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ABSTRACT. In this paper, a purely axial torsional—translational model of helical 
planetary gear set is proposed. The model is acceptable for the research of 
planetary gear transmission whose ratio of radial support stiffness to mesh stiffness 
is greater than 10. The gear-shaft bodies were modeled as rigid bodies and all of the 
planets were uniformly distributed. Compared with previous planetary gear models, 
presented model greatly reduced the number of degrees of freedom. All vibration 
modes were classified into one of two types: overall modes and planet modes. The 
properties of these mode types were presented.  
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1. Introduction 

Planetary gear sets are used commonly by automotive and aerospace industries. 
Typical applications include jet propulsion systems, rotorcraft transmissions, 
passenger vehicle automatic transmissions and transfer cases and off-highway 
vehicle gearboxes. The internal helical have the advantages such as good meshing 
performance, smooth transmission, low noise, high contact ratio and low single 
tooth load. So, it is often used as the preferable choice of counter-shaft gear 
reduction systems. 

Despite their long history and wide use, planetary gears are still noise and 
vibration problems. Over the past twenty years, a large number of studies were 
conducted on dynamic performance of planetary gear in order to decrease the 
vibration and noise [1-5]. The modal property structure of high-speed planetary 
gears with gyroscopic effects was investigated in Ref. [6, 7]. In addition, the model 
and vibration modes of planetary gears were researched by some scholars [8-11]. 
The complex nonlinear dynamic behavior of spur planetary gears was examined 
[12-13]. On the one hand, a nonlinear time-varying dynamic model was proposed to 
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predict modulation sidebands of planetary gear sets. On the other, the theoretical and 
experimental investigation were conducted [14]. 

As we all know, dynamic model is the foundation of dynamic behavior analysis 
and simulation, the rationality of the model has direct influence on the accuracy of 
the analysis and simulation. Three-dimensional helical planetary gear models had 
been developed to investigate out-of-plane vibration [11]. Their the DOF is 6(N+3). 
It means that the DOF reaches 36 when the number of the planets gets 3. It is too 
much complicated and unnecessary, especially in the case of the key research is 
axial vibration (torsional or translational). So, a simplified purely axial torsion 
—translation model for helical planetary gear is proposed in this paper. 

2. Purely axial torsional—translational model 

The three-dimensional model of helical planetary gear set is shown in Figure. 
1(a). While in this paper, the ratio of radial support stiffness to mesh stiffness is 
supposed to be greater than 10. The sun gear s, the ring gear r, planets p (uniform 
distributed) and the carrier c are assumed to only rotate around the axis and translate 
along the axis (the radial translational-twisted vibration is ignored). The damping is 
also ignored to simplify the mathematical model. Then the simplified purely axial 
torsional-translational model of 2K-H helical planetary gear transmission is shown 
as Figure. 1(b). Hence, the dynamic model has 2(n+3) degrees of freedom. Gears 
and the carrier are connected to the housing through linear springs ,t t

s rk k  and t
ck  

respectively. The spring rpk  and spk , which act along the lines of action of the 
ring-planet(r-p) and sun-planet(s-p) meshes, represent the average gear mesh 
stiffness. 
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(a)                                   (b) 

Figure.1 Dynamic model of a planetary gear set (all the axial support stiffness z
ik  

and damping z
ic  are not be marked) : (a) 6(n+3)-degree-of-freedom model; (b) 

2(n+3) -degree-of-freedom model, all the components are assumed to rotate only in 
the θ  direction and translate in the δ  direction. 
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In Figure. 1(b), z
iδ  represents the mass center’s linear displacement of 

component i  deviated from its theoretical position along z-axis and z
iθ  represents 

the angular displacement of component i  along z-axis ( , , ,1,2, ,i s r c N=  ). 
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Figure.2 the circumferential transmission error model  

Here, only the torsional and translational motions of the z-axis are discussed. In 
Figure. 2, the motions of each component are assumed to act by two steps. Step 1, 
the carrier is fixed and the sun, planets, ring are rotating. Step 2, the sun, planets, 
ring are fixed and the carrier is rotating. Points sp , 1p , 2p and rp are the initial acting 
positions. Points 'sp , 1'p , 2'p and 'rp are the positions acting after step 1  

The circumferential and axial components of transmission error and mesh 
stiffness for both r-p and s-p meshes can be represented as 

t z z z t
rn r c n n r r rnr r r eδ θ θ θ= + − +                        (1) 

z z z z
rn r n rneδ δ δ= − +                            (2) 

cos cost
rp rp nk k α β=                           (3) 

cos sinz
rp rp nk k α β=                           (4) 

t z z z t
sn s s n n s c snr r r eδ θ θ θ= + − +                        (5) 

z z z z
sn s n sneδ δ δ= − +                            (6) 

cos cost
sp sp nk k α β=                           (7) 

cos sinz
sp sp nk k α β=                           (8) 

where ir  is the pitch radius of the gear component or the radius of circle which 
passing through the planet center for the carrier. n  equals1,2, , N . nα  is normal 
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pressure angle and β  is helix angle. 1
te  and 2

te  are the static transmission errors. 
The Z-direction displacement of the carrier relative to the planet is 

z z z
cn c nδ δ δ= −                              (9) 

The axial support stiffness of the planets is 

,

0,|

|

z z
c nz

cn z z z
p c n

k
k

δ δ

δ δ

 <= 
≥

                         (10) 

3. Equations of motion  

In terms of the usual situation, the sun gear is the input component. The carrier is 
the output component. The internal gear ring is fixed. Then, 

( ) ( ), , , 0, , ,0t t z t
s r r ck k k k ∞ ∞=                      (11) 

The differential equation of motion of 2K-H helical planetary gear transmission 
could be derived as: 
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where iJ  is rotational inertia, im  is mass. The undamped non-homogeneous 
matrix equation is given by Mq Kq F+ =  with the formula (1)-(11) substitute into 
formula (12), where K is a high order multi parameter stiffness matrix. The 
displacement vector q , the diagonal mass matrix M and the excitation vector F are 

1 2 1 2
Tz z z z z z z z z z z z

c r s N c r s Nq qqqqqq      δ δ δ δ δ δ =   
       (13) 

1 2 1 2c p c r s N c r s NM diag J Nm r J J J J J m m m m m m = +  

    (14) 
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4. Characteristics of natural frequencies and vibration modes 

In this paper, 4AT planetary transmission system is the research object. The 
natural frequency and the dynamic response will be studied. The parameters of plan- 
etary gear system are shown in Table 1. 

Table 1 The parameters of planetary gear system in Figure.2 

4.1 Natural frequencies 

The free vibration equation can be obtained by the equation of section 3. 
Regardless of the internal and external excitation, the undamped homogeneous 
vibration equation as shown follows 

0Mq Kq+ =                            (16) 

Basic parameters Carrier Ring gear Sun gear Planet gear 
Tooth number / 54 18 18 

Normal module / 2 
Press angle/° / 20 

Tooth width/mm / 20 
Mass/kg 0.306 0.493 0.16 0.16 

Rotational inertia /kg.m2 362.039e-6 2155e-6 43.474e-6 43.474e-6 
Pitch diameter/ m 0.0412 0.125 0.0412 0.0412 

Tangential stiffness/(N/m) 0 1e15 0 0 
Axial stiffness/(N/m) 5e7 
Mesh stiffness/(N/m) 1.2 8an ek =     1.5 8bn ek =  

Helix angle/° 27 
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The average mesh stiffness is instead of the time-varying mesh stiffness in order 
to ignore the influence of the parameter excitation in calculation. The corresponding 
eigenvalue problem of free vibration equation is  

( )2        1,2, ,2 6i i iM K i Nω ϕ ϕ= = +
               (17) 

where iω and iϕ respectively are the nth order natural frequency and vector of 
mode shape of the system, namely the square root of characteristic value of 1[ ] KM −  
and corresponding eigenvectors. The natural frequencies solved in MATLAB are 
shown as Table 2. 

Table 2 Natural frequency of lumped parameter model of the gear system 
 

Mode 1 2 3 4 5 6 
Natural frequency/HZ 3203.2 3860.9 4436.6 4436.6 5463.5 6042.8 

Mode 7 8 9 10 11 12 
Natural frequency/HZ 7317.4 7780.6 9397.9 9397.9 11324.1 12013.5 

4.2 Vibration Mode Analysis 

The vector of vibration mode of (17) is 

  1 12 2                 T
i h b a N hz bz az Nzz zθ θ θ θ θ θϕ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ±=            (18) 

The vectors of vibration mode can be obtained by solving the lumped parameter 
model. The vibration mode of the planetary system are shown in Table 3. 

Table 3 Vibration mode of the planetary system 

Element 7780.6Hz 3949.2Hz 9397.9Hz 4436.6Hz 

 hθ∅  -0.5076 0.0000 0.0000 0.0000 

bθ∅  -0.0960 0.0000 -0.0006 0.0000 

aθ∅  0.3369 0.0000 -0.0005 0.0000 

1θ∅  -0.5407 0.0000 -0.7229 0.0000 

2θ∅  -0.5407 0.0000 0.6874 0.0000 

3θ∅  -0.5407 0.0000 0.0698 0.0000 

hz∅  0.0001 -0.4708 0.0000 0.0000 

bz∅  0.0004 0.0146 0.0000 0.0000 

  az∅  0.0007 0.0130 0.0000 0.0000 

1z∅  -0.0008 -0.5094 -0.0006 -0.7588 

2z∅  -0.0008 -0.5094 0.0005 0.6404 

3z∅  -0.0008 -0.5094 0.0001 0.1184 

 Rotational 
modes 

Translational 
modes Planet rotational modes Planet translational 

modes 
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The vibration modes of the system fall into the categories of overall and planet 
modes. Overall modes include rotational modes (Figure. 3 (a)) and 
translational modes (Figure. 3 (b)). Planet modes include planet rotational modes 
(Figure. 3 (c)) and Planet translational modes (Figure. 3 (d)). Rotational modes in 
which the sun, ring, planets and carrier have only rotational motion and no 
translational motion, and all the planets have the same state. Translational modes in 
which the sun, ring, planets and carrier have only translational motion and no 
rotational motion, and all the planets have the same state. Planet rotational modes in 
which the planets have only rotational motion and the ring, sun and carrier have no 
motion. Planet translational modes in which the planets have only translational 
motion and the ring, sun and carrier have no motion. 

 
(a) Associated with 7780.6 Hz        (b) Associated with 3949.2 Hz 

 
(c) Associated with 9397.9 Hz          (d) Associated with 4436.6Hz 

Figure. 3 The vibration modes of the example system in Figure. 2 and Table 1. The 
deflections of carriers are not shown 

5. Conclusion 

A purely axial torsion—translation model for helical planetary gear is proposed 
in this paper. The presented model is suitable for the research of planetary gear 
transmission whose ratio of radial support stiffness to mesh stiffness is relatively 
great. By providing the modeling details and comparisons with previous planetary 
gear models, this model greatly reduces the number of degrees of freedom. The 
vibration modes of the system are divided into the overall and planet modes. The 
properties of these mode types are presented. The simplified model abandons the 
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unnecessary and complicated part of the current model of planetary gear 
transmission. This is supposed to lay a good foundation for the subsequent nonlinear 
research and the dynamics research of more complex helical planetary gear system. 
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