
Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 8, Issue 7: 79-86, DOI: 10.25236/AJCIS.2025.080710

Published by Francis Academic Press, UK
-79-

Structured Pruning Based on Reinforcement
Learning for CNN

Qianxi Li1,a,*, Wenhui Zhang1,b

1School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074,
China
alqxdyx0121@163.com, b17385339798@163.com
*Corresponding author

Abstract: In recent years, deep learning models have demonstrated excellent performance in complex
tasks, but their large number of parameters and high computational costs have limited their application
in resource-constrained scenarios. This paper proposes a structured pruning method based on
reinforcement learning (TD3 algorithm), which performs structured pruning on a group-by-group basis
to balance model compression efficiency and performance retention. The TD3 agent takes the parameter
states of each group as observation inputs, dynamically adjusts the pruning rate of each group as actions,
and designs a multi-objective reward function based on model accuracy,FLOPs, and the number of
parameters to achieve autonomous optimization of pruning strategies. Experiments on ResNet56 and
VGG19 with the CIFAR-100 dataset show that this method maintains high classification accuracy while
significantly reducing parameters and computational complexity. Compared with traditional pruning
methods, it is more adaptive and provides an effective solution for model deployment in resource-
constrained environments.

Keywords: Structured Pruning, Reinforcement Learning, TD3, Model Compression

1. Introduction

In recent years, Deep Learning has made remarkable progress in various fields and applications such
as Computer Vision (CV)[1], Natural Language Processing (NLP)[2], and Audio Signal Processing (ASP)
[3]. Although Deep Neural Networks (DNNs) have achieved remarkable success in various fields, their
performance heavily relies on extensive model parameters and high computational costs. For instance,
the widely used ResNet-50 occupies more than 95 MB of memory and contains more than 23 million
parameters [4]. Although the huge number of parameters significantly improves the model's task
processing performance, it also brings high computational costs and long inference times, seriously
limiting the deployment and application of deep learning models in resource-constrained scenarios [5].
To address this challenge, model compression methods have emerged, aiming to reduce model
parameters and computational complexity while minimizing performance degradation, thereby
improving operational efficiency .

At present, the mainstream methods of model compression mainly include pruning[6], quantization[7],
knowledge distillation[8], and low-rank decomposition[9], etc. Quantization converts high-precision
floating-point parameters into low-precision integer or binary-valued parameters, potentially sacrificing
model accuracy.Low-rank decomposition method decomposes a high-dimensional weight matrix into the
product of multiple low-rank matrices, however, the effect of low-rank decomposition depends on the
accuracy and method of matrix decomposition. In contrast, the model pruning directly reduces the
complexity of the model by removing unimportant connections, neurons, or parameters in the neural
network. While achieving a significant compression effect, it can better maintain the model performance,
thus attracting extensive attention from researchers.

Model pruning methods are mainly categorized into unstructured pruning and structured pruning.
Unstructured pruning will disrupt the structural rules of the model. It requires special hardware
acceleration and is difficult to deploy. In contrast, structured pruning aims to preserve the regularity of
the network architecture by eliminating entire neurons, convolutional kernels, or channels, thereby
enabling broader practical applications. Fang et al.[10] decomposed the substructures in the network into
multiple isomorphic groups, and independently performed importance evaluation and pruning within
each group to achieve group-level pruning.Liu et al.[11] used the reparameterization to merge adjacent

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 8, Issue 7: 79-86, DOI: 10.25236/AJCIS.2025.080710

Published by Francis Academic Press, UK
-80-

layers, compressed the multi-branch structure into a single-path convolutional layer, and utilized
structure reparameterization to solve the compatibility problem of the normalization layer. Notably,
traditional structured pruning methods predominantly rely on manual experience when determining
pruning strategies and it is difficult to adapt to different models and tasks.

To overcome these limitations, this paper proposes a reinforcement-learning-based model pruning
method that leverages Twin Delayed Deep Deterministic Policy Gradient (TD3). First, the model is
divided into different groups according to the dependency relationships among its layers[12].
Subsequently, the TD3 agent is applied to the pruning process, taking the set of parameter states of each
group as the observation input for the agent, and defining the group - level pruning operation as the
agent's action. A reward function is constructed based on the performance change of the pruned model,
enabling the agent to autonomously explore the optimal group - based pruning strategy through
interaction and learning with the model environment. Compared with traditional methods, this scheme
can adaptively perform group - based pruning on the model, dynamically adjust the pruning intensity of
each group, achieve a higher compression ratio, and minimize accuracy loss.

2. Related Work

2.1 Structured Pruning

Structured pruning is straightforward in operation, capable of preserving the original network
structure, which facilitates subsequent analysis and optimizationand is easy to implement and deploy.
Consequently, researchers have conducted extensive investigations into structured pruning.

Wang et al.[13] statistically modeled the network pruning problem from the perspective of reducing
redundancy, developing a pruning method that identifies the structural redundancy of CNNs and prunes
the filters in selected layers with the highest redundancy. Benbaki et al.[14] considered the comprehensive
effects of pruning multiple weights subject to sparsity constraints, performing combinatorial optimization
updates on a memory - friendly representation of the local quadratic approximation of the loss function.
Existing methods lack quantifiable metrics to estimate the compressibility of sub - networks during each
pruning iteration. To address this, Diao et al.[15] introduced the PQ index to measure the potential
compressibility of deep neural networks and utilized it to develop a sparsity - aware adaptive pruning
algorithm.

Currently, the absence of an automated mechanism in existing structured pruning approaches requires
researchers to invest substantial time in manual parameter tuning and experimental verification.
Therefore, designing a method that can automatically and efficiently determine the optimal pruning rate
is essential to propel structured pruning technology towards intelligence and automation.

2.2 Deep Reinforcement Learning

Deep reinforcement learning (DRL) integrates the powerful feature extraction capabilities of deep
learning with the decision-making optimization capabilities of reinforcement learning, demonstrating
significant advantages in handling high-dimensional and complex state spaces and action spaces. Deep
learning automatically extracts abstract feature representations from raw data through multi-layer neural
networks, providing rich information inputs for reinforcement learning. Reinforcement learning,
meanwhile, optimizes an agent’s policy via interaction with the environment and reward signals, enabling
the agent to make optimal decisions in complex environment.

Deep Q-Network (DQN) [16] is one of the classic algorithms of deep reinforcement learning.It
combines a convolutional neural network with Q-learning to handle reinforcement learning tasks with
complex inputs such as images, achieving end-to-end deep reinforcement learning for the first time and
laying the foundation for the development of subsequent algorithms. Asynchronous Advantage Actor-
Critic (A3C)[17] accelerates training efficiency and reduces variance by asynchronously executing
multiple agents’ learning processes, performing excellently in various Atari game tasks. Deep
Deterministic Policy Gradient (DDPG)[18] tackles continuous action space problems using an Actor-Critic
architecture, coupled with target networks and experience replay mechanisms, significantly enhancing
algorithm stability and convergence speed. TD3[19] improves upon DDPG by introducing a dual Q-
network structure to mitigate Q-value overestimation, target policy smoothing regularization to reduce
policy update fluctuations, and delayed update mechanisms to decrease network parameter update
frequency. These enhancements further boost the algorithm’s stability and performance in continuous

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 8, Issue 7: 79-86, DOI: 10.25236/AJCIS.2025.080710

Published by Francis Academic Press, UK
-81-

control tasks.

Traditional pruning methods typically rely on fixed rules or manually set thresholds, struggling to
adapt to diverse model architectures and task requirements. In contrast, DRL agents dynamically learn
optimal pruning strategies through interaction with the model environment, adjusting pruning intensity
and methods based on the model’s real-time state. This feature enables DRL-based pruning methods to
more effectively balance model compression and performance retention across complex and varied
models and tasks. Therefore, this paper employs a TD3-based reinforcement learning approach to
pruning, minimizing manual intervention and enhancing automation.

3. Method

Figure 1 provides an overview of the automated model pruning framework based on the TD3 agent.
This framework formulates the model pruning process as a reinforcement learning problem. The TD3
agent dynamically searches for the optimal pruning rate on a group-by-group basis, ensuring model
accuracy while achieving efficient compression of computational resources. It overcomes the limitations
of traditional methods and improves the efficiency of model deployment.

Figure 1: Reinforcement Learning Pruning Framework.

3.1 Grouping Method

This paper introduces the automatic model grouping method proposed by Wang et al. [12]. This method
uses dependency graphs to model the dependencies of each layer in the convolutional network. The
construction and grouping process of this method does not require human intervention and can avoid
disrupting the complex coupling relationships between models during pruning.

3.1.1 Definition

First, a Convolutional Neural Network (CNN) is divided into prunable layers and non-prunable
layers.Prunable layers include convolutional layers and linear layers, denoted as { ,1 }P

i c fi L L≤ ≤ + ,

where cL and fL represent the number of convolutional layers and linear layers, respectively. Non-

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 8, Issue 7: 79-86, DOI: 10.25236/AJCIS.2025.080710

Published by Francis Academic Press, UK
-82-

prunable layers encompass activation layers, pooling layers, and batch normalization layers. The pruning
operation of a batch normalization layer is triggered only when its preceding convolutional layer or linear
layer is pruned.

3.1.2 Methods for Constructing Dependency Graph

The construction process of the dependency graph can be categorized into two types: basic
dependency detection and special connection detection. The detailed implementations are as follows:

Basic Dependency Detection: Input an example image, and extract the input tensors{ }in
lT and output

tensors { }out
lT of each layer. If the output tensor of layer i is directly used as the input of layer j , a

basic dependency relationship is established as shown in Equation (1):

(,) () [], 1 out
i j out out out iDG k k k N= ∀ ≤ ≤

(1)

Special Connection Detection: Special connection detection is further divided into the following three
types:

Flattening: If the input tensor in
lT fails to match, it may be due to a flattening operation. In this case,

detect the output tensor out
aT after flattening, and construct the dependency relationship as shown in

Equation (2), where outA represents the output region area:

(,) () [, (1)]i j out out out out outDG k k A k A= ⋅ + ⋅
(2)

Concatenation: If there exists a out
bT such that concat(,)in out out

a b jT T T= ,the dependency relationship

is given by Equation (3), where bi is the starting index of the concatenation:

(,) () []b a out b outDG k i k= +
(3)

Residual Connection: When in out out
a b cT T T= + , the dependency relationships are expressed as

Equation (4).

(,) (,)() [], () []b a out out c a out outDG k k DG k k= =
(4)

Similarly, the dependency relationships of the Squeeze-and-Excitation module (multiplication
operation) are the same as those of the residual connection.

3.1.3 Grouping Process

First, input the sample images to obtain the input tensor in
lT and output tensor out

lT of each layer.
Then, detect basic dependencies by identifying the inter-layer dependency relationships of direct
connections through tensor matching. Next, handle special connections:Flattening operation: Establish
the channel mapping relationship based on the comparison of flattened tensors.Concatenation/Residual
connections: Construct synchronous pruning constraints according to the tensor operation logic.Finally,
group the pruning sets: Divide the layers that require synchronous pruning into non-overlapping sets to
ensure that all layers within the same group can complete the pruning operation collaboratively.

3.2 TD3 Reinforcement Learning Pruning Framework

This method uses reinforcement learning to search for the optimal compression rate of the model in
the action space. This section will detail the settings of each part of the reinforcement learning.

3.2.1 State Space

For each group of the model observed by the agent, we have 11 features to represent the state gs ,
defined as Equation (5):

g 1, , , , , , , , , ,[]in out s r gg rs g l c c k h w FLOPs Params acc a −=
(5)

Where g and
gl represent the group index and the intra-group layer index respectively, and

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 8, Issue 7: 79-86, DOI: 10.25236/AJCIS.2025.080710

Published by Francis Academic Press, UK
-83-

,in outc c are the number of input channels and output channels of the l -th layer; , ,sk h w represent
the size, length, and width of the convolutional kernel respectively. The dimension of the kernel is

in outc c k k× × × , and the input is outc h w× × .

1 /r current originFLOPs FLOPs FLOPs= − is the reduction ratio of the FLOPs of the model after the
current round of pruning operation to the FLOPs of the original model.

1 /r current originParams Params Params= − origin is the reduction ratio of the Params of the
model after the current round of pruning operation to the Params of the original model; acc is the
precision of the current model on the validation set; 1ga − are scaled within the range of (0,1) before
being passed to the agent. These features are indispensable for different convolutional layers in the
intelligent area.

3.2.2 Action Space

Action space ga ∈ represents the pruning rate of the g -th group, satisfying a (0,1)ga ∈ .
When the traditional discrete space is used as a coarse - grained action space for model compression, due
to the insufficiently precise control of sparsity, the number of action combinations grows exponentially,
making effective exploration extremely difficult. Therefore, this paper adopts the continuous action space

(0,1)ga ∈ , which can realize more refined and accurate model compression operations.

3.2.3 Rewards

A multi - objective fusion reward function R is designed. This reward function comprehensively
considers multiple key factors during the pruning process. It aims to guide the intelligent agent to explore
a better pruning strategy while optimizing the model performance, and achieve a balance among model
accuracy, computational efficiency, and the number of parameters. It is defined as Equation (6):

(cc c c) pre current pre current
current pre

pre pre

FLOPs FLOPs Params Params
R a a

FLOPs Params
α β γ

− −
= ⋅ − − ⋅ − ⋅

(6)

The first term is the difference in model accuracy between the current pruned model and the model
from the previous round. α is the accuracy weight coefficient, ensuring that the intelligent agent
emphasizes accuracy maintenance during pruning. Usually, the model accuracy shows a downward trend
after the pruning operation. However, some studies have shown that the accuracy may increase after
model compression. Therefore, for the intelligent agent, a reward is given for accuracy improvement,
and a penalty is imposed for accuracy decline. The second and third terms are the reduction ratios of the
computational load and the number of parameters, respectively, aiming for the maximum compression
ratio. In this study, FLOPs and Params are used as rewards, so a ratio - based quantification method is
adopted to return values to the agent. β andγ are the corresponding weight coefficients, and different
target priorities can be set according to application scenarios. For example, if the mobile terminal focuses
on computational load optimization,β can be increased. The weight coefficients satisfy 1α β γ+ + = ,
and they achieve a balance between the improvement of accuracy and the reduction of computational
cost. Finally, the accuracy of the compressed model is evaluated on the validation set, and rewards are
provided to the agent according to the reward Equation (6).

3.3 Pruning Process of TD3 Agent

3.3.1 Action Generation and Pruning Operation

Given the current normalized state s, the actor network generates a group-level pruning action ga ,
where ga represents the uniform pruning rate for the g-th group, and 0 1ga< < . The specific execution
steps are as follows:

Locate Layer Sets by Group: Based on the grouping results of the dependency graph, determine the
set of all network layers

,1 ,2 ,{ , , , }g g g g nL L L L= … (where n is the number of layers in the group)
included in the g-th group.

Uniform Pruning within the Group: For each layer ,g iL in the group, apply the same pruning rate

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 8, Issue 7: 79-86, DOI: 10.25236/AJCIS.2025.080710

Published by Francis Academic Press, UK
-84-

ga . Taking a convolutional layer as an example, assume its weight tensor is out inC C K KW × × ×∈ (outC
is the number of output channels, inC is the number of input channels, and K is the size of the
convolutional kernel). The number of channels retained after pruning is calculated as Equation (7):

(1)out gC C a′ = × −
(7)

The new weight tensor is obtained by retaining the first C' channels.

Channel Importance Ranking: Calculate the importance score of each channel using the following
formula and sort them in descending order according to the 1L -norm is calculated as Equation (8):

, , ,
1 1 1

Score() | |
inC K K

c i u v
i u v

c W
= = =

=∑∑∑

(8)

Where c is the channel index. Finally, retain the first C' channels with the highest scores, set the
weights of the remaining channels to 0, and complete the pruning of the entire group.

3.3.2 Model Evaluation and Reward Calculation

Fine-tune the pruned model, and calculate the accuracy acccurrent , FLOPscurrent , and Paramscurrent

on the validation set. Then, calculate the reward value R according to the reward function.

Fine- tune usually uses a small amount of training data for training over several epochs to restore the
performance of the pruned model. When calculating the reward, to reduce reward variance, a baseline
reward b is introduced and calculated using an exponential moving average:

(1)b bb b Rα α← ⋅ + − ⋅ , where
bα is a smoothing coefficient (e.g., 0.99). By comparing with the

baseline, the superiority or inferiority of the current pruning strategy can be more accurately evaluated,
accelerating the convergence of training.

3.3.3 Experience Storage and Training

Store the quadruplet 1(, , ,)l l ls a R s + into the experience replay buffer. When the amount of data in
the buffer reaches M , randomly sample data with a batch size of N for training. The loss function of the
critic network is Equation (9):

2
1 2

1

1 (min((,), (,)))
N

Q i i i i i
i

L y Q s a Q s a
N =

= −∑

(9)

This formula enables the critic network to learn to accurately estimate the state-action pair value by
minimizing the mean squared error. Among them, the target value is

' '
1 1 1 2 1 1min((, ()), (, ()))i i i i i iy r b Q s s Q s sγ π π+ + + +′ ′= − + ,where ir is the sampled reward, b is the

baseline reward, and γ is the discount factor, which is used to balance short - term and long - term
rewards. '

1Q , '
2Q , and π ′ are target networks.

Update the actor network every K rounds, by minimizing the loss function is Equation (10):

1 2
1

1 min((, ()), (, ()))
N

i i i i
i

L Q s s Q s s
Nπ π π

=

= − ∑

(10)

The parameters of the actor network are updated using the gradient descent method. The negative
sign converts the problem of maximizing the Q-value into the problem of minimizing the loss. By
optimizing this loss, the actor network learns to generate pruning strategies that can obtain high rewards,
and gradually improves the pruning effect.

4. Experimental Analysis

4.1 Dataset

The experiment selects the CIFAR-100 dataset, which was released by the Canadian Institute for
Advanced Research (CIFAR) in 1998. This dataset contains 100 classes, with 600 color images in each
class. Among them, 500 images are used for training and 100 for testing, totaling 60,000 images. All

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 8, Issue 7: 79-86, DOI: 10.25236/AJCIS.2025.080710

Published by Francis Academic Press, UK
-85-

images have a size of 32×32 pixels.

We employed two classic deep convolutional neural network models, ResNet56 and VGG19, for the
experiments. ResNet56 possesses powerful feature extraction capabilities and demonstrates excellent
performance in image classification tasks. VGG19 is renowned for its uniform network architecture and
large receptive field, enabling it to extract rich image features.

4.2 Experimental results

In the experiment, three criteria were adopted to evaluate the compression model: test Top-1
accuracy,FLOPs compression ratio 1 /current originFLOPs FLOPs= − , and parameter count compression
ratio 1 /current originParams Params= − . Additionally, comparisons were made with two other structured
pruning techniques, namely DepGraph [10] and GReg [20]. We evaluated their performance at different
sparsity levels using two channel sparsity ratios (20% and 50%).The specific experimental analysis is
shown in Table 1.

Table 1: Comparison with other state-of-the-art methods on the CIFAR-100 dataset
Model

(Accuracy,FlOPs,Para. Num.) Method Pruned Accuracy/FLOPs Ratio/Para. Num. Ratio
20% 50%

ResNet56
(72.62,128.63M,0.86M)

Greg 70.75/49.23/36.15 63.21/79.63/77.41
DepGraph 71.38/50.95/39.25 64.55/82.01/78.36

Ours 71.49/51.05/37.28 64.57/81.53/79.56

VGG19
(73.28,419.53M,39.35M)

Greg 72.95/28.45/35.46 71.55/52.72/71.31
DepGraph 73.21/29.32/35.78 72.69/43.97/71.64

Ours 73.06/24.53/36.01 72.63/52.77/71.66

5. Conclusion

In this study, we proposed a structured pruning method based on reinforcement learning, aiming to
optimize the neural network structure to improve computational efficiency and model performance.
Experiments demonstrate that our method effectively reduces the number of model parameters and
computational complexity while maintaining high classification accuracy when applied to ResNet56 and
VGG19 models on the CIFAR-100 dataset. Compared with traditional methods, the reinforcement
learning strategy in our method dynamically adjusts the pruning ratio, which not only removes redundant
parameters but also retains the key feature representation capabilities, showing good generalization.
Future work will focus on exploring the application of this method on larger-scale datasets and more
complex network architectures.

References

[1] Simonyan K ,Zisserman A .Very Deep Convolutional Networks for Large-Scale Image Recognition.
[J].CoRR,2014,abs/1409.1556
[2] Chowdhery A, Narang S, Devlin J, et al. Palm: Scaling language modeling with pathways[J]. Journal
of Machine Learning Research, 2023, 24(240): 1-113.
[3] Hongbing Z .Application Research of Speech Signal Processing Technology Based on Cloud
Computing Platform[J].International Journal of Information Technologies and Systems Approach
(IJITSA),2021,14(2):20-37.
[4] You H, Li C, Xu P, et al. Drawing early-bird tickets: Towards more efficient training of deep
networks.[J].CoRR,2019,abs/1909.11957
[5] Han S, Mao H ,Dally J W .Deep Compression: Compressing Deep Neural Network with Pruning,
Trained Quantization and Huffman Coding.[J].CoRR,2015,abs/1510.00149
[6] Gao S, Zhang Y, Huang F, et al. BilevelPruning: unified dynamic and static channel pruning for
convolutional neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2024: 16090-16100.
[7] Lin H, Xu H, Wu Y, et al. Duquant: Distributing outliers via dual transformation makes stronger
quantized llms[J]. Advances in Neural Information Processing Systems, 2024, 37: 87766-87800.
[8] Lv J, Yang H, Li P. Wasserstein distance rivals kullback-leibler divergence for knowledge
distillation[J]. Advances in Neural Information Processing Systems, 2024, 37: 65445-65475.
[9] Guo Z, Cheng X, Wu Y, et al. A wander through the multimodal landscape: Efficient transfer learning
via low-rank sequence multimodal adapter[C]//Proceedings of the AAAI Conference on Artificial

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 8, Issue 7: 79-86, DOI: 10.25236/AJCIS.2025.080710

Published by Francis Academic Press, UK
-86-

Intelligence. 2025, 39(16): 16996-17004.
[10] Fang G, Ma X, Mi M B, et al. Isomorphic pruning for vision models[C]//European Conference on
Computer Vision. Cham: Springer Nature Switzerland, 2024: 232-250.
[11] Liu J, Tang D, Huang Y, et al. Updp: A unified progressive depth pruner for cnn and vision
transformer[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(12): 13891-
13899.
[12] Wang B, Kindratenko V. Rl-pruner: Structured pruning using reinforcement learning for cnn
compression and acceleration[J]. arXiv preprint arXiv:2411.06463, 2024.
[13] Wang Z, Li C, Wang X. Convolutional neural network pruning with structural redundancy
reduction[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2021: 14913-14922.
[14] Benbaki R, Chen W, Meng X, et al. Fast as chita: Neural network pruning with combinatorial
optimization[C]//International Conference on Machine Learning. PMLR, 2023: 2031-2049.
[15] Diao E , Wang G , Zhan J ,et al.Pruning Deep Neural Networks from a Sparsity Perspective[J].
ArXiv, 2023, abs/2302.05601.DOI:10.48550/arXiv.2302.05601.
[16] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning
[J]. nature, 2015, 518(7540): 529-533.
[17] Mnih V, Badia A P, Mirza M, et al. Asynchronous methods for deep reinforcement
learning[C]//International conference on machine learning. PmLR, 2016: 1928-1937.
[18] Lillicrap P T ,Hunt J J ,Pritzel A , et al.Continuous control with deep reinforcement learning. [J].
CoRR,2015,abs/1509.02971
[19] Fujimoto S, Hoof H, Meger D. Addressing function approximation error in actor-critic
methods[C]//International conference on machine learning. PMLR, 2018: 1587-1596.
[20] Wang H , Qin C , Zhang Y ,et al.Neural Pruning via Growing Regularization[J]. 2020.
DOI:10.48550/arXiv.2012.09243.

	2.1 Structured Pruning
	2.2 Deep Reinforcement Learning
	3.1 Grouping Method
	3.2 TD3 Reinforcement Learning Pruning Framework
	3.3 Pruning Process of TD3 Agent
	4.1 Dataset
	4.2 Experimental results

