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Abstract: Brain-Computer Interfaces (BCIs) utilize wearable electroencephalography (EEG) coupled 
with artificial intelligence (AI) to interpret neural activity. It finds significant applications in healthcare 
and robotics. And Motor imagery (MI) decoding is the basis of external device control via EEG. 
However, achieving high decoding accuracy remains a significant challenge, hindering the widespread 
adoption and advancement of BCI systems. To address this challenge, the present study proposes the 
Convolutional-EMA Temporal Residual Network (CETRNet), a novel deep learning architecture 
designed to improve the classification of MI signals from EEG data. The network consists of several 
key modules that enhance classification performance while maintaining parameter efficiency to reduce 
computational requirements. The initial processing stage includes dedicated temporal and spatial 
blocks that capture essential spatio-temporal features, followed by channel attention mechanisms that 
prioritize relevant spatial information. An Exponential Moving Average (EMA) module is integrated to 
capture long-range temporal dependencies and detect inherent periodic patterns in the EEG data. 
Subsequently, higher-level temporal abstractions are derived through a temporal convolutional 
residual block, which also implements data augmentation using a convolutional sliding window 
technique. Evaluation on the BCI Competition IV-2a benchmark dataset demonstrated that CETRNet 
achieved a subject-specific accuracy of 83.33%, highlighting its potential for reliable classification of 
MI-EEG signals. 

Keywords: Deep Learning, Attention, Dual-Branch Convolutional Network, Intelligent Healthcare, 
Motor Imagery, EEG, Classification 

1. Introduction 

Brain-Computer Interfaces (BCIs), integrating artificial intelligence (AI) and neuroscience, translate 
neural activity into external device control signals. These systems show potential across applications 
including prosthetics, neurorehabilitation, virtual reality, and interactive gaming. 
Electroencephalography (EEG), a predominant non-invasive and cost-effective neural acquisition 
method in BCI, offers high temporal resolution. Motor Imagery (MI) is the mental simulation of 
movement, enabling diverse applications. Accurate decoding of MI-EEG signals remains challenging. 
Signal quality is degraded by artifacts (e.g., myogenic, ocular, environmental), while inherent 
properties like inter-subject variability, high dimensionality, inter-channel correlations, and 
non-stationarity impede interpretation. This necessitates robust and generalizable decoding models. 

As one of the excellent methods to address these issues, Deep learning (DL) approaches directly 
integrate feature extraction and classification from raw EEG data. This minimizes manual 
preprocessing and typically enhances classification accuracy. DL's success in related domains (e.g., 
speech, video) has spurred its application to MI-EEG decoding. Advancements in DL-based MI 
classification often leverage progress from related domains. Convolutional Neural Networks (CNNs) 
currently represent the most widely adopted architectural approach for decoding motor imagery from 
EEG signals. Significant progress within this domain includes exploring the impact of network depth, 
as seen in Deep/Shallow ConvNets, alongside enhancements in both computational efficiency and 
performance achieved using separable convolutions, notably demonstrated by EEGNet [1,2]. While 
CNNs are prominent, the field also utilizes other deep learning approaches for MI classification. 
Stacked Autoencoders (SAEs) have been employed for extracting spectral features, DBNs targeted 
multi-class decoding challenges, and RNN variants like LSTMs have proven useful for modeling the 
inherent temporal dependencies present within MI-EEG recordings [3-5]. 
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Temporal Convolutional Networks (TCNs) effectively model temporal data, capturing long-range 
dependencies efficiently while mitigating RNN gradient issues. Their suitability for sequential data has 
led to applications in MI-EEG decoding, including integration with EEGNet, feature fusion strategies, 
and attention-enhanced hybrid TCN-CNN frameworks [6-8].  

Attention mechanisms are increasingly integrated into DL architectures for MI classification to 
enhance feature discrimination and performance. Examples include CNNs incorporating 
Squeeze-and-Excitation (SE) or Efficient Channel Attention (ECA), and frameworks utilizing 
Multi-Head Self-Attention (MSA) [8-10]. 

This study proposes the Convolutional-EMA Temporal Residual Network (CETRNet) for MI-EEG 
decoding. The architecture employs a three-stage process: (1) initial convolutional layers extract 
high-level temporal representations; (2) an Exponential Moving Average (EMA) block captures 
long-term signal trends; (3) a temporal convolutional layer with multi-scale fusion derives refined 
temporal features. CETRNet aims to improve MI classification via synergistic integration of EMA and 
a convolutional sliding window. 

2. Material and Methods 

The CETRNet model comprises three core blocks (as shown in Figure 1): convolutional block 
(CV),Exponential Moving Average block (EMA), and temporal convolutional residual block (TCR). 
The CV block, incorporating temporal and spatial sub-blocks, extracts low-level spatio-temporal 
MI-EEG features, while channel attention mechanisms enhance spatial information selection. The CV 
block outputs high-level temporal sequences, which are divided into windows and processed by the 
EMA block. The EMA block captures long-term trends and periodic fluctuations within each window, 
feeding features to the TCR block for advanced temporal feature extraction. Outputs from all windows 
are concatenated and classified via a SoftMax layer, generating probability predictions for MI tasks. 
This architecture improves data augmentation and classification accuracy.  

 
Figure 1 Components of the CETRNet architecture. 

2.1 Input Representation 

This study leverages the input structure of ATCNet for the CETRNet framework, utilizing the entire 
frequency range while retaining all artifacts [8]. The CETRNet model processes a motor imagery 
trial𝑋𝑋𝑖𝑖 ∈ 𝑅𝑅𝐶𝐶×𝑇𝑇, which includes C EEG channels and T time points, with the objective of mapping Xi to 
its associated class label yi. The dataset 𝑆𝑆 = {𝑋𝑋𝑖𝑖 ,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑚𝑚  consists of m trials, where 𝑦𝑦𝑖𝑖 ∈
{1, . . . ,𝑛𝑛}denotes the class label, and n indicates the total number of distinct classes. In the BCI-2a 
dataset, the values are set as follows: T = 1125 time points, C = 22 EEG channels, n = 4 classes, and m 
= 5184 MI trials [11]. 

2.2 Convolutional (CV) Block 

This block along with the convolutional structures described in ATCNet utilizes analogous kernel 
parameters and both utilize batch normalization (BN), exponential linear units (ELU), and average 
pooling [8,12,13]. The CV block comprises three convolutional layers (as shown in Figure 2). At the 
beginning, temporal convolution is set with F1 filters (size 1 × Kc). Kc is configured as one-fourth the 
sampling rate, filtering out sub-4 Hz components. Then depth-wise convolution is utilized with F2 
filters (size C × 1) to extract spatial characteristics. C represents total EEG channels used. The output 
dimension is empirically set by D, typically D = 2. An average pooling layer (size 1 × 8) aggregates 
temporal information at an 8:1 ratio. Finally, the layer uses F2 filters (size 1 × Kc2), with Kc2 = 16, 
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followed by a second average pooling layer (size 1 × P2) to further downsample the sequence.  

The CV block outputs a sequence 𝑧𝑧𝑖𝑖 ∈ ℝ𝑇𝑇𝑐𝑐×𝑑𝑑 of temporal representations, where each vector has 
dimension d, empirically set to 32. The T refers to the time points of the original EEG signal. The 
length of the temporal sequence zi is determined by 𝑇𝑇𝑐𝑐 = 𝑇𝑇

8𝑃𝑃2� . 

Temporal and depthwise convolutions alone insufficiently capture spatial information in EEG 
signals, potentially leading to spatial feature loss. Inspired by the success of channel attention 
mechanisms in LMDA [14], we incorporate channel attention modules both after the temporal and 
spatial convolution layers of the CV block. This recalibration enhances the network’s ability to model 
spatial and spectral information and better identify salient features within MI-EEG data. 

 
Figure 2 Convolutional (CV) block. 

2.3 Sliding Window (SW) 

The time series zi is divided into multiple local sequences 𝑧𝑧𝑖𝑖𝑤𝑤 ∈ ℝ𝑇𝑇𝑤𝑤×𝑑𝑑 using a sliding window 
(SW). This facilitates the extraction of individual local features. A SW of size Tw = Tc - 5 with one 
element step was used. This particular configuration segmented the input sequence zi into precisely 5 
local windows. For more extensive settings and a comprehensive analysis regarding sliding window 
methodologies, please refer to the research detailed in reference [8]. 

2.4 Exponential Moving Average (EMA) Block 

The multivariate time series 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥1, … , 𝑥𝑥𝐿𝐿) is divided into M univariate sequences 𝑥𝑥(𝑖𝑖) =
(𝑥𝑥1

(𝑖𝑖), 𝑥𝑥2
(𝑖𝑖), … , 𝑥𝑥𝐿𝐿

(𝑖𝑖)), where 𝑥𝑥(𝑖𝑖) ∈ ℝ𝐿𝐿 and L is lookback of recent historical data points. Each sequence 
is fed into the backbone model to generate a prediction sequence 𝑥𝑥�(𝑖𝑖) = (𝑥𝑥�𝐿𝐿+1

(𝑖𝑖) , 𝑥𝑥�𝐿𝐿+2
(𝑖𝑖) , … , 𝑥𝑥�𝐿𝐿+𝑇𝑇

(𝑖𝑖) ) , 
where𝑥𝑥�(𝑖𝑖) ∈ ℝ𝑇𝑇 and T is future steps observations. In Exponential Decomposition, each univariate 
series is decomposed into trend and seasonality components, processed separately by the dual-flow 
architecture, then aggregated for the final prediction (as shown in Figure 3).  

(1) Non-linear Stream utilizes a CNN to model non-linear patterns. 

Patching: segments each univariate time series using a sliding window, as introduced in PatchTST. 
Patches of length P are extracted with stride S, resulting in N two-dimensional patches 𝑥𝑥𝑝𝑝

(𝑖𝑖) ∈ ℝ𝑁𝑁 × 𝑃𝑃, 
where 𝑁𝑁 = �𝐿𝐿−𝑃𝑃

𝑆𝑆
�+ 2. For consistency with PatchTST and CARD, we set P = 16 and S = 8. 

Depthwise Convolution: A grouped convolution (g = N, kernel size k = p, stride s = P) processes 
each patch representation independently to extract local temporal features. 

Pointwise Convolution: A 1 × 1 convolution (g = 1) aggregates features across different patches. 

Each convolutional layer is followed by Batch Normalization and activation (σ). A residual 
connection is incorporated around the depthwise layer. 

Output MLP: The output features are flattened and passed through an MLP block 
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(Linear-GELU-Linear projection), yielding the non-linear feature representation: 

𝑥𝑥�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
(𝑖𝑖) = Linear�σ �Linear �Flatten�𝑥𝑥𝑝𝑝𝑁𝑁 × 𝑃𝑃����                   (1) 

(2) Linear Stream models the trend component using an MLP-based architecture. It employs linear 
transformations, average pooling, and layer normalization, omitting non-linear activations to preserve 
linear characteristics. The output represents the linear feature prediction: 

𝑥𝑥�𝑙𝑙𝑙𝑙𝑙𝑙
(𝑖𝑖) = Linear�𝑥𝑥(𝑖𝑖)�                               (2) 

(3) Linear features and non-linear features are concatenated and fused via a final linear layer to 
produce the prediction: 

𝑥𝑥�𝑙𝑙𝑙𝑙𝑙𝑙
(𝑖𝑖) = Linear �concat�𝑥𝑥�𝑙𝑙𝑙𝑙𝑙𝑙

(𝑖𝑖) , 𝑥𝑥�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
(𝑖𝑖) ��                        (3) 

 
Figure 3 Exponential Moving Average block’s overview. 

2.5 Temporal Convolutional Residual (TCR) Block 

The TCR block adopts the identical architecture and hyperparameter configuration of the TCN used 
in EEG-TCNet and ATCNet, but introduces a novel form of residual module. Instead of conventional 
shortcuts, it implements multi-level residual connections (Figure 4), which promote hierarchical feature 
fusion—thereby enhancing representational capacity and curbing overfitting [6,8]. Structurally, each 
TCR block comprises two residual blocks; within each block, two causal dilated convolutional layers 
are succeeded by an Exponential Linear Unit (ELU) activation and batch normalization [12] (see 
Figure 4). For a complete specification of this design, consult [8]. As illustrated in Figure 5, the block 
receives sixteen temporal vectors (Tw = 16), each of dimension F2, and produces an output sequence 
whose final component has dimension FT. In the work, I set FT = F2 = 32 [13]. 

 
Figure 4 The architecture of temporal convolutional residual block. 
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Figure 5 Visualization of temporal convolutional residual block. 

3. Experimental Results and Discussion 

3.1 Dataset Description 

The BCI Competition IV-2a (BCI-2a) dataset [11], a prominent public MI-EEG benchmark 
introduced by Graz University of Technology in 2008 is selected for training and evaluating the 
CETRNet. While widely used in MI-EEG decoding studies, this dataset is known for challenges such 
as limited sample size, inter-session variability, and significant artifact contamination. The dataset 
contains 5,184 trials across nine subjects (576 trials/subject), acquired using 22 EEG channels. Each 4 s 
MI trial was sampled at 250 Hz after bandpass filtering (0.5-100 Hz). The four MI tasks performed 
were: left-hand (class 1), right-hand (class 2), foot (class 3), and tongue (class 4) movements. 
Acquisition involved two sessions per subject (288 trials each), one designated for training and the 
other for testing. 

3.2 Implementation Details 

All experiments were conducted using an Nvidia GTX 3070 GPU (8GB) within the TensorFlow 
framework. Training was standardized across trials: weights were initialized using the Glorot uniform 
method, and optimization was performed with the Adam algorithm (learning rate = 0.0009, batch size = 
64). Categorical cross-entropy served as the loss function. Training was constrained to a maximum of 
1000 epochs, with early stopping triggered if no improvement occurred over 300 epochs.  

3.3 Performance Metrics 

The proposed models in this research are evaluated using accuracy, Kappa score, and standard 
deviat. 

(1) Accuracy: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑇𝑇𝑃𝑃𝑖𝑖/𝐼𝐼𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                               (4) 

Let TPi denote the number of correctly predicted instances in class i, Ii the total number of samples 
in class i, and n the total number of classes. 

(2) Kappa score: 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 1
𝑛𝑛
� 𝑃𝑃𝑎𝑎−𝑃𝑃𝑒𝑒

1−𝑃𝑃𝑒𝑒

∞

𝑎𝑎=1
                               (5) 

Let Pa be the observed agreement proportion and Pe the expected chance agreement. 

(3) Standard deviation: 
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𝑆𝑆𝑆𝑆𝑆𝑆 = �1
𝑁𝑁
∑ (𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 − 𝑟𝑟)2𝑁𝑁
𝑖𝑖=1                               (6) 

N represents the total number of subjects or samples, and r indicates the average accuracy. 

3.4 Performance Comparison 

Table 1 compares the performance of the proposed CETRNet model with reimplemented versions 
of EEGNet, EEG-TCNet, and TCNet_Fusion. All models were trained under identical conditions using 
parameters from their original studies. CETRNet achieved the highest average accuracy (83.3%) and 
Kappa score (0.78), representing a 5.0% increase in accuracy. Confusion matrices (Figure 6) further 
demonstrate CETRNet’s superior classification performance through higher diagonal and lower 
off-diagonal values. Considering the variability of EEG signals across subjects and sessions, a hold-out 
evaluation was conducted to assess generalization. Results (Table 2) show CETRNet maintains strong 
performance in cross-session settings, achieving an average accuracy of 83.3% and Kappa score of 
0.78 on BCI-2a dataset, surpassing all baseline methods. These findings highlight CETRNet’s 
effectiveness in extracting robust, transferable features and managing non-stationarities in EEG data. 

Table 1 Performance (accuracy (%) and Kappa score (k)) comparison. 
 CETRNet EEGNet EEG-TCNet TCNet-Fusion 

Sub. best average best average best average best average 
% k % k % k % k % k % k % k % k 

1 87.5 0.83 86.6 0.82 88.9 0.85 86.8 0.85 85.8 0.81 81.6 0.75 86.5 0.82 84.7 0.80 
2 70.5 0.61 69.9 0.60 63.5 0.51 62.0 0.51 64.2 0.52 60.8 0.48 63.2 0.51 61.0 0.48 
3 96.2 0.95 95.8 0.94 90.6 0.88 89.9 0.88 94.4 0.93 92.7 0.90 92.0 0.89 91.4 0.89 
4 78.5 0.71 77.4 0.70 67.4 0.56 65.1 0.56 67.0 0.56 63.8 0.52 71.2 0.62 69.7 0.60 
5 80.9 0.75 80.1 0.73 73.3 0.64 71.1 0.64 74.3 0.66 72.7 0.64 78.1 0.71 76.9 0.69 
6 74.3 0.66 73.3 0.64 64.2 0.52 61.7 0.52 64.2 0.52 61.1 0.48 64.6 0.53 63.7 0.52 
7 91.7 0.89 91.3 0.88 88.9 0.85 86.5 0.85 87.9 0.84 86.8 0.82 90.6 0.88 89.6 0.86 
8 87.2 0.83 86.5 0.82 85.1 0.80 84.1 0.80 84.4 0.79 83.5 0.78 85.4 0.81 85.0 0.80 
9 89.9 0.87 89.1 0.85 83.7 0.78 82.9 0.78 83.7 0.78 81.7 0.76 84.4 0.79 82.8 0.77 

Mean 84.1 0.79 83.3 0.78 78.4 0.71 76.7 0.71 78.4 0.71 76.1 0.68 79.6 0.73 78.3 0.71 
St.D. 8.5 0.11 8.7 0.11 11.3 0.15 11.6 0.15 11.3 0.15 11.8 0.16 10.9 0.14 11.1 0.15 

 
Figure 6 Confusion matrices of the CETRNet and the reproduced models. 

Table 2 Performance on BCI-2a dataset using hold-out. 
Method Accuracy % Kappa 

EEGNet* 76.7 0.71 
EEG-TCNet* 76.1 0.68 

TCNet_Fusion* 78.3 0.71 
Deep ConvNet 73.2 0.64 

FBCNet 75.5 0.67 
FBMSNet 76.3 0.68 
Conformer 78.6 0.71 

CETRNet (Proposed) 83.3 0.78 
* Reproduced 
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3.5 Ablation Study 

An ablation study was conducted to assess the contribution of individual components in the 
CETRNet model using the BCI-2a dataset. Table 3 shows the performance changes resulting from the 
removal of specific blocks prior to training and validation. The Spatial Weighting (SW) block improved 
accuracy by 2.5% and EMA by 1.8%, while the Frequency-Time Context (FTC) block increased 
accuracy by 2.6% over the Convolutional (CV)-only baseline. Results indicate that each block 
contributes independently to the overall performance of the model. 

Table 3 Impact of each block on the classification performance of CETRNet. 

Removed block Accuracy % Kappa 
None (CETRNet) 83.3 0.78 

SW 80.8 0.74 
EMA 81.5 0.75 
TCR 80.7 0.74 

SW + EMA 78.7 0.72 
SW + TCR 77.7 0.70 

EMA + TCR 78.6 0.71 
SW + EMA + TCR 75.8 0.68 

SW: sliding window, EMA: Exponential Moving Average block, TCR: temporal convolutional residual 
block. 

4. Conclusion  

This study proposed CETRNet, a novel Convolutional-EMA Temporal Residual Network for 
EEG-based motor imagery (MI) classification. CETRNet integrates three core blocks: a convolutional 
(CV) block for encoding raw MI-EEG signals, an Exponential Moving Average (EMA) block for 
capturing long-term data direction and periodicity, and a temporal convolutional residual (TCR) block 
for extracting high-level temporal features. Performance was further enhanced by incorporating a 
convolutional sliding window (SW) with the CV block, enabling efficient parallel processing. Ablation 
analyses substantiate the efficacy of each component, revealing that the SW, EMA, and TCR blocks 
incrementally enhance classification accuracy by 2.5%, 1.8%, and 2.6%, respectively, relative to a 
baseline model comprising only the CV block. When evaluated on the publicly available BCI-2a 
dataset, CETRNet achieves a subject-dependent classification accuracy of 83.33%, outperforming 
several recent state-of-the-art methods. Remarkably, this high performance is realized with a relatively 
small parameter count, rendering CETRNet well-suited for deployment in resource-constrained 
environments, such as portable or embedded BCI systems. The model demonstrates robust feature 
extraction capabilities directly from raw EEG signals, requiring minimal pre-processing, even when 
applied to a limited dataset that may contain artifacts—a common challenge in real-world EEG 
applications. The consistent performance improvements observed across all MI classes and subjects 
highlight CETRNet's capacity to learn generalizable representations from EEG data, enhancing its 
applicability across diverse BCI scenarios. Future work may explore incorporating multi-domain 
attention mechanisms (temporal, spatial, spectral) to prioritize salient information. Additionally, 
performance could potentially be improved through targeted preprocessing for artifact removal and 
dataset augmentation via deep generative models. 
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