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ABSTRACT. A systematic approach to model microprocessors and their correctness 
is useful and necessary for practical projects of formal verifications. We extend 
existing models to support non-superscalar pipelines with dynamic stalling. We 
introduce a set of algebraic tools and methods to model the specification, 
implementation and verification, to define formal correctness condition in formal 
verification and guide the actual work of microprocessors formal verification. This 
method is a general basis of a uniform theoretical framework for modeling 
microprocessors, not limited to specific reasoning systems. We consider the 
microprocessors determined by iterated maps that data abstractions evolve over 
time from some initial state, at different levels of temporal and data abstraction. We 
apply this method to model a pipelined microprocessor with dynamic stalling and 
verify it using algebraic equations. 

KEYWORDS: Algebraic models, a uniform theoretical framework, time and data 
abstraction,  formal verification 

 

1. Introduction 

This paper analyses the nature of initialization, data and time abstraction in 
pipelined microprocessors. With this basic of pipelines and algebra preliminary, the 
task of this paper is to present an effective algebraic model of correctness for non-
superscalar pipelined microprocessors design and formal verification, but not 
restricted to specific reasoning software (such as some term rewriting systems, 
theorem prover etc.). We do not concern the specific works on microprocessors 
formal verification using specific software tools. This algebraic model is a general 
method, and may be represented in a range of machine reasoning systems. It forms a 
basis of uniform theoretical frameworks for modeling microprocessors, and 
simplifies the actual processes of formal verification.  

We apply this algebraic method to the specification, implementation and 
verification of a system. The microprocessors can be seen a system determined by 
iterated maps that data abstractions evolve over time from some initial states, at 
different levels of temporal and data abstraction. 
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Our interest is algebraic models of time and data abstraction, and complex 
temporal relations when a system evolving from states to states at different levels of 
abstraction. This involves temporal logic and state machine. We emphasize on the 
application of this method to an abstract non-superscalar pipeline with dynamic 
stalling. 

In this paper, we introduce the method of correctness for modeling and 
verification of microprocessors with algebraic tools, and revise some points with 
vague meaning. Our work is based on the theory presented in [1]. In [3], Harman 
started to use algebraic method to model digital system, and emphasize on the 
specifications for digital systems. Previous to this, they have done many works on 
temporal logic and formal specification in [4] [5] [6]. In [6], they present the theory 
of time-consistency which is applied in the correctness proof. In [7], they introduce 
a model of temporal logic and abstraction for synchronous digital hardware. [8] [9] 
[10] [11] systematically present the algebraic method for modeling microprocessors, 
and the correctness equation for proof. This method introduced the temporal 
abstraction, the relationship between time at different levels of abstraction, and the 
concept of the correctness of the implementation with respect to its specification. In 
addition, they applied their theory to a case study of a microprocessor. [12] [13] 
present an application of this method for formal verification of superscalar 
computers. To prove the correctness of this method, [14] used HOL to prove an 
application. [15] introduces an overview of progress on the formal specification and 
verification of a commercial processor – ARM6 with the application of algebraic 
theory of this method, using HOL proof system. [16] applies Maude to a simple 
pipelined microprocessor. [17] introduces an algebraic framework for the 
verification of correctness of hardware with input and output, using HOL. In [18] 
and [19], Harman extend its model of correctness for non-superscalar 
microprocessors to SMT and CMT processors and multithreaded and multi-core 
processors respectively. 

The above is about the algebraic method in formal verification for digital system. 
There are many other interesting works on pipeline microprocessors. The concept of 
[20] [21] is from [22] whose verification is on a simple pipelined processor. In [22], 
specification and implementation evolve as states stream, but time is not explicitly 
present; multiple copies of states of specification should be inserted to synchronize 
the specification and implementation. 

[23] presents a new HOL4 formalization of the current ARM instruction set 
architecture, ARMv7, which is a modern RISC architecture with many advanced 
features. [24] presents a direction in ISA for producing detailed models of 
Instruction Set Architectures. 

2. Algebra Preliminary 

In this section, we present the basic algebraic theory for modeling time and 
computer systems. We omit the details of universal algebra for computer science, 
which can be referred to [25] [26] [27] [28] [29]. Computer systems are modelled by 
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an algebraic framework using primitive recursive functions. Clock algebra models 
time and state-stream algebra models computer systems. 

First, we present the correct models of implementation with respect to a 
functionality specification. 

[1] defines the concept of the correctness of mapping between microprocessors 
at two level of abstraction. The programmer’s model PM can be regarded as a 
microprocessor’s functional or requirements specification, or architecture. The 
abstract circuit AC is the implementation of a design and describes the main factors 
of an actual circuit. Definition 2.1 (see [7] [8]) introduces the correctness model for 
the implementation AC with respect to a functional or requirements specification 
PM. This definition of correctness with respective to data and temporal abstractions 
specifies exactly how an implementation is correct to a specific design. 

Definition 2.1 A state function G: S×B→B can be called a correct 
implementation of a state function F: T×A→A with respect to data abstraction map 
ψ:B→A and a state-dependent retiming λ∈Ret (B, S, T) if, and only if, for all b∈B 
and s = start (λ(b, s)) 

F(λ(b, s), ψ(b)) = ψ(G(b, s)), 

Illustrated as Figure 1 

 

Figure. 1 A Correct Implementation Model 

In a practical formal verification of pipelined microprocessors, F:T×A→A is the 
state function of functionality specifications and G: S×B→B is the state function of 
abstract circuit, with respect to A and B representing corresponding state set. The 
state-dependent retiming λ is a state-dependent time abstraction from a state with 
respect to time clock S to time clock T. In addition, we consider that S is faster than 
T, or S is as fast as T, because S represents the time clock cycles of abstract circuits 
and T represents the instruction clock cycles.  

2.1 Temporal Abstraction: Retimings and Immersions 

[29] defines a method of time abstraction and iterated mapping. It models time 
using clocks which divide time into discrete clock cycles, see definition 2.2. 
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Definition 2.2 A clock is an algebra (T|0, t+1) where: (i) T={0,1,2, … } is a set 
of clock cycles, which is natural number; (ii) 0 is the initial clock cycle; and (iii) t+1 
denotes the successor cycle function.. 

The purpose of clock is to denote the discrete time intervals or clock cycles. A 
clock may not represent a constant subdivision of time, but should denote an interval 
between significant states. For example, we might use an instruction cycle to 
represent the execution of instructions in a microprocessor. In reality, the length of 
each clock here are often different amounts of real time, because of variations of 
instruction execution times in many processor implementations. 

In order to relate multiple clocks, method of retiming and immersion is 
introduced. We first introduce the retiming mapping, which has two properties: (i) 
cycle 0 of one clock is always mapped to cycle 0 of the other; (ii) the mapping is 
surjective and monotonic. The purpose of monotonic is to ensure there is never a 
discrepancy in the temporal ordering of states after abstraction, because for all s, 𝑠𝑠′
∈T if 𝑠𝑠′> s, then λ(𝑠𝑠′) ≥ λ(s), where λ is a retiming mapping. For convenience, we 
introduce the Definition 2.3: 

Definition 2.3 A clock S is faster than clock T, or S is as fast as T, in a retiming 
map from S to T.  

Definition 2.4 Let S and T be clocks. A retiming map λ: S→T is a subjective 
map with λ(0) = 0.The set of all retimings from clock S to clock T is represented by 
Ret(S, T). 

Definition 2.5 Immersion 𝜆̅𝜆 of a retiming λ∈Ret (S,T), represented by Imm (T, 
S), is defined by  

𝜆̅𝜆(t) = least s ∈ S such that λ(s) = t. 

The set of all immersion from clock T to clock S is represented by Imm (T, 
S).The meaning of 𝜆̅𝜆 is to search the first s∈S such that λ(s) = t. We can give 
another λ definition as follows: 

λ(s) = t ∈ T such that  𝜆̅𝜆(t) ≤ s, 

We also recognize 𝜆̅𝜆 as an inverse function to λ. 

According to definition 2.5, the notion of start is present and defined as follows: 

Definition 2.6 Given a retiming λ∈Ret (S, T) and a time s∈S, the function start, 
parameterized by λ and s, returns the first time 𝑠𝑠′∈S such that λ(s′) = λ(s), is 
defined as follows: 

start (λ, s) =  𝜆̅𝜆(λ(s)). 

The role of s = start (λ (b, s)) is to ensure that the correctness at all ‘start’ clock 
is hold. When an initialization function h: B→A is determined, then the functionality 
of an implementation G is restricted in a specific way with respect to the 
initialization function h (s) = start (λ(b, s)). 
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Now, based on the above definition, the length function, which represents the 
length of a retimed clock T with respect to the numbers of clock S, is introduced as 
follows: 

Definition 2.7 Given a retiming λ∈Ret (S, T) and its immersion function 𝜆̅𝜆∈
Imm (T, S), the length function len, parameterized by λ and t, returns the number of 
cycles 𝑠𝑠′∈ 𝑆𝑆+= S-{0}, is defined as follows: 

len (λ, t) =  𝜆̅𝜆(t+1) - 𝜆̅𝜆(t). 

Definition 2.4 - 2.7 are illustrated in Figure 2. 

 

Figure. 2 Retimings, Immersions, start and len 

2.2 Data Abstraction and Iterated Maps 

Microprocessors can be modeled as evolving systems of states from a set A, 
generated by the recursive application of a next-state function f: A→A, starting from 
some initial state a∈A. A state function F: T×A→A, for some clock T, computes 
the state of a microprocessor at time t∈T, giving staring state a∈A. The implication 
of A depends on the level of data abstraction of microprocessors. Typically A will be 
a Cartesian product of components abstraction representing registers and memories. 
The clock T depends on the level of time abstraction. For example, if each cycle of a 
clock T corresponds with an instruction, the T is suitable for architecture, or a 
programmer’s model PM; if each cycle of T corresponds with a system clock, T is 
suitable for an implementation, or an abstract circuit model AC. 

Definition 2.8 Given clock T, non-empty set A, and primitive recursive function 
f: A→A, an iterated map F: T×A→A is a primitive recursive function defined as 
follows, for all t ∈T and a∈A: 

F (a, 0) = a, 

F (a, t+1) = f (F (a, t)). 

The above definition acquiesces the starting state is a constant state, we also 
consider the iterated maps generalized by an initialization function h: A→A. 
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Definition 2.9 Given clock T, non-empty set A, and primitive recursive function 
h: A→A and f: A→A, an iterated map F: T×A→A is a primitive recursive function 
defined as follows, for all t∈T and a∈A: 

F (a, 0) = h (a), 

F (a, t+1) = f (F (a, t)). 

Section 4.1.1 of [1] denotes that, the purpose of initialization functions is to 
eliminate unwanted starting states, not to describe the initial behavior of a system. 

2.3 Data Abstraction and Iterated Maps 

System states can be ‘abstracted’ or ‘specified’ by an abstraction mapping ψ. For 
example, if a state b represents a state of a microprocessor’s micro-architecture, the 
state ψ (a) can represent a state of the processor’s architecture. Through the state 
transition and abstraction, a notion of temporal abstraction is induced. For example, 
if the mapping 

ψ (𝑏𝑏0)=ψ(𝑏𝑏5)=𝑎𝑎0 and ψ(𝑏𝑏1)=ψ(𝑏𝑏2)=ψ(𝑏𝑏3)= ψ(𝑏𝑏4)=𝑎𝑎1 

Is applied to the state sequence 

𝑏𝑏0 → 𝑏𝑏1 → 𝑏𝑏2 → 𝑏𝑏3 → 𝑏𝑏4 → 𝑏𝑏5 → ⋯, 

Then the state sequence will be 

𝑎𝑎0 → 𝑎𝑎1 → 𝑎𝑎1 → 𝑎𝑎1 → 𝑎𝑎1 → 𝑎𝑎0 → ⋯, 

Which has only two abstracted state changes and can be recognized as the 
following sequence 

a0 → a1 → a0 → ⋯. 

We consider that, time is determined by considering the transition of distinct 
states; if no states transition occurs, or sates cease to change, time is redundant 
indeed. 

By this example, we know that temporal abstraction may occur when there are 
some data abstraction and state transition. We consider time to be determined by 
events which can be the occurrence of something significant at the level of 
abstraction under consideration. For example, we may only consider the start/end of 
machine instructions to be events at the level of a microprocessor abstraction, and 
register or memory transfer operations to be events at a lower level. 

3. State Iterated Maps and Time Abstraction 

Section 3.1, 3.2, and 3.3 present the concepts and conditions required to simplify 
the verification process of an implementation. 
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3.1 Time-Consistent Iterated Maps 

Section 3.2.1 of [13] specifies the details of theory of time-consistency. The 
property of time-consistent is that it is not possible from the state of F to distinguish 
any time t∈T from any other time 𝑡𝑡 ′∈T. The definition of time-consistent is 
defined as follows. 

Definition 3.1 An iterated function F: T×A→A is time-consistent if, and only if, 

F (a, 𝑡𝑡1 + 𝑡𝑡2) = F (F (a, 𝑡𝑡2),  𝑡𝑡1), 

For all a∈A and t1, t2∈T. 

There is no initialization function in Definition 3.1. Now we consider the 
situation of existing initialization function, see also Section 2.3.1 of [13]. 

Corollary 3.2 F: T×A→A is an iterated map with next-state function f: A→A 
and initialization function h: A→A. Map F is time-consistent if and only if for all a
∈A and t∈T 

F(a, t)=h(F(a, t)). 

3.2 State-Dependent and Uniform Retimings 

For each state of an implementation there will be an associated state-dependent 
retiming according to the theory of Section 2.3. 

Retimings, and associated immersions, should be determined relative to states 
transition. The sequence of states is generated by recursive function F and the 
initialization state G (0, b) ∈B, so the retiming λ: S→T with respect to F: S×B→B 
and G: T×A→A (clock S is faster than clock T) should also be determined by the 
initialization state G (0, b) ∈B (Details of Definition 3.2 and 3.3 are in [1, 10]). 

Definition 3.2 A state-dependent retiming λ: B→Ret (S, T) is a map from states 
to retimings. The set of all state-dependent retimings is denoted as Ret (B, S, T). 

Definition 3.3 An immersion 𝜆̅𝜆 with respect to a state-dependent retiming λ is 
defined as follows: 

𝜆̅𝜆 (a, t) = least s ∈S such that λ (a, s) = t. 

The set of all immersions relative to retimings in the set Ret (B, S, T) is denote d 
by Imm (A, S, T). 

Refer to definition 2.6 and 2.7, we will get the state-dependent function start and 
length function len as follows: 

Definition 3.4 Given a time s∈S, a starting state b∈ B and the associated state-
depended retiming λ∈Ret (B, S, T) and its associated immersion function λ�∈Imm 
(A, T, S), the function start, parameterized by b, λ and s, returns the first time 𝑠𝑠′∈ S 
such that λ (b, 𝑠𝑠′) = λ (b, s), is defined as follows: 
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start (b,λ,s) =  𝜆̅𝜆(b, λ(b, s)). 

Now, based on the above definition, the length function, which represents the 
length of a retimed clock T with respect to clock S, is defined as follows: 

Definition 3.5 Given a time s∈S, a starting state a∈A, a retiming λ∈Ret (B, S, 
T) and its associated immersion function 𝜆̅𝜆∈Imm (A, T, S), the length function len, 
parameterized by a, λ and t, returns the number of cycles 𝑠𝑠′∈𝑆𝑆+= S-{0}, is defined 
as follows: 

len (a, λ, t) = 𝜆̅𝜆 (a, t+1) – 𝜆̅𝜆 (a, t). 

We can get another one definition and two lemmas as follows. 

According to Definition 3.1 and Corollary 3.1, Definition 3.6 is given. 

Definition 3.6 An iterated map G: S×B→B is time-consistent with respect to a 
retiming λ∈ Ret (B, S, T) if, and only if, 

G(b, 𝜆̅𝜆(𝑝𝑝2, 𝑡𝑡1) + 𝜆̅𝜆(b, 𝑡𝑡2) ) = G(𝑝𝑝2, 𝜆̅𝜆(𝑝𝑝2, 𝑡𝑡1)) 

Where 𝑝𝑝2 = G (b, 𝜆̅𝜆 (b, 𝑡𝑡2)), for all b ∈ B and 𝑡𝑡1, 𝑡𝑡2∈ T. 

Lemma 3.1 F: T×A→A be a iterated map with next-state function f: A→A and 
initialization function h: A→A. The map F is time-consistent with respect to λ ∈Ret 
(B, S, T) if and only if , for all a∈A and t ∈T 

F (a, 𝜆̅𝜆 (a, t) ) = h (F (a, 𝜆̅𝜆(a, t) )) 

Lemma 3.2 All iterated maps that do not have initialization functions are time-
consistent. 

Now, we introduce the concept of uniformity. Uniform shows the relation 
between the length len (a, λ, t) at some clock t ∈ T and the initial state a ∈ A. 
According to this concept, given a uniform retiming λ∈Ret (B, S, T), in which the 
length len (a, λ, t) should be a function of the state a∈A and its retiming λ, 
independent of time t∈T. We call this property of a retiming is uniformity (see 
Section 4.4 of [1]). 

We define uniform retiming in terms of its immersion using duration function 
dur: A→𝑆𝑆+. 

Definition 3.7 Let T and S be clocks with clock S faster than clock T, G: 
S×B→B and F: T×A→A be any time-consistent functions, data abstraction map ψ: 
B→A and dur: A→𝑆𝑆+ be a function mapping states to a positive number of cycles of 
clock S, b∈B is an initial state of F and G. A state-dependent retiming λ∈Ret (B, S, 
T), with its immersion 𝜆̅𝜆 is said to be uniform with respect to F and dur if, and only 
if , 𝜆̅𝜆 is of the form 

𝜆̅𝜆 (b, 0) = 0, 

𝜆̅𝜆 (b, t+1) = dur (F (b, t)) + 𝜆̅𝜆 (b, t) 
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= dur (ψ (G (b, 𝜆̅𝜆 (b, t))) + 𝜆̅𝜆 (b, t). 

According to the definition, the nature of dur is same as len with respect to a 
retiming λ and its associated immersion 𝜆̅𝜆. 

Suppose that G represents the implementation of some systems over a clock S, F 
represents the specification of these systems over clock T, where S is faster than T. 
Then specification clock t lasts dur (x) cycles of clock, where x = F (b, t) = ψ (G (b, 
𝜆̅𝜆 (b, t)) is the state of F at clock cycle t ∈ T.  

Note that, dur is a function only of states, because data abstraction ψ and 
immersion 𝜆̅𝜆  is dependent of state, and consequently the number of cycles 
corresponding with any states is independent of numerical value of t ∈ T. 

In practice, the meaning of uniform is to denote the number of states b ∈ B with 
respect to an state of a ∈ A, because the clock s denotes the state transition of B. 
With the statically definition of dur, we can make concrete statements about how 
many cycles of the implementation clock S correspond with one cycle of the 
specification clock T for a possible initial state b∈  B. And because clock S 
corresponds the state transition on micro-programmed level, clock T corresponds the 
state transition on programmer level, we can use the meaning of uniform and dur to 
get the number of states of micro-programmed level with respect to its programmer 
level. 

3.3 One-Step Theory for Simplifying Verification 

[1] particularly specifies the concept of one-step theory for non-superscalar 
microprocessors, we briefly describe it here. 

The role of time-consistent iterated maps and uniform retimings is to construct a 
theorem of one-step for simplifying formal verification. The method of simplifying 
formal verification is to eliminate induction over time. The fundamental notion is 
that, in real hardware, future state evolution is not dependent on time, but only on 
the current state. That is to say that state transition does depend only on the current 
state (and inputs at the current time if any). Briefly, given two time-consistent 
iterated maps F: T×A→A and G: S×B→B, related by surjective data abstraction 
map ψ: B→A and uniform retiming λ ∈ Ret (B, S, T), we can simplify the 
verification of G with respect to F by just considering correctness at specification 
times t = 0 and t = 1: that is times s=0 and s = start (λ, 1).  

Definition 3.8 Let F: T×A→A and G: S×B→B be iterated maps, λ∈Ret (B, S, T) 
be a uniform retiming with respect to G, ψ: B→A be a surjective data abstraction 
map. If 

(1) F is time-consistent; and 

(2) G is time-consistent with respect to λ, 

Then for all b ∈ B and s = start (λ, b, s) 
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F(ψ(b), λ(b, s)) = ψ(G(b, s)) 

If and only if 
F (ψ (b), 0) =ψ (G (b, 0)) and 

F (ψ (b), 1) =ψ (G (b, 𝜆̅𝜆 (b, 1))). 

Now, when we formally verify an abstract circuit AC with respect to a design 
PM in programmer level, we need only to verify AC at times s= 𝜆̅𝜆 (b, 0)=0 and 
s=𝜆̅𝜆 (b, 1). 

4. An Abstract Pipeline Example 

[1, 3, 15] apply the above concepts to an abstract pipeline case study, and the 
author has verified the abstract pipeline using HOL or Maude. Now we exploit the 
concept of [1] to a more universal of abstract non-superscalar pipeline. 

We introduce an abstract pipeline with four stages to sufficiently demonstrate the 
functionality of pipelined designs. The abstract pipeline is illustrated as follows. 

 

Figure. 3 An Abstract Pipeline 

The function of the abstract pipeline is to transfer the data of memory source src 
to memory destination dst. The memory source register msr and the memory 
destination dst address the memories.  

4.1 Functionality Specification 

From the perspective of programmers, the abstract pipeline system has two 
memories and two memory-address registers. The system transfers the data of src at 
address msr to dst at mdr. The memory state-space is M= [MAR→W] where W is 
any non-empty set, and the memory-address register state-space is MAR. The state-
space of the functionality specification is  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹 = M×MAR×MAR×M. 

A state transition function FS: T×𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹→𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹 and next-state function fs: 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹→𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹 is defined as follows: 
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FS (0, src, msr, mdr, dst) = (src, msr, mdr, dst), 

FS (t+1, src, msr, mdr, dst) = fs (FS (t, src, msr, mdr, dst)) 

Where src∈M, msr∈MAR, mdr∈MAR and dst∈M. The next-state function fs 
updates the destination memory dst at location mdr with f (src (mdr)), 

Fs (src, msr, mdr, dst)=(src, msr+1, mdr+1, dst [f (src (msr)) / mdr]). 

The expression dst [f (src(msr))/mdr] is derived from the next memory 
substitution function: 

Memory [data/a_adress] (b_adress)=� 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑏𝑏_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), 𝑖𝑖𝑖𝑖 𝑏𝑏_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≠ 𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,                                𝑖𝑖𝑖𝑖 𝑏𝑏_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 

Where the data at a_adress∈MAR is denoted as memory (a_adress); and if the 
data∈M is stored at address a_adress, the resultant memory is denoted memory 
[data/a_adress]. Then the memory substitution function is determined as the above 
equation. (see Section 5.1 of [1]) 

4.2 Implementation Specification without Dynamic Stalling 

We can divide the recursive function fs to four computations 𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3 and 𝑓𝑓4: 

f = (𝑓𝑓1 ○ 𝑓𝑓2 ○ 𝑓𝑓3 ○ 𝑓𝑓4) 

Where, 𝑓𝑓1 :W→ 𝑊𝑊1 , 𝑓𝑓2 : 𝑊𝑊1 → 𝑊𝑊2 , 𝑓𝑓3 : 𝑊𝑊2 → 𝑊𝑊3  and 𝑓𝑓4 : 𝑊𝑊3 →W, which 
functionality is to complete the functionality of fs using four steps.  𝑊𝑊1, 𝑊𝑊2 and 𝑊𝑊3 
store intermediate computations of operations. For brevity, 𝑓𝑓2 ○ 𝑓𝑓1 : W→𝑊𝑊2  is 
denoted as 𝑓𝑓12, and 𝑓𝑓3 ○ 𝑓𝑓12: W→𝑊𝑊3 is denoted as 𝑓𝑓123. 

In previous articles [1, 12, 18] have modeled several kinds of microprocessors, 
such as pipelined microprocessors, superscalar-pipeline, SMT/CMT processors. 

Now, what we interest is to extend the basic notion of above methods to build a 
more universal algebraic model for formal verification of non-superscalar pipelines. 
First, we will model an abstract pipelined implementation P1  without dynamic 
stalling. We use a counter ctr ∈{1, 2, 3, 4}. If ctr=1, it means only 𝑓𝑓4 is idle and 
w1, w2, w3 store valid data; ctr=2 denotes 𝑓𝑓3 and 𝑓𝑓4 are idle and only w3 stores junk 
data; ctr=3 denotes 𝑓𝑓2, 𝑓𝑓3 and 𝑓𝑓4 are idle and w2, w3 sotre junk data; ctr=4 denotes 
𝑓𝑓1 𝑓𝑓2, 𝑓𝑓3 and f4 are all idle and w1, w2, w3 all store junk data [3].  

The state-space of StateP1 is 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃1 = M×MAR×𝑊𝑊1×𝑊𝑊2×𝑊𝑊3×MAR×M. 

The iterated state evolution function 𝑃𝑃1: S × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝1→ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝1 is determined as 
follows 

𝑃𝑃1(0, σ) = 𝑝𝑝10(σ), 

𝑃𝑃1(s+1, σ) = 𝑝𝑝1(𝑃𝑃1(s, σ)), 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006 

Published by Francis Academic Press, UK 
-64- 

Where σ = (ctr, src, msr,  𝑤𝑤1,  𝑤𝑤2,  𝑤𝑤3, mdr, dst), 

𝑝𝑝10(σ)=

⎩
⎪
⎪
⎨

⎪
⎪
⎧

  
(1, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓1�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚 − 1)�, 𝑓𝑓12�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚 − 2)�,

𝑓𝑓123�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚 − 3)�,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑) 
 ,① 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 1,

(2, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓1�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚 − 1)�, 𝑓𝑓12�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚 − 2)�,
 𝐽𝐽𝐽𝐽,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑) 

 ,② 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 1,

�3, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓1�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚 − 1)�, 𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑�,      ③ 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 3,
(4, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, 𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑),                                   ④ 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 4,

 

𝑃𝑃1 (s+1, σ) = 𝑝𝑝1 (𝑃𝑃1 (s, σ))=

⎩
⎪
⎨

⎪
⎧⑤ , 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) = 1,
⑥ , 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) = 2,
⑦ , 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) = 3,
⑧, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) = 4,

 

Where  

⑤=(1,src,msr+1,f1(src(msr)),f12(src(msr-1)), 

f123(src(msr-2)),mdr+1,dst(f123(src(msr-3)))), 

⑥=(1,src,msr+1,f1(src(msr)),f12(src(msr-1)), 

f123(src(msr-2)),mdr,dst), 

⑦=(2,src,msr+1,f1(src(msr)),f12(src(msr-1)),JD,mdr,dst), 

⑧=(3,src,msr+1,f1(src(msr)),JD,JD,mdr,dst). 

It can also be denotes as follows 

𝑃𝑃1(s+1, σ) = 𝑝𝑝1(𝑃𝑃1(s, σ))=�
⑤,                                                                       𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) = 1,
(𝑐𝑐𝑐𝑐𝑐𝑐 − 1, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 + 1,𝑓𝑓1�𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚)�,

𝑓𝑓2(𝑤𝑤1),𝑓𝑓3(𝑤𝑤2),𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑) 
,⑨𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) > 1,

 

Expression ⑨ denotes that if ctr(s)>1, the pipeline will fetch instructions to fill 
the pipeline. The notion of 𝑝𝑝1(σ) is to forward the data computed in the pipeline, and 
when ctr>1 at a clock time, the ctr will decrement 1 in the next stage. 

There is no dynamic stalling, so P1 will fetch one instruction in one cycle of 
abstract circuit clock while the msr will plus 1 to fetch the next instruction in the 
next clock cycle. If ctr=m<4, the state of  𝑤𝑤𝑖𝑖  (1≤i≤4-m) corresponds with source 
data from memory address (msr-i), after the appropriate operations of 𝑓𝑓𝑗𝑗, for all j≤i; 
and the component(s) after 𝑤𝑤𝑖𝑖 stores junk data. For example, if the pipeline is empty 
or partly empty, 𝑤𝑤3  stores junk data; if the pipeline is full, w3  = f123 (src (msr-
3))= f3 ○ f2 ○ f1 (src (msr-3)). The next-state function 𝑝𝑝1 :  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝1 → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝1 
implements a pipeline by forwarding intermediate computed results 𝑤𝑤i to the next 
operation 𝑓𝑓i+1 along the pipeline. The last operation with respect to 𝑤𝑤3 stores the 
result in the dst at address mdr=msr-3. For any fixed time, in our view, msr in the 
specification is the value of msr in the implementation from three clock cycles 
earlier. 
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Definition 4.1 The map 𝑃𝑃1 is a correct implementation of FS with respect to data 
abstraction map ψ: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃1→𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹 

ψ(ctr, src, msr, 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 mdr,dst) = 

�
(𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 − 3,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑),     𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 = 1;
(𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑),             𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 > 1, 

and uniform retiming λ∈𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃1  (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃1, S, T) where duration dur: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆→𝑆𝑆+ 
is defined by the equation 

dur(ctr, src, msr, 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3, mdr,dst) = ctr. 

The concept and proof of this definition refers to [1]. The next section, we will 
extend this model to a non-superscalar pipeline with dynamic stalling. 

4.3 A Model of Non-Superscalar Pipelines with Dynamic Stalling 

Now, we introduce our new model of pipelined microprocessors with dynamic 
stalling. The method of modelling is same as [1], but we increase some 
improvements in this article. We do not discuss the details of stalling in pipelines 
here, readers can research it in many other documents. The notion of a pipeline with 
stalling is illustrated as Figure 4. 

 

Figure. 4 A Pipeline with Stalling 

In this paper, our principle concern is mathematical models, and not the practical 
verification. However, our method and model would be advantageous to reduce 
practical work of formal verification. The one-step theorem is practical-benefic for 
simplifying workloads in practical verification.  

According to the concept of pipelines with dynamic stalling, the stalling 
component and its previous will detain their states evolution until an event cancels 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 1, Issue 1: 53-70, DOI: 10.25236/AJCIS.010006 

Published by Francis Academic Press, UK 
-66- 

the stalling, nevertheless, the stages of back components will evolves normally. For 
example, if a stalling source will affect the computation 𝑓𝑓3 and there is a valid data 
in 𝑤𝑤3, the correct value of w3 will store in dst in the next clock cycles, although 𝑓𝑓1 
and 𝑓𝑓2 are stalling and the states of w1 and w2 will not change until the source of 
stalling is cancelled. In many actual pipelines, the stalling is considered to be a 
nop(no-operations) in corresponding components. We now consider the 
circumstances that a source of stalling will affect the computation 𝑓𝑓3.To model the 
time of stalling source, we introduce a map from S to a Booleans streams using the 
next set 

Dstl={stl ∈ [S→B] | ∀s ∈ S, ∃𝑠𝑠′∈S such that 𝑠𝑠′>s and stl(𝑠𝑠′) = ff}. 

If stl(𝑠𝑠′)=ff, the pipeline will compute normally; and if stl(𝑠𝑠′)=tt, there will be a 
source of stalling in corresponding components. 

The pipelines with dynamic stalling are named as 𝑃𝑃𝑆𝑆. The iterated state transition 
map 𝑃𝑃𝑆𝑆: S×𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑃𝑃1×Dstl→𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 is defined as follows 

𝑃𝑃𝑆𝑆(0, σ, stl) = 𝑝𝑝𝑆𝑆0(σ), 

𝑃𝑃𝑆𝑆(s+1, σ) = 𝑝𝑝𝑆𝑆(𝑃𝑃𝑆𝑆(s, σ, stl), stl(s)), 

Where σ = (ctr,src,msr, 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3,mdr,dst), 𝑝𝑝𝑆𝑆0(σ) = 𝑝𝑝10(σ), 

and  𝑃𝑃𝑆𝑆(s+1, σ) = 𝑝𝑝𝑆𝑆(𝑃𝑃𝑆𝑆(s, σ, stl), stl(s)) = 

⎩
⎪⎪
⎨

⎪⎪
⎧⑤,              if ctr(s) = 1 and stl(s) = ff,
⑨,              if ctr(s) = 1 and stl(s) = tt,
⑩,              if ctr(s) = 2 and stl(s) = tt,
⑥,              if ctr(s) = 2 and stl(s) = ff,
⑦,     if ctr(s) = 3 and stl(s) = ff or tt,
⑧,     if ctr(s) = 4 and stl(s) = ff or tt.

 

Where  

⑨=(2, src, msr, f1(src(msr)), f12(src (msr-1)), JD, mdr+1,dst (f123 (src (msr-
2)))) 

⑩=(2, src, msr, f1 (src (msr)), f12 (src (msr-1)), JD, mdr, dst). 

We can conclude that, when existing a source of stalling, the pipeline will stop to 
fetch instructions until the stalling is canceled. The above equation can be reduced 
from the notion of pipeline and stalling. We now define the correct implementation 
equation. 

Definition 4.2 The map PS is a correct implementation of FS with respect to data 
abstraction map ψ: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆→𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐹𝐹𝐹𝐹 
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ψ (ctr, src, msr, 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3, mdr, dst, stl) = 

�
(𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 − 3,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑),     𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠(0) = 𝑓𝑓𝑓𝑓,
(𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 − 2,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑),      𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠(0) = 𝑡𝑡𝑡𝑡.

(𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑),                             𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) > 1,
 

and uniform retiming λ ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑆𝑆  ( 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 , S, T) where duration 
dur: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆→𝑆𝑆+ is defined by the equation 

dur (ctr, src, msr, 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3, mdr, dst, stl) = 

�
1,                                      𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 1,
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑠𝑠𝑠𝑠𝑠𝑠) + 2,   𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 2,
4,                                      𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) > 2,

 

Where NextFalse (stl): Dstl→N is defined by  

NextFalse (stl) = least s∈S such that stl(s) = ff. 

Following the property of our time abstraction (Section 2.3), we should discard 
clock cycles where 𝑃𝑃𝑆𝑆  does not change stages. In our example, this is the 
circumstance when ctr=2 and stl = tt. We can combine all clock cycles s∈S where 
stl(s)=tt into a single cycle of some new abstract clock 𝑆𝑆′. The clock 𝑆𝑆′ disallows 
contiguous sequences of more than one tt element: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′={stl∈[S→B] | ∀s ∈ S, ∃𝑠𝑠′ ∈ S such that 𝑠𝑠′>s and stl(𝑠𝑠′) = ff  and 

∀𝑠𝑠′′∈ S, if stl(𝑠𝑠′′) = tt, then stl(𝑠𝑠′′-1) = stl(𝑠𝑠′′+1) = ff}. 

The retiming is necessary to be uniform to apply the one-step theorems in 
practical verification. Therefore the function dur is revised to 𝑑𝑑𝑑𝑑𝑑𝑑′ as follows: 

𝑑𝑑𝑑𝑑𝑑𝑑′ (ctr, src, msr, 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3, mdr, dst, stl) =  

�
1, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 1,
2, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) = 2,
𝑐𝑐𝑐𝑐𝑐𝑐, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐(0) > 2,

 

and can be reduced to  

𝑑𝑑𝑑𝑑𝑑𝑑′(ctr,src,msr, 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3,mdr,dst,stl) = ctr. 

From the different of Definition 4.1 and 4.2, we can conclude that, if we ignore 
the clock cycles where the stages of systems do not change, in this example, the 
length of state in the functionality specification is not changed. 

In our example of 𝑃𝑃𝑆𝑆 which may be stalled in computation 𝑓𝑓3, we analysis its 
property and try to model a correct implementation to a specification to simplify the 
practical verification. 
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5. Further Considerations 

The next work we are concerning is modeling some more complex 
microprocessors, such as multicore or many-core, superscalar pipelines and other 
parallel microprocessors; or some complex components, such as cache and memory 
in many-core, which must be of cache-coherency and memory-consistence. The 
complex relation between time and data is the most challenge for us to overcome. 
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