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Abstract: The issue of grain loss and waste during the storage of grains has consistently represented a 

significant challenge to the security of stored grains. The prediction of grain temperature indicates the 

guidance of granary ventilation, with the objective of reducing the incidence of grain mold and 

deterioration due to excessive temperature. Current methods of grain temperature prediction mainly 

include thermal simulation and data-driven prediction. However, the former method has been found to 

have low accuracy due to an insufficient simulation of the environmental conditions within the grain 

storage, while the latter has been identified as lacking interpretability, especially for a large amount of 

historical grain temperature data. In light of the aforementioned limitations, this paper proposes a novel 

grain temperature prediction model that integrates thermal simulation and machine learning residual 

correction. The model employs a multi-layer perceptron (MLP) to refine the outputs of the JMAG thermal 

simulation of the grain storage. This approach not only preserves the interpretability of the thermal 

simulation but also improves the accuracy of grain temperature prediction. 

Keywords: grain temperature prediction, thermal simulation, multi-layer perceptron, data driven 

forecasting 

1. Introduction 

In recent years, economic growth and rising living standards have led to an increase in the availability 

and diversity of food in many countries; the issue of grain security remains a significant challenge and a 

matter of global concern. As indicated in the State of Grain Security and Nutrition in the World 2024 

report, approximately 733 million individuals were affected by hunger in 2023, which means every one 

of 11 people in the world lacked access to sufficient food. Among the various issues pertaining to grain 

security, post-harvest losses of food have consistently been a matter of significant concern [1]. During the 

production and distribution of food, losses in quantity or quality may occur for a number of reasons. Such 

losses have a significant impact on the global food supply, particularly in regions experiencing grain 

insecurity and scarce resources. China, as the world's largest grain producer, recorded a total output of 

695.41 million tons in 2023 [2]. Nevertheless, the annual post-harvest loss rate is as high as 15.69 percent, 

with an annual loss of approximately 35 billion kilograms, representing 8.1 percent of China's total grain 

output [3]. So, it is evident that the reduction of post-harvest grain losses represents a pivotal strategy for 

the assurance of global grain security. 

Grain losses represent a significant proportion of overall losses incurred during the storage period, 

with a figure in excess of 20 percent being typical. The global annual loss of grain during storage is 

estimated at approximately 200 million tons [4], underscoring the critical importance of reducing grain 

losses during storage. A variety of factors may affect grain during the storage period, including 

temperature, humidity, light, pests and mold. Among these factors, grain is most sensitive to temperature. 

Fluctuations in temperature can result in the migration of internal moisture within the grain. An increase 

in temperature leads to the absorption of moisture by the grain, whereas a decrease in temperature causes 

the grain to lose moisture. An excess or deficiency of moisture may impact the quality and storage 

stability of grain. Besides, warm temperatures incur the proliferation of mold and pests. In the absence 

of human intervention and in the event of prolonged exposure to increasing temperatures, mold and pests 

multiply faster in grain piles, ultimately leading to a loss of grain quality and quantity. Furthermore, an 

increase in temperature results in an acceleration of the respiration of the grain and an increase in its 

metabolic rate. An increase in respiration rate leads to an accelerated deterioration and a decline in grain 
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quality. 

In light of the aforementioned background in grain storage safety, the real-time monitoring of grain 

temperature and the implementation of timely intervention measures when temperatures exceed upper 

limits represent effective strategies for the reduction of grain loss and waste. Currently, the monitoring 

of grain temperature in real-time is primarily dependent on the Internet of Things (IoT) and sensor 

technology [5]. The deployment of temperature sensors in the grain storage facility enables real-time 

acquisition of temperature data, which is then visualized through software or websites. Such a system 

helps grain managers remain updated on the temperature conditions of the grain pile, thereby facilitating 

the implementation of appropriate intervention before any issues arise. 

However, the impact of grain temperature on grain mold and deterioration is time-sensitive, meaning 

that if the temperature rises and is not handled properly in time, the quality of the grain will deteriorate 

rapidly. Real-time monitoring is, therefore, inevitable, and temperature prediction is also particularly 

important. By predicting the grain pile's temperature trend, managers can take necessary actions, such as 

ventilation, before the temperature reaches a dangerous threshold. This can prevent the quality of grain 

from deteriorating and thus reduce possible economic losses. Currently, scholars' predictions of grain 

temperature are based on two main approaches: thermal simulation based on numerical analysis [6] and 

data-driven prediction method [7]. The former method is founded upon the principles of physics, whereby 

a thermal simulation model is constructed to simulate the thermal changes that occur within the grain 

storage. The temperature changes within the grain storage are based on the laws of heat transfer theory, 

which is actually a more interpretive approach. However, the actual internal and external environment of 

the grain storage is very complex in a real granary, and thus, it is challenging to simulate the actual 

condition accurately for the whole granary. On the other hand, the data-driven prediction method uses a 

large amount of historical grain temperature data to train a statistical or machine learning model, and the 

trained machine learning model is used to predict grain temperature. This method has better accuracy 

than the former but requires more historical data to avoid model over-fitting, and it lacks interpretability 

compared to the thermal simulation. 

In order to address the problems above, this paper proposes an integrated model of JMAG thermal 

simulation and Multilayer Perceptron (MLP), which employs MLP for residual correction based on 

predictions from thermal simulation, and exhibits a high accuracy rate and good interpretability. 

2. Related Works 

This section presents a more detailed review of previous research on two approaches to forecasting 

grain temperature: thermal simulation, numerical analysis, and data-driven prediction. 

2.1. Thermal Simulations and Numerical Analysis Method 

In the granary, the temperature changes observed at each sensor placed in the grain pile are subject to 

the laws of physics. As a porous medium, the temperature change in the grain pile is influenced by both 

external and internal transfer of heat. The process occurs through three main physical mechanisms: 

conduction, convection, and radiation. Among these, conduction is the primary mechanism for heat 

transfer. Mathematical models can be constructed using thermal modeling to simulate the temperature 

distribution of the grain pile under different storage conditions. 

The fundamental principle underlying thermal modeling is the description of heat conduction 

processes. The conduction of heat in porous media is governed by Fourier's law, which states that the 

heat flux density is proportional to the temperature gradient. By establishing heat conduction equations, 

combining the material properties of the grain pile (such as thermal conductivity, density, specific heat 

capacity, etc.), and setting boundary and initial conditions, different storage environments can be 

simulated. These include different ventilation conditions, climatic conditions, as well as the structure of 

the granary [8] and the initial state of the grain pile [9]. This allows for a more realistic reflection of the 

temperature changes that occur during grain storage. Numerical analysis is a technique employed to solve 

thermal equations, such as finite element analysis (FEA) [10] or computational fluid dynamics (CFD) [11], 

which are typically applied to complex systems. By dividing continuous problems into a finite number 

of computational units, it is possible to make accurate predictions of parameters such as temperature and 

humidity. 
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2.2. Data-driven Prediction Method 

The complex and dynamic internal and external environments of grain storage make it difficult for 

physical models to simulate these conditions accurately. With advancements in computer science, data-

driven prediction methods have emerged, focusing on learning patterns from grain temperature data 

without relying on physical laws. These methods typically involve inputting historical temperature data 

into statistical or machine-learning models to extract trends for prediction. The process begins by 

gathering comprehensive historical data, including temperature and environmental conditions, followed 

by feature engineering to identify key patterns such as temperature trends and periodic fluctuations. 

These features are then fed into models like regression, ensemble methods, or deep learning models, 

which are trained to capture relationships within the data. After training, the model's predictive accuracy 

is evaluated using validation data, with adjustments made as needed. Once optimized, the model can 

predict temperatures and analyze trends in real-time data. 

In the field of machine learning, support vector machines (SVM), decision trees, and neural networks 

are frequently employed to predict grain temperature. Ni has optimized SVM through the application of 

intelligent algorithms in order to simulate the non-linear changes in grain temperature and other relevant 

indicators [12]. Guo et al. put forth a prediction model based on a synthesis of principal component analysis 

(PCA), Bayesian algorithms, and XGBoost to identify the optimal parameter combination and establish 

a grain temperature prediction model [13]. Wang et al. employed a particle swarm optimization technique 

to enhance a back propagation neural network, thereby developing a square bin grain temperature 

prediction model [14]. These methods offer a plethora of references and theoretical foundations for data-

driven grain temperature prediction.  

As a further development of machine learning, deep learning has also been employed to address the 

complexities inherent in grain temperature prediction [15]. Ge et al. developed an early warning model for 

grain situations by enhancing the Long Short-Term Memory (LSTM) model and evaluating its 

performance in comparison to the Recurrent Neural Network (RNN) model [16]. In a further development 

of the techniques already described, Qu et al. proposed a multi-output spatial-temporal model combining 

graph convolutional neural networks (GCN) and Transformer to predict grain temperature. GCN is 

employed to identify the spatial correlation and topological information inherent to the sensor network 

within the grain storage, while the Transformer is utilized to discern long-term and short-term temporal 

characteristics and to describe time dependence [17].  

In general, machine learning models demonstrate satisfactory predictive accuracy; however, it 

necessitates a substantial quantity of training data, is ill-suited to small data sets, and lacks sufficient 

interpretability. 

3. Materials and Methodology 

This section provides a detailed description of our model, including an introduction to the JMAG-

based thermal simulation and software and the MLP model used for residual correction. 

3.1. Grain Storage and Temperature Sensing System 

In general, temperature sensing systems installed in a large flat-roofed granary are capable of 

monitoring multiple temperature measurement points in real-time. The system is typically comprised of 

many sensors and multiple temperature measurement cables. Each temperature measurement cable is 

equipped with a certain number (assumed to be k) of temperature sensors, which are arranged in the 

length and width directions of the grain storage and inserted vertically into the grain pile for the purpose 

of monitoring the temperature of the grain. Each temperature measurement cable in length (assumed to 

be L) direction of the grain storage is designated a region, from left to right, with the designation Region 

1 to Region n. Similarly, the width (assumed to be W) of the grain storage is designated a point, from 

back to front, with the designation Point 1 to Point m. In the context of grain storage, the height (assumed 

to be H) of the storage is recorded as a layer per floor, from top to bottom, as Layer 1-Layer k. In this 

way, we can locate each temperature measurement point according to three-dimensional coordinates (n, 

m, k). The specific grain temperature monitoring system cross-sections are illustrated in Figures 1 and 2. 

Figure 1 depicts the front cross-section, which illustrates the sensor distribution in the length and height 

directions of the granary. Figure 2 presents the left-side cross-section, which shows the sensor distribution 

in the width and height directions. 
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Figure 1: Front view of the sensor deployment in the granary. 

 

Figure 2: Left side view of the sensor deployment in the granary. 

3.2. Temperature data collection and processing 

Each sensor in the target grain storage is responsible for recording the temperature at its respective 

location and transmitting this data to the central control system via a dedicated cable. The control system 

collects and archives the temperature data from all measurement points on the server. A total of 168 

measurement points were identified within a granary we monitored, resulting in the collection of 168 

data points per day for three months between March 2023 and May 2023. Additionally, the temperature 

data for each day was also recorded. However, it should be noted that the data set inevitably experienced 

some degree of data loss. 

The data uploaded after collection was processed preliminary, resulting in the calculation of the 

average, maximum, and minimum temperatures for each layer and the entire warehouse. 

3.3. Thermal simulation based on JMAG 

JMAG is primarily utilized for the analysis of electromagnetic devices [18]. However, its thermal 

simulation functionality can be applied to a range of fields, including the analysis of heat transfer in grain 

storage. The finite element method (FEM) allows JMAG to assist in the study of temperature distribution 

in grain storage, particularly with regard to heat conduction, heat transfer and temperature changes 

throughout the storage process. The aforementioned thermal simulation is of significant importance for 

the comprehension and optimization of the grain storage environment, thereby aiding the reduction of 

grain loss due to the presence of uneven temperatures. 

Step 1. Create a geometric model. A geometric model of the grain silo must be constructed, including 

the layout of the shape and size of the granary.  In order to ensure that the geometric model accurately 

reflects the physical structure of the granary, it is necessary to use the actual dimensions of the granary 

for modeling purposes. 
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Step 2. Meshing. This is one of the key steps in the thermal simulation process, and it directly affects 

the accuracy of the simulation results and the efficiency of the calculation. When using the finite element 

method (FEM) to perform a thermal simulation of grain storage, meshing breaks down the entire grain 

storage model into many small, interconnected finite elements. Each finite element is calculated 

independently for temperature changes in the simulation. 

Step 3. Set material properties. The material properties should be assigned to the various components 

of the model. For example, set the parameters for the thermal conductivity, specific heat capacity, and 

density of the grain pile. 

Step 4. Define boundary conditions. Boundary conditions describe the manner in which the system 

exchanges heat with the external environment, thereby influencing the temperature distribution and 

changes within the grain pile. In accordance with the specific circumstances, the most prevalent boundary 

conditions encompass the reference temperature, the thermal conductivity of the granary wall, the 

conditions of the vents, the initial temperature, and natural convection. The reference temperature is 

typically specified as a function of time, allowing for the assessment of temperature changes in the 

external air environment surrounding the granary. The heat transfer coefficient of the granary wall can 

be employed to simulate the impact of the granary wall on the heat transfer dynamics of the grain pile. 

The temperature of the initial state of the grain pile is the temperature that is set prior to the 

commencement of the simulation.  Owing to the constraints of the data acquisition process, there is no 

real-time humidity data or ventilation time available. Accordingly, to streamline the model, only the 

impact of external ambient temperature is taken into account, while ventilation conditions and natural 

convection are excluded. 

Step 5. JMAG simulates the heat transfer process occurring within the grain storage, employing the 

Fourier heat conduction equation to facilitate the analysis of temperature changes occurring across 

different regions. In order to conduct a thermal transient state study, it is necessary to set the simulation 

step size and time interval. Furthermore, the actual temperature measurement points in the grain storage 

must be incorporated into the simulation model. This can be achieved by importing the three-dimensional 

coordinates of the 168 specific temperature measurement points into the Probes section of the study. 

3.4. Multilayer perceptron 

A multilayer perceptron (MLP) is a typical feed-forward neural network structure that is widely 

employed in fields such as classification, regression and pattern recognition [19]. An MLP comprises a 

minimum of three layers: an input layer, one or more hidden layers and an output layer. The neurons 

(nodes) in each layer are fully connected to the neurons in the next layer, with each connection 

characterized by a corresponding weight and bias. By propagating the input data layer by layer and 

performing nonlinear transformations, MLPs are capable of handling complex mapping relationships and 

are one of the most commonly used artificial neural networks (ANNs). 

The input layer is responsible for receiving input data, with each input node corresponding to a 

specific feature of the data. The number of nodes in the input layer is equal to the dimensionality of the 

features of the data. The hidden layer comprises a number of neurons that process the linear combination 

of the input layer through the application of weights and biases. Each neuron in the hidden layer performs 

a weighted summation of the inputs from the upper layer and then applies a nonlinear activation function, 

namely the rectified linear unit (ReLU) function, thereby enhancing the network's expressive power. A 

significant attribute of the MLP is its capacity to discern high-level characteristics of the input data 

through the utilization of multiple hidden layers. The output layer is responsible for generating the final 

prediction result. The objective is to perform a regression task whereby a prediction result is generated 

using a linear activation function. 

The fundamental principle is that the input data is passed through the layers and processed via the 

full connections between the neurons, resulting in the generation of the final output. The following 

procedure is to be followed: 

Step 1. The forward propagation process is defined as follows: The nodes at each layer perform a 

linear transformation of the input data by applying weights and biases. This can be expressed as  

𝑧 = 𝑊 ⋅ 𝑋 + 𝑏                                   (1) 

where 𝑊 is the weight matrix, 𝑋 is the input vector, 𝑏 is the bias vector, and 𝑧 is the result of the 

linear transformation. The result of the linear transformation is then non-linearly transformed by an 

activation function: ReLU (Rectified Linear Unit), the equation is as follows: 
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𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                                 (2) 

The equation (2) indicates that the resulting output is zero when the input variable, designated as   is 

less than or equal to zero. Conversely, when the input variable is greater than or equal to zero, the output 

is equal to the input value, i.e., 𝑥. The role of ReLU is to introduce non-linearity into the model, thereby 

enabling it to learn more complex patterns. Furthermore, it exhibits a faster convergence rate than 

traditional sigmoid or tanh activation functions and effectively alleviates the problem of gradient 

disappearance. 

Step 2. Loss Function. The MLP employs a loss function to quantify the discrepancy between the 

model's predicted output and the actual, true value. In this paper, our model employs the mean square 

error (MSE) as the metric for quantifying the discrepancy between the model's prediction and the actual 

outcome. 

Step 3. Backpropagation. The multilayer perceptron (MLP) employs the gradient descent algorithm 

to calculate the gradient of the loss function with respect to each weight through the backpropagation 

algorithm. The weights are updated in a sequential manner, progressing from the output layer to the input 

layer. 

Step 4. Parameter Updating. The network parameters are adjusted using the Adam optimizer, which 

is an optimization method based on adaptive learning rate adjustment. Adam integrates the benefits of 

momentum-based gradient descent and RMS proportion, facilitating rapid convergence during training 

and enhancing the model's predictive precision. 

3.5. Thermal Multilayer Perceptron Integrated Model 

We now propose the TMPI model for grain storage temperature forecasting. Our integrated model 

firstly performs a thermal simulation based on the physical law of heat conduction to simulate the 

temperature distribution inside the grain pile. However, pure physical modeling may be biased in 

complex environments. Therefore, an MLP model is introduced for residual correction. The simulated 

temperature is compared with the actual monitored temperature, and the residual is calculated and used 

as training data for the MLP. The MLP corrects the simulation results by learning complex environmental 

factors not covered by the physical model. 

 

Figure 3: Flowchart of TMPI1 and TMPI2 models. 

In this paper, we use two residual correction methods for comparison. The first correction method 

directly inputs the simulated value 𝑦𝑠𝑖𝑚 into the MLP, which produces the corrected predicted value 𝑦̂. 

This can be expressed as  

𝑦̂ = 𝑀𝐿𝑃(𝑦𝑠𝑖𝑚)                                  (3) 

aiming to adjust the simulated values of the 168 temperature measurement points to better match the 

true values, this method is named as TMPI1. In the second correction method named TMPI2, the 

simulated value 𝑦𝑠𝑖𝑚 is also used as the input to the MLP, but the output is the error value 𝑒  (the 

difference between the true value 𝑦 and the simulated value 𝑦𝑠𝑖𝑚) calculated in equation (4). 

𝑒 =  𝑦 – 𝑦𝑠𝑖𝑚                                   (4) 

The corrected prediction is then obtained by adding the predicted error to the simulated value, i.e.,  

𝑦̂ = 𝑦𝑠𝑖𝑚 +  𝑀𝐿𝑃(𝑦𝑠𝑖𝑚)                              (5) 

The flowchart of TMPI1 and TMPI2 is shown in Figure 3. 
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4. Experiment and Evaluation 

4.1. Experiment setting 

The target granary is situated in Jiangsu, China. It is a tall, flat-roofed granary with dimensions of 

29.35 meters in length and 23.45 meters in width and a grain storage height of 6 meters (see Figure 4). 

A temperature measurement system has been installed within the granary to monitor several temperature 

measurement points within the grain pile in real time. The system comprises many temperature 

measurement cables. Seven temperature measurement cables are deployed horizontally within the 

granary at a spacing of 4.8 meters, while a further six are deployed vertically at a spacing of 4.5 meters. 

Each temperature measurement cable is integrated with four temperature sensors at a spacing of 1.8 

meters, resulting in 168 embedded temperature measurement points within the grain pile. The 

aforementioned temperature measurement points collectively constitute a temperature measurement 

network, which ensures the monitoring of temperature changes across the entire grain pile. 

 

Figure 4: Interior view of the targeted granary. 

In the simulated experiments, the grain temperature was simulated in March, April and May, 

respectively, and the discrepancy between the simulation results 𝑦𝑠𝑖𝑚 and the actual measured values of 

𝑦 at 168 measurement points for each month was calculated. 

4.2. Simulation setting 

According to the simulation steps introduced in Section 3.3, the simulation parameters are designed 

as follows. A model of the granary with equal dimensions is created and meshed, with the mesh size set 

to 60 𝑚𝑚. In the material property settings, given that grain is a poor conductor of heat and its constant 

heat source density is very small with a thermal conductivity of only 0.13 ~ 0.16 𝑊/(𝑚 ∙ 𝐾) [20], it is 

possible to set the constant heat source density to 0.1. The conductivity is set to 0.159 𝑊/(𝑚 ∙ 𝐾), and 

the heat capacity is set to 1871 𝐽/(𝑘𝑔 ∙ 𝐾) [21]. 

In defining the boundary conditions, the change in temperature over time in the collected data is used 

as the reference temperature. The heat transfer coefficient of the silo wall is defined as a constant value 

of 12 𝑊/(𝑚2 ∙ 𝐾). The initial temperature of the grain pile is established at the mean temperature 

recorded on the day preceding the simulation. 

4.3. Evaluation 

We simulated the temperatures of the grain storage temperature measurement points on some dates 

in March, April and May 2023, respectively, used the simulation data and the real data of March and 

April for the training of the MLP error correction, the data of May (5.1-5.17) was used for the test. Table 

1 shows the average absolute errors of the test data in the simulation-only without MLP (denoted as 

“Thermal Simulation in table”), the direct input of the simulation results into the MLP correction (TMPI1 

in table), and the prediction errors added back to the simulation values (TMPI2 in table), and the mean 

absolute error (MAE), which was calculated using the Equation (6) 
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𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1                                (6) 

where 𝑛 is the number of samples, 𝑦𝑖 is the 𝑖-th actual value, and 𝑦̂𝑖 is the 𝑖-th predicted value. 

Table 1: Comparison of MAEs for three models in 5.1-5.17. 

Date Thermal Simulation TMPI1 TMPI2 

5.1 3.590 0.612 1.527 

5.2 3.580 0.782 0.919 

5.3 3.787 0.829 0.891 

5.4 3.879 0.800 0.942 

5.5 3.805 0.763 1.069 

5.6 3.820 0.787 1.196 

5.7 3.832 0.825 1.354 

5.8 3.892 0.863 1.427 

5.9 3.478 1.278 1.728 

5.10 3.991 0.914 1.227 

5.11 4.151 0.930 0.994 

5.12 4.264 0.947 1.017 

5.13 4.530 0.932 0.953 

5.14 4.905 0.936 0.987 

5.15 5.044 0.954 1.010 

5.16 4.962 0.967 1.062 

5.17 4.905 0.998 1.057 

 

Figure 5: Comparison of the nRMSEs of the thermal simulation and the TMPI1 and TMPI2 models. 

As above, Figure 5 shows the normalized root mean square error (nRMSE) of the three models, which 

is another metric used to compare prediction errors relative to some characteristic of the data, and 

calculated as in Equation (7). 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

max(𝑦)−min(𝑦)
                        (7) 

In the equation above, the formula for RMSE is as follows: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑ (𝑦𝑖 − 𝑦̂𝑖)

𝑛
𝑖=1                               (8) 

where max(𝑦) − min(𝑦) is the maximum minus the minimum of the true data, other parameters 

are the same as in MAE equation. 

From Table 1 and Figure 5 we can find that both MAE and RMSE after MLP correction of the 

simulation results are much higher than the predictions from the simulation only, and of the two ways of 

using MLP for error correction, the direct correction model is better than the prediction errors added back 

to the simulation values model. 

For further analysis, we compare the proposed TMPI model with a simple thermal simulation and the 
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representative machine learning method LSTM in terms of prediction performance at specific 

temperature measurement points. Figures 6 and 7 show the predicted temperature of the temperature 

measurement points (1, 6, 4) and (5, 2, 4) for the three models, as well as the actual temperature value of 

this point.  

It is evident from the figures that there is a significant residual between the thermal simulation results 

and the observed values, which can be substantially reduced after MLP correction. In most cases, our 

TMPI1 model demonstrates a superior correction effect compared to the TMPI2 model. However, at 

certain points, such as point (1, 6, 4) in Figure 7, the TMPI2 model exhibits relatively higher accuracy 

after the first day. For the LSTM model, the small amount of data limits its ability to accurately predict 

the grain temperature trend. This comparison further highlights the advantages of the TMPI models when 

data availability is limited. 

 

Figure 6: Comparison of Observation, Thermal Simulation, TMPI1, TMPI2 and LSTM models of point 

(1, 6, 4). 

 

Figure 7: Comparison of Observation, Thermal Simulation, TMPI1, TMPI2 and LSTM models of point 

(5, 2, 4). 

5. Conclusion 

This paper proposes a temperature prediction model based on physics thermal simulation and 

machine learning MLP residual correction, which is capable of more accurate grain temperature 

prediction without the necessity for extensive data training. The underlying model is based on thermal 

simulation, thus enabling model interpretation.  

However, MLP may not be the optimal model for correcting simulation residuals, and it also exhibits 

inaccuracies when correcting the temperature. The residual correction model can be optimized in future 

research to achieve higher prediction accuracy. Furthermore, our predictions are all based on existing 

temperature measurement points. Thermal simulation can simulate the temperature of any point in the 

grain storage, which may not be the coordinate point where the sensor is located. However, we do not 

have the actual temperature of these non-sensor points as a reference for residual correction. Our future 

work is to propose a grain storage temperature prediction model that can accurately predict the 

temperature of any location in the grain storage. 
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