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Abstract: In recent years, deep learning models have demonstrated excellent performance in complex 
tasks, but their large number of parameters and high computational costs have limited their application 
in resource-constrained scenarios. This paper proposes a structured pruning method based on 
reinforcement learning (TD3 algorithm), which performs structured pruning on a group-by-group basis 
to balance model compression efficiency and performance retention. The TD3 agent takes the parameter 
states of each group as observation inputs, dynamically adjusts the pruning rate of each group as actions, 
and designs a multi-objective reward function based on model accuracy,FLOPs, and the number of 
parameters to achieve autonomous optimization of pruning strategies. Experiments on ResNet56 and 
VGG19 with the CIFAR-100 dataset show that this method maintains high classification accuracy while 
significantly reducing parameters and computational complexity. Compared with traditional pruning 
methods, it is more adaptive and provides an effective solution for model deployment in resource-
constrained environments. 
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1. Introduction 

In recent years, Deep Learning has made remarkable progress in various fields and applications such 
as Computer Vision (CV)[1], Natural Language Processing (NLP)[2], and Audio Signal Processing (ASP) 
[3]. Although Deep Neural Networks (DNNs) have achieved remarkable success in various fields, their 
performance heavily relies on extensive model parameters and high computational costs. For instance, 
the widely used ResNet-50 occupies more than 95 MB of memory and contains more than 23 million 
parameters [4]. Although the huge number of parameters significantly improves the model's task 
processing performance, it also brings high computational costs and long inference times, seriously 
limiting the deployment and application of deep learning models in resource-constrained scenarios [5]. 
To address this challenge, model compression methods have emerged, aiming to reduce model 
parameters and computational complexity while minimizing performance degradation, thereby 
improving operational efficiency . 

At present, the mainstream methods of model compression mainly include pruning[6], quantization[7], 
knowledge distillation[8], and low-rank decomposition[9], etc. Quantization converts high-precision 
floating-point parameters into low-precision integer or binary-valued parameters, potentially sacrificing 
model accuracy.Low-rank decomposition method decomposes a high-dimensional weight matrix into the 
product of multiple low-rank matrices, however, the effect of low-rank decomposition depends on the 
accuracy and method of matrix decomposition. In contrast, the model pruning directly reduces the 
complexity of the model by removing unimportant connections, neurons, or parameters in the neural 
network. While achieving a significant compression effect, it can better maintain the model performance, 
thus attracting extensive attention from researchers.  

Model pruning methods are mainly categorized into unstructured pruning and structured pruning. 
Unstructured pruning will disrupt the structural rules of the model. It requires special hardware 
acceleration and is difficult to deploy. In contrast, structured pruning aims to preserve the regularity of 
the network architecture by eliminating entire neurons, convolutional kernels, or channels, thereby 
enabling broader practical applications. Fang et al.[10] decomposed the substructures in the network into 
multiple isomorphic groups, and independently performed importance evaluation and pruning within 
each group to achieve group-level pruning.Liu et al.[11] used the reparameterization to merge adjacent 
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layers, compressed the multi-branch structure into a single-path convolutional layer, and utilized 
structure reparameterization to solve the compatibility problem of the normalization layer. Notably, 
traditional structured pruning methods predominantly rely on manual experience when determining 
pruning strategies and it is difficult to adapt to different models and tasks. 

To overcome these limitations, this paper proposes a reinforcement-learning-based model pruning 
method that leverages Twin Delayed Deep Deterministic Policy Gradient (TD3). First, the model is 
divided into different groups according to the dependency relationships among its layers[12]. 
Subsequently, the TD3 agent is applied to the pruning process, taking the set of parameter states of each 
group as the observation input for the agent, and defining the group - level pruning operation as the 
agent's action. A reward function is constructed based on the performance change of the pruned model, 
enabling the agent to autonomously explore the optimal group - based pruning strategy through 
interaction and learning with the model environment. Compared with traditional methods, this scheme 
can adaptively perform group - based pruning on the model, dynamically adjust the pruning intensity of 
each group, achieve a higher compression ratio, and minimize accuracy loss. 

2. Related Work 

2.1 Structured Pruning 

Structured pruning is straightforward in operation, capable of preserving the original network 
structure, which facilitates subsequent analysis and optimizationand is easy to implement and deploy. 
Consequently, researchers have conducted extensive investigations into structured pruning.  

Wang et al.[13] statistically modeled the network pruning problem from the perspective of reducing 
redundancy, developing a pruning method that identifies the structural redundancy of CNNs and prunes 
the filters in selected layers with the highest redundancy. Benbaki et al.[14] considered the comprehensive 
effects of pruning multiple weights subject to sparsity constraints, performing combinatorial optimization 
updates on a memory - friendly representation of the local quadratic approximation of the loss function. 
Existing methods lack quantifiable metrics to estimate the compressibility of sub - networks during each 
pruning iteration. To address this, Diao et al.[15] introduced the PQ index to measure the potential 
compressibility of deep neural networks and utilized it to develop a sparsity - aware adaptive pruning 
algorithm.  

Currently, the absence of an automated mechanism in existing structured pruning approaches requires 
researchers to invest substantial time in manual parameter tuning and experimental verification. 
Therefore, designing a method that can automatically and efficiently determine the optimal pruning rate 
is essential to propel structured pruning technology towards intelligence and automation. 

2.2 Deep Reinforcement Learning 

Deep reinforcement learning (DRL) integrates the powerful feature extraction capabilities of deep 
learning with the decision-making optimization capabilities of reinforcement learning, demonstrating 
significant advantages in handling high-dimensional and complex state spaces and action spaces. Deep 
learning automatically extracts abstract feature representations from raw data through multi-layer neural 
networks, providing rich information inputs for reinforcement learning. Reinforcement learning, 
meanwhile, optimizes an agent’s policy via interaction with the environment and reward signals, enabling 
the agent to make optimal decisions in complex environment.  

Deep Q-Network (DQN) [16] is one of the classic algorithms of deep reinforcement learning.It 
combines a convolutional neural network with Q-learning to handle reinforcement learning tasks with 
complex inputs such as images, achieving end-to-end deep reinforcement learning for the first time and 
laying the foundation for the development of subsequent algorithms. Asynchronous Advantage Actor-
Critic (A3C)[17] accelerates training efficiency and reduces variance by asynchronously executing 
multiple agents’ learning processes, performing excellently in various Atari game tasks. Deep 
Deterministic Policy Gradient (DDPG)[18] tackles continuous action space problems using an Actor-Critic 
architecture, coupled with target networks and experience replay mechanisms, significantly enhancing 
algorithm stability and convergence speed. TD3[19] improves upon DDPG by introducing a dual Q-
network structure to mitigate Q-value overestimation, target policy smoothing regularization to reduce 
policy update fluctuations, and delayed update mechanisms to decrease network parameter update 
frequency. These enhancements further boost the algorithm’s stability and performance in continuous 
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control tasks.  

Traditional pruning methods typically rely on fixed rules or manually set thresholds, struggling to 
adapt to diverse model architectures and task requirements. In contrast, DRL agents dynamically learn 
optimal pruning strategies through interaction with the model environment, adjusting pruning intensity 
and methods based on the model’s real-time state. This feature enables DRL-based pruning methods to 
more effectively balance model compression and performance retention across complex and varied 
models and tasks. Therefore, this paper employs a TD3-based reinforcement learning approach to 
pruning, minimizing manual intervention and enhancing automation. 

3. Method 

Figure 1 provides an overview of the automated model pruning framework based on the TD3 agent. 
This framework formulates the model pruning process as a reinforcement learning problem. The TD3 
agent dynamically searches for the optimal pruning rate on a group-by-group basis, ensuring model 
accuracy while achieving efficient compression of computational resources. It overcomes the limitations 
of traditional methods and improves the efficiency of model deployment. 

 
Figure 1: Reinforcement Learning Pruning Framework. 

3.1 Grouping Method 

This paper introduces the automatic model grouping method proposed by Wang et al. [12]. This method 
uses dependency graphs to model the dependencies of each layer in the convolutional network. The 
construction and grouping process of this method does not require human intervention and can avoid 
disrupting the complex coupling relationships between models during pruning. 

3.1.1 Definition 

First, a Convolutional Neural Network (CNN) is divided into prunable layers and non-prunable 
layers.Prunable layers include convolutional layers and linear layers, denoted as { ,1 }P

i c fi L L≤ ≤ + , 

where cL and fL represent the number of convolutional layers and linear layers, respectively. Non-
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prunable layers encompass activation layers, pooling layers, and batch normalization layers. The pruning 
operation of a batch normalization layer is triggered only when its preceding convolutional layer or linear 
layer is pruned. 

3.1.2 Methods for Constructing Dependency Graph 

The construction process of the dependency graph can be categorized into two types: basic 
dependency detection and special connection detection. The detailed implementations are as follows: 

Basic Dependency Detection: Input an example image, and extract the input tensors{ }in
lT and output 

tensors { }out
lT of each layer. If the output tensor of layer i is directly used as the input of layer j , a 

basic dependency relationship is established as shown in Equation (1): 

( , ) ( ) [ ], 1 out
i j out out out iDG k k k N= ∀ ≤ ≤                      

(1) 

Special Connection Detection: Special connection detection is further divided into the following three 
types: 

Flattening: If the input tensor in
lT  fails to match, it may be due to a flattening operation. In this case, 

detect the output tensor out
aT  after flattening, and construct the dependency relationship as shown in 

Equation (2), where outA  represents the output region area: 

( , ) ( ) [ , ( 1) ]i j out out out out outDG k k A k A= ⋅ + ⋅                    
(2) 

Concatenation: If there exists a out
bT  such that concat( , )in out out

a b jT T T= ,the dependency relationship 

is given by Equation (3), where bi  is the starting index of the concatenation: 

( , ) ( ) [ ]b a out b outDG k i k= +                            
(3) 

Residual Connection: When in out out
a b cT T T= + , the dependency relationships are expressed as 

Equation (4). 

( , ) ( , )( ) [ ], ( ) [ ]b a out out c a out outDG k k DG k k= =                    
(4) 

Similarly, the dependency relationships of the Squeeze-and-Excitation module (multiplication 
operation) are the same as those of the residual connection. 

3.1.3 Grouping Process 

First, input the sample images to obtain the input tensor in
lT and output tensor out

lT of each layer. 
Then, detect basic dependencies by identifying the inter-layer dependency relationships of direct 
connections through tensor matching. Next, handle special connections:Flattening operation: Establish 
the channel mapping relationship based on the comparison of flattened tensors.Concatenation/Residual 
connections: Construct synchronous pruning constraints according to the tensor operation logic.Finally, 
group the pruning sets: Divide the layers that require synchronous pruning into non-overlapping sets to 
ensure that all layers within the same group can complete the pruning operation collaboratively. 

3.2 TD3 Reinforcement Learning Pruning Framework 

This method uses reinforcement learning to search for the optimal compression rate of the model in 
the action space. This section will detail the settings of each part of the reinforcement learning. 

3.2.1 State Space 

For each group of the model observed by the agent, we have 11 features to represent the state gs , 
defined as Equation (5): 

g 1, , , , , , , , , ,[ ]in out s r gg rs g l c c k h w FLOPs Params acc a −=                
(5) 

Where g  and 
gl represent the group index and the intra-group layer index respectively, and 
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,in outc c  are the number of input channels and output channels of the l -th layer; , ,sk h w  represent 
the size, length, and width of the convolutional kernel respectively. The dimension of the kernel is 

in outc c k k× × × , and the input is outc h w× ×  .  

1 /r current originFLOPs FLOPs FLOPs= −  is the reduction ratio of the FLOPs of the model after the 
current round of pruning operation to the FLOPs of the original model. 

1 /r current originParams Params Params= −  origin  is the reduction ratio of the Params of the 
model after the current round of pruning operation to the Params of the original model; acc  is the 
precision of the current model on the validation set; 1ga − are scaled within the range of (0,1)  before 
being passed to the agent. These features are indispensable for different convolutional layers in the 
intelligent area. 

3.2.2 Action Space 

Action space ga ∈  represents the pruning rate of the g -th group, satisfying a (0,1)ga ∈ . 
When the traditional discrete space is used as a coarse - grained action space for model compression, due 
to the insufficiently precise control of sparsity, the number of action combinations grows exponentially, 
making effective exploration extremely difficult. Therefore, this paper adopts the continuous action space 

(0,1)ga ∈  , which can realize more refined and accurate model compression operations. 

3.2.3 Rewards 

A multi - objective fusion reward function R is designed. This reward function comprehensively 
considers multiple key factors during the pruning process. It aims to guide the intelligent agent to explore 
a better pruning strategy while optimizing the model performance, and achieve a balance among model 
accuracy, computational efficiency, and the number of parameters. It is defined as Equation (6): 

( cc c  c ) pre current pre current
current pre

pre pre

FLOPs FLOPs Params Params
R a a

FLOPs Params
α β γ

− −
= ⋅ − − ⋅ − ⋅

       
(6) 

The first term is the difference in model accuracy between the current pruned model and the model 
from the previous round. α is the accuracy weight coefficient, ensuring that the intelligent agent 
emphasizes accuracy maintenance during pruning. Usually, the model accuracy shows a downward trend 
after the pruning operation. However, some studies have shown that the accuracy may increase after 
model compression. Therefore, for the intelligent agent, a reward is given for accuracy improvement, 
and a penalty is imposed for accuracy decline. The second and third terms are the reduction ratios of the 
computational load and the number of parameters, respectively, aiming for the maximum compression 
ratio. In this study, FLOPs and Params are used as rewards, so a ratio - based quantification method is 
adopted to return values to the agent. β andγ are the corresponding weight coefficients, and different 
target priorities can be set according to application scenarios. For example, if the mobile terminal focuses 
on computational load optimization,β can be increased. The weight coefficients satisfy 1α β γ+ + = , 
and they achieve a balance between the improvement of accuracy and the reduction of computational 
cost. Finally, the accuracy of the compressed model is evaluated on the validation set, and rewards are 
provided to the agent according to the reward Equation (6). 

3.3 Pruning Process of TD3 Agent 

3.3.1 Action Generation and Pruning Operation 

Given the current normalized state s, the actor network generates a group-level pruning action ga , 
where ga represents the uniform pruning rate for the g-th group, and 0 1ga< < . The specific execution 
steps are as follows: 

Locate Layer Sets by Group: Based on the grouping results of the dependency graph, determine the 
set of all network layers 

,1 ,2 ,{ , , , }g g g g nL L L L= …   (where n is the number of layers in the group) 
included in the g-th group.  

Uniform Pruning within the Group: For each layer ,g iL  in the group, apply the same pruning rate 
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ga . Taking a convolutional layer as an example, assume its weight tensor is out inC C K KW × × ×∈   ( outC
is the number of output channels, inC  is the number of input channels, and K is the size of the 
convolutional kernel). The number of channels retained after pruning is calculated as Equation (7): 

(1 )out gC C a′ = × −                                  
(7) 

The new weight tensor is obtained by retaining the first C' channels. 

Channel Importance Ranking: Calculate the importance score of each channel using the following 
formula and sort them in descending order according to the 1L -norm is calculated as Equation (8): 

, , ,
1 1 1

Score( ) | |
inC K K

c i u v
i u v

c W
= = =

=∑∑∑
                            

(8) 

Where c is the channel index. Finally, retain the first C' channels with the highest scores, set the 
weights of the remaining channels to 0, and complete the pruning of the entire group. 

3.3.2 Model Evaluation and Reward Calculation 

Fine-tune the pruned model, and calculate the accuracy acccurrent , FLOPscurrent , and Paramscurrent  

on the validation set. Then, calculate the reward value R according to the reward function.  

Fine- tune usually uses a small amount of training data for training over several epochs to restore the 
performance of the pruned model. When calculating the reward, to reduce reward variance, a baseline 
reward b is introduced and calculated using an exponential moving average: 

(1 )b bb b Rα α← ⋅ + − ⋅  , where 
bα  is a smoothing coefficient (e.g., 0.99). By comparing with the 

baseline, the superiority or inferiority of the current pruning strategy can be more accurately evaluated, 
accelerating the convergence of training. 

3.3.3 Experience Storage and Training 

Store the quadruplet 1( , , , )l l ls a R s + into the experience replay buffer. When the amount of data in 
the buffer reaches M , randomly sample data with a batch size of N for training. The loss function of the 
critic network is Equation (9): 

2
1 2

1

1 ( min( (  , ), ( , )))
N

Q i i i i i
i

L y Q s a Q s a
N =

= −∑
                     

(9) 

This formula enables the critic network to learn to accurately estimate the state-action pair value by 
minimizing the mean squared error. Among them, the target value is 

' '
1 1 1 2 1 1min( ( , ( )), ( , ( )))i i i i i iy r b Q s s Q s sγ π π+ + + +′ ′= − + ,where ir  is the sampled reward, b  is the 

baseline reward, and γ is the discount factor, which is used to balance short - term and long - term 
rewards. '

1Q , '
2Q , and π ′ are target networks. 

Update the actor network every K  rounds, by minimizing the loss function is Equation (10): 

1 2
1

1 min( ( , ( )), ( , ( )))
N

i i i i
i

L Q s s Q s s
Nπ π π

=

= − ∑
                 

(10) 

The parameters of the actor network are updated using the gradient descent method. The negative 
sign converts the problem of maximizing the Q-value into the problem of minimizing the loss. By 
optimizing this loss, the actor network learns to generate pruning strategies that can obtain high rewards, 
and gradually improves the pruning effect. 

4. Experimental Analysis 

4.1 Dataset 

The experiment selects the CIFAR-100 dataset, which was released by the Canadian Institute for 
Advanced Research (CIFAR) in 1998. This dataset contains 100 classes, with 600 color images in each 
class. Among them, 500 images are used for training and 100 for testing, totaling 60,000 images. All 
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images have a size of 32×32 pixels. 

We employed two classic deep convolutional neural network models, ResNet56 and VGG19, for the 
experiments. ResNet56 possesses powerful feature extraction capabilities and demonstrates excellent 
performance in image classification tasks. VGG19 is renowned for its uniform network architecture and 
large receptive field, enabling it to extract rich image features. 

4.2 Experimental results 

In the experiment, three criteria were adopted to evaluate the compression model: test Top-1 
accuracy,FLOPs compression ratio 1 /current originFLOPs FLOPs= − , and parameter count compression 
ratio 1 /current originParams Params= − . Additionally, comparisons were made with two other structured 
pruning techniques, namely DepGraph [10] and GReg [20]. We evaluated their performance at different 
sparsity levels using two channel sparsity ratios (20% and 50%).The specific experimental analysis is 
shown in Table 1. 

Table 1: Comparison with other state-of-the-art methods on the CIFAR-100 dataset 
Model 

(Accuracy,FlOPs,Para. Num.) Method Pruned Accuracy/FLOPs Ratio/Para. Num. Ratio 
20% 50% 

ResNet56 
(72.62,128.63M,0.86M) 

Greg 70.75/49.23/36.15 63.21/79.63/77.41 
DepGraph 71.38/50.95/39.25 64.55/82.01/78.36 

Ours 71.49/51.05/37.28 64.57/81.53/79.56 

VGG19 
(73.28,419.53M,39.35M) 

Greg 72.95/28.45/35.46 71.55/52.72/71.31 
DepGraph 73.21/29.32/35.78 72.69/43.97/71.64 

Ours 73.06/24.53/36.01 72.63/52.77/71.66 

5. Conclusion 

In this study, we proposed a structured pruning method based on reinforcement learning, aiming to 
optimize the neural network structure to improve computational efficiency and model performance. 
Experiments demonstrate that our method effectively reduces the number of model parameters and 
computational complexity while maintaining high classification accuracy when applied to ResNet56 and 
VGG19 models on the CIFAR-100 dataset. Compared with traditional methods, the reinforcement 
learning strategy in our method dynamically adjusts the pruning ratio, which not only removes redundant 
parameters but also retains the key feature representation capabilities, showing good generalization. 
Future work will focus on exploring the application of this method on larger-scale datasets and more 
complex network architectures. 
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