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Abstract: Lane detection and drivable area segmentation are crucial for safe and efficient navigation on 
roads. To address the challenges of poor recognition under complex traffic conditions and limited 
generalization ability in existing lane detection methods, we propose an efficient and lightweight 
approach for lane and drivable area detection. By leveraging the concept of difference, we introduce a 
Differential Boundary-Aware Module (DBAM) that enhances lane boundary features and effectively 
captures the elongated nature of lane markings in complex scenarios. Additionally, we incorporate an 
Interactive Attention Network (IAN) to learn spatial dependencies between different task features, 
alleviating potential conflicts. Our method achieves competitive results on the BDD100K dataset, with 
lane detection Intersection over Union (IoU) reaching 31.3%, and drivable area mean IoU (mIoU) 
achieving 91.2%, while maintaining a processing speed of 130 FPS. The results demonstrate that the 
proposed method achieves excellent detection performance in complex scenes. 
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1. Introduction 

Lane detection technology is a key component of intelligent driving systems, crucial for accurate 
vehicle localization and reliable navigation. In autonomous driving tasks, multi-sensor fusion techniques, 
such as monocular, binocular, and LiDAR sensors, are commonly used in intelligent vehicles. However, 
camera-based methods stand out due to their low cost. Therefore, combining cameras with deep learning 
models has become a powerful solution. Additionally, high precision, real-time processing, and 
lightweight design are essential in autonomous driving tasks.  

Object detection and image segmentation are fundamental challenges in computer vision, both aiming 
to identify regions of interest in images using different processing techniques. A series of pioneering 
works have been proposed for object detection, including CenterNet[1], Faster R-CNN[2], and the 
YOLO series [3, 4, 5, 6]. For segmentation, common networks such as FCN[7], SegFormer[8], and UNet 
[9] have been widely used. While these methods are effective, they are typically designed for single tasks 
and are not capable of handling multiple tasks simultaneously. In recent years, efforts have been made to 
implement more complex strategies for computer vision tasks[10, 12, 13, 14, 15, 16], with unified 
multitask models offering the advantage of simplifying algorithms and saving computational resources. 
However, in complex scenarios, lane detection remains a challenging task due to the small size and 
limited representation of lane markings in images. To address this, more robust networks are needed to 
capture fine-grained features while considering the distinct characteristics of different tasks. 

To address this, we propose a lane detection algorithm suitable for complex traffic scenarios, which 
improves detection accuracy and robustness while maintaining inference speed. Inspired by the current 
state-of-the-art method, TwinLiteNet, our approach first introduces a Differential Boundary-Aware 
Network (DBAN) by leveraging the concept of differences, and embedding it into the backbone network 
to enhance boundary features. Next, we incorporate Interactive Attention to learn the spatial 
dependencies between lane markings and drivable area features, mitigating conflicts. By introducing a 
self-attention mechanism, we capture the spatial dependencies between any two positions within the 
same feature map and across different feature maps, allowing for the extraction of sufficient object-
specific information. Finally, our method achieves competitive results on the BDD100K dataset, 
particularly in lane detection. 
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2. Related Works 

2.1. Lane Detection 

Lane detection is a critical component of autonomous driving systems, enabling vehicles to stay 
within the road boundaries and follow the correct path. Accurate lane detection ensures safe and efficient 
navigation by identifying lane markings, which are essential for tasks such as trajectory planning, lane-
keeping assistance, and adaptive cruise control. The task is particularly challenging due to various factors 
such as varying road conditions, lighting, occlusions, and the subtle appearance of lane markings in some 
environments. 

Traditional lane detection methods primarily relied on edge detection, Hough transforms[17], and 
geometric models. These methods, while effective in well-structured environments, often struggle in 
complex real-world scenarios, where road markings may be partially occluded, faded, or missing. As a 
result, they typically have limited robustness to changes in weather, lighting, and road conditions. 

LaneNet[18] is another popular deep learning-based method for lane detection, which uses a 
combination of a CNN-based feature extractor and a clustering algorithm to identify lane markings. 
LaneNet first uses a deep network to generate a binary mask indicating the presence of lane markings. 
Then, a clustering algorithm is applied to group the connected lane pixels into distinct lanes. This 
approach works well in scenarios where lane markings are relatively continuous and easy to separate. 
However, it may struggle when lane markings are broken or occluded.  

An important advancement in lane detection has been the adoption of transformer-based models. 
Transformers, renowned for their capacity to model long-range dependencies, have demonstrated 
significant potential in capturing global spatial relationships between lane markings and road structures. 
By leveraging self-attention mechanisms, transformers can effectively capture contextual information 
from distant parts of the image, which is particularly beneficial for handling complex and curved lane 
geometries, as well as occlusions. In addition to improving detection accuracy, real-time performance is 
critical for autonomous driving systems. As a result, recent research has increasingly focused on 
developing lightweight models that strike a balance between high accuracy and computational efficiency. 
These models leverage various techniques such as network pruning, quantization, and the use of efficient 
backbone networks to achieve fast inference times while preserving robust lane detection performance. 
Architectures like MobileNetV2[19] and ShuffleNet[20] are frequently integrated into lane detection 
pipelines to ensure that the system can operate in real-time on resource-constrained embedded hardware. 

2.2. Drivable Area Segmentation 

Drivable area segmentation is a crucial task in autonomous driving systems, aiming to identify the 
regions of the road that are safe and feasible for a vehicle to navigate. This task plays a key role in path 
planning and navigation, ensuring the vehicle can safely and efficiently move through complex and 
dynamic environments. The goal is to accurately delineate the drivable areas from the surrounding 
obstacles, lane markings, and other irrelevant regions. 

As the field progressed, the rise of deep learning has significantly advanced the performance of this 
task. Convolutional Neural Networks (CNNs) have become the backbone for segmentation models due 
to their ability to learn hierarchical features from raw pixel data. FCN[7] and U-Net[9] have been widely 
adopted for semantic segmentation tasks, including drivable area segmentation, where the goal is to 
classify each pixel as either drivable or non-drivable. 

Recent advancements in drivable area segmentation have leveraged multitask learning, where a single 
network simultaneously addresses multiple tasks, such as lane detection, obstacle detection, and drivable 
area segmentation. This approach not only simplifies the overall system architecture but also enhances 
the synergy between tasks, leading to improved performance across all objectives. Notable examples of 
this approach include methods like YOLOP[12] and A-YOLOM[16], which integrate object detection 
and semantic segmentation into a unified framework, demonstrating the potential of multitask learning 
for improving both efficiency and accuracy in autonomous driving systems. 

3. Proposed method 

Figure 1 shows the BILane. The input image is fed into the backbone network, which is responsible 
for extracting features related to lane markings and drivable area regions. After passing through the 
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backbone[11], a shared feature map is obtained. This shared feature map is subsequently processed by 
an interactive attention mechanism, which learns the spatial dependencies between lane markings and 
drivable area features, thereby mitigating conflicts between these two tasks. Finally, the processed 
features are forwarded to separate decoders, each dedicated to a specific task: lane detection and drivable 
area segmentation. Each decoder consists of upsampling layers and detection heads, which produce the 
final outputs: lane detection results and drivable area segmentation. 

 
Figure 1: Network architecture. 

3.1. Differential Boundary-Aware Network 

In complex driving scenarios, lane markings may become blurred due to factors such as shadows, 
lighting variations, and adverse weather conditions, making it challenging to capture subtle lane 
information in scenes with weak appearance cues, such as severe occlusion, wear, or nighttime driving. 
Inspired by [21], we propose a Differential Boundary Awareness Module, which is embedded into the 
backbone network to perceive changes in lane boundaries. This module enhances the model's ability to 
adapt to challenging traffic environments by effectively capturing and emphasizing the variations in lanes. 

 
Figure 2: Differential boundary-aware network architecture. 

The Differential Boundary-Aware Network is illustrated in Figure 2. Inspired by the differential 
approach, we propose a Differential Boundary Awareness Module designed to enhance lane boundary 

features. In this architecture, the feature map
e

lF is subtracted from the average-pooled feature layer to 

obtain a feature map
edge

lF , as described in equation (1). This is followed by a 1 1×  convolution operation, 

and the result is then added back to the original feature map 
e

lF , yielding an enhanced feature map with 
boundary information, as described in equation (2). This architecture enables the network to effectively 
extract boundary information for lane markings, allowing it to capture crucial features even in complex 
scenarios such as nighttime driving, shadows, and occlusions, thereby demonstrating significant practical 
value. 

edge ( )e e
l l lF F AP F= −                               (1) 

dge( )ee e e
l l lF conv F F= +                              (2) 

3.2. Interactive Attention Network 

To effectively extract sufficient lane features, the Interactive Attention Network (IAN) [22] 
introduced in this paper successfully reduces feature conflicts between the lane detection and drivable 
area segmentation tasks, as illustrated in Figure 3. The IAN is built upon a self-attention mechanism, 
where the internal process optimizes vector distances through dot-product operations. When two vectors 
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are close in the feature space, it indicates their similarity. In this work, we leverage the self-attention 
mechanism to compute the correlations between different positions and establish spatial topological 
relationships, thereby enhancing the focus on key task-specific features. In the IAN network, the self-
attention mechanism effectively enables each task to focus more on its specific objective while 
coordinating the competition between multiple tasks. This enhances the network's overall ability to 
extract relevant feature information. 

As shown in Figure 3, the shared features
t H W Cf × ×∈  is obtained from the backbone network. This 

improves the overall ability of the network architecture to extract feature information. First, average 

pooling is applied to
tf to reduce computation and obtain the feature map

t H W Cf ′ ′× ×′∈ . Then, 

convolutional layers are applied to
tf ′

to encode and separately construct the lane detection feature map
1A and the drivable area feature map 2A . 

 
Figure 3: Interactive attention network. 

kA is then fed into a 1 × 1 convolution to build two feature maps kB and kC of size C N× ,where 
N H W′

= × . 1
TB and 1

TC as well as 2
TB and 2

TC perform matrix multiplication, where T denotes a transpose 

operation. The Softmax function is used to determine a task’s spatial attention 1 2{ , } N NS S ×∈ . The 
calculation method is shown in (3): 

( )
( )

1

exp
, {1,2}

exp

i j
k kji

Nk
l j
k kl

B C
S k

B C
=

⋅
= ∈
∑ ⋅

                             (3) 

Where
i
kB and

i
kC are the i-th and j-th lines of kB and kC , respectively; 

ji
ks is the value of the (j,i) 

position on ks , which is the correlation between the i-th and j-th positions in the feature map; and 1
TB and

2C , as well as 2
TB and 2C , perform matrix multiplication, and calculate the spatial attention 1 2{ , } N NR R ×∈  

between different tasks using the Softmax function.  

(1 ) , {1,2}k k k k k kη η= × + − × ∈W S R                              (4) 

Then, the two spatial attention maps are fused using a learnable parameter η , resulting in
1 2{ , } N NW W ×∈ . The calculation method is shown in (4). Meanwhile, kA is passed through a 1 1×

convolutional layer to generate new feature maps
C N

kD ×∈ . Matrix multiplication is then performed 

between 1D and 1
TW , as well as between 2D and 2

TW , and the outputs are reshaped into tensors of size
H W C′ ′× ×

 .Then, element-wise summation is performed on the feature maps 1A and 2A to obtain the output 
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H W C
kE ′ ′× ×∈ . The calculation method is shown in (5): 

( )
1

, {1,2}
N

j ji i j
k k k ki

E w D A k
=

= ∑ + ∈
                              (5) 

Finally, the feature maps 1E and 2E are upsampled to the same scale as the input feature tf , and then 
fused with tf to obtain two types of features for lane detection and drivable area segmentation. 

4. Experimental Analysis 

4.1. Dataset 

The BDD100K dataset is used for training and evaluation of BILane, encompassing diverse weather 
conditions and terrains. It is divided into three subsets: a training set with 70,000 images, a validation set 
with 10,000 images, and a test set with 20,000 images. Since the test set lacks ground truth labels, we 
evaluate our method on the 10,000 images from the validation set. For consistency, we resize the images 
from the original resolution of 1280 720 3× × to 720 640 3× × . 

4.2. Evaluation Metrics and Experimental Environment 

The evaluation metrics used in the experiments follow those in YOLOP [12]. For lane detection, we 
adopt Intersection over Union (IoU), while for drivable area segmentation, we use mean Intersection over 
Union (mIoU). In addition, the model inference speed is measured in terms of FPS (frames per second), 
while the model size is represented by the number of parameters. 

All experiments were conducted on a system equipped with an RTX 3090 GPU and an Intel(R) 
Xeon(R) Platinum 8362 processor. The model training and evaluation were implemented using Python 
3.8 and the PyTorch 1.8.0 framework. The training process utilized the Adam optimizer with a weight 
decay of 0.0005. The batch size was set to 8. The model was trained for a total of 100 epochs, taking 
approximately 80 hours to complete. 

4.3. Lane Detection Result 

Table 1 presents the results on the BDD100K dataset, where bold text indicates the best performance 
and underlined text represents the second-best. As shown, our proposed method achieves an IoU of 
31.3%, surpassing A-YOLOM(n)[16], Sparse U-PDP[15], and TwinLiteNet[13] by 3.1%, 0.1%, and 
0.8%, respectively. Additionally, BILane operates at 3.25 times the inference speed of A-YOLOM(n)[16]. 
Intelligent driver assistance systems require timely responses to lane changes, which are critical for 
vehicle safety. Compared to TwinLiteNet, our method strikes an optimal balance between IoU and FPS. 
These findings demonstrate the effectiveness of BILane in handling diverse driving scenarios. 

Table 1: Comparison with other state-of-the-art methods on the BDD100K dataset.  

Method Lane 
IoU(%) 

Drivable Area 
mIoU(%) 

Param. FPS 

YOLOP[12] 26.5 91.6 7.9M 49 
IALaneNet (ResNet-18)[14] 30.4 90.6 17.1M 58 
IALaneNet (ResNet-34) [14] 30.5 90.5 27.2M 40 

A-YOLOM(n) [16] 28.2 90.5 4.4M 40 
A-YOLOM(s) [16] 28.8 91.0 13.6M 40 
Sparse U-PDP[15] 31.2 91.5 12.1M 29 
TwinLiteNet[13] 30.5 91.0 0.4M 185 

BILane(Ours) 31.3 91.2 1.4M 130 

4.4. Drivable Area Segmentation Result 

We present the drivable area segmentation results in Table 1, where it can be observed that BILane 
achieves competitive performance in terms of mIoU. Specifically, its mIoU surpasses A-YOLOM(n)[16] 
and TwinLiteNet[13] by 0.7% and 0.2%, respectively. We introduce the Interactive Attention Mechanism, 
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which effectively mitigates the conflicts between lane detection and drivable area segmentation tasks. 
By learning the spatial dependencies between these tasks, the mechanism enhances the accuracy of 
drivable area detection, leading to more precise and robust segmentation results. Our method achieves a 
mIoU that is 0.3% lower than Sparse U-PDP [15]; however, it operates at 4.48 times the speed of Sparse 
U-PDP, demonstrating the effectiveness of our approach. 

4.5. Real-World Road Testing 

To validate the generalization ability of the proposed method, we conducted experiments on the Lane 
Detection dataset from Xi'an Jiaotong University, with the visualization results shown in Figure 4. As 
can be seen, our method effectively detects lane markings, demonstrating strong adaptability and 
robustness. This further proves the effectiveness and broad applicability of our proposed model in 
complex scenarios. 

 
(a)                  (b)                  (c) 

Figure 4: Actual road visualization.  

5. Conclusions 

In this paper, we propose the BILane, a method that leverages the Boundary-Aware Module to 
effectively capture boundary variations and enhance lane line features, making it well-suited for complex 
driving scenarios. This module enables the model to adapt to challenging environments, where lane 
markings may be ambiguous or occluded due to factors such as changes in lighting, weather conditions, 
or road degradation. Furthermore, we introduce the interactive attention mechanism, which effectively 
alleviates the conflicts between lane detection and drivable area segmentation tasks. By learning the 
spatial dependencies between these tasks, the mechanism significantly improves the accuracy of both 
lane detection and drivable area segmentation. The proposed method demonstrates robust performance 
in real-world, complex traffic scenarios, achieving an optimal balance between detection accuracy and 
computational efficiency.  
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