. 1995. Formal verification of an avionics microprocessor.
Technical report, SRI International Computer Science Laboratory CSL-95-04,
1995.

[20] S Miller and M Srivas. 1995.Formal verification of the AAMP5 microprocessor:
a case study in the industrial use of formal methods. In Proceedings of WIFT 95,
Boca Raton.

[21] M Bickford and M Srivas. 1990.Verification of a pipelined processor using Clio.
In M Leeser and G Brown, editors, Proceedings of the Mathematical Sciences
Institute workshop on hardware specification, Verification and Synthesis:
Mathematical Aspe cts, pages 307 {332. Lecture Notes in Computer Science 408,
Springer-V erlag.

[22] M Srivas and M Bickford. 1991. Formal verification of a pipelined
microprocessor [J]. IEEE Software, 7 (5): 52 -64, 1991.

[23] Fox A C J.2012. Directions in ISA specification [M]. Interactive Theorem
Proving. Springer Berlin Heidelberg, 2012: 338-344.

[24] Rutten JJMM. 2000. Universal coalgebra: a theory of systems [J]. Theoretical
Computer Science, 2000, 249 (1): 3-80.

[25] Meinke, K. and Tucker, J. V.1992. Universal algebra. In T. S. E. Maibaum, S.
Abramsky and D. Gabbay, eds, Handbook of Logic in Computer Science. Oxford
University Press, Oxford, 1992, 189-411.

[26] M Wirsing. 1990. Algebraic specification. In Jvan Leeuwen, editor, Handbook
of theoretical computer science, volume B: formal models and semantics, pages
675-788. Elsevier, 1990.

[27] Gratzer G A. Universal algebra [M], pages: 223-269 Springer, 2008.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006

Published by Francis Academic Press, UK
-70-

[28] Ehrig H, Mahr B. 2011. Fundamentals of algebraic specification I: Equations
and initial semantics [M]. Springer Publishing Company, Incorporated, 2011.

[29] Fox A C J, Harman N A. 1998. Algebraic models of temporal abstraction for
initialised iterated state systems: An abstract pipelined case study [R]. Technical
Report CSR 21-98 (submitted to Acta Informatica), University of Wales Swansea,
1998.

