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Abstract: The identification of breast cancer subtypes plays a key role in the prognosis of breast cancer. 

In recent years, deep learning (DL) has shown good performance in intelligent identification of breast 

cancer subtypes. However, most of the traditional DL models use single-mode data, and the extracted 

features are limited, so the association between patient characteristics and breast cancer subtypes cannot 

be established stably. In order to improve the effect of recognition, this study proposes a multimodal 

fusion deep learning (MFDL) model. This model combined with the breast cancer gene modal data and 

image modal data established a multilayer perceptron network and the depth of the convolution neural 

network for feature extraction, and then based on the idea of weighted aggregation on the output of the 

two characteristics of the network integration. Finally, the fusion features were used to identify breast 

cancer subtypes. The experimental results show that compared with other models in AUC value, accuracy 

and other indicators, the MFDL model proposed in this study is more accurate and efficient in the 

identification of breast cancer subtypes. 

Keywords: Breast Cancer Subtype, Multimodal, Deep Learning, Feature Fusion, In-Telligent 

Recognition 

1. Introduction 

Breast cancer is a highly heterogeneous cancer composed of a variety of prognostic molecular 

subtypes, among which inter-tumor or intra-tumor heterogeneity is the key to drug resistance and 

treatment failure [1]. Therefore, in order to provide precise treatment, it is necessary to further identify 

the patient's breast cancer subtype. With the rapid development of medical science, immunohisto-

chemical markers (IHC) have enabled the classification of breast cancer molecular subtypes: LuminalA, 

LuminalB, Her2-enriched, and basal-like [2]. Although IHC has obvious advantages in the identification 

accuracy of breast cancer molecular subtypes, its identification cycle and high cost are a drawback that 

cannot be ignored. 

In recent years, machine learning and deep learning technologies have been used for intelligent 

diagnosis of molecular subtypes of breast cancer. Ha et. Al. [3] proposed a customized 14-layer 

convolutional neural network (CNN) for the identification of molecular subtypes of breast cancer. They 

adopted MRI data set of 216 breast cancer patients and identified them according to medical subtype 

classification, and finally achieved 70% accuracy in the classification of four subtypes. Coutureet.al.[4] 

adopted a weighting strategy to identify molecular subtypes of breast cancer using improved VGG16. 

They used pathological image data of 859 patients, and finally obtained a recognition accuracy of 77%. 

However, due to factors such as low sensitivity, low positive predictive value, high false positive rate and 

limited dimension, it is difficult to accurately identify molecular subtypes with single-mode features [5]. 

Therefore, this paper proposes a multi-mode fusion model based on the concept of multi-mode deep 

learning based on the gene modal data and image modal data of breast cancer patients, which improves 

the identification accuracy of molecular subtypes of breast cancer. 

2. Data Acquisition and Data Preprocessing 

2.1. Introduction to Data Sets 

The TCGA-BRCA public dataset was used as a sample dataset to identify the molecular subtypes of 

breast cancer, which contains gene expression data and copy number variation (CNVs) data from 1098 
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breast cancer patients with desensitized information and 1-10 unequal full-size histopathological images 

from each breast cancer patient sample. The gene expression data and CNVs data were one-dimensional 

data, while the pathology data were color images. Therefore, the data set is divided into two types of 

modal data, namely gene modal data and image modal data. Some samples lack data or labels. In this 

paper, the interference samples were screened and the gene expression data were preprocessed by 

Log2( x2logy  ), which is a commom method for gene data preprocessin[6].The specific data 

expression finally obtained is shown in Table 1. 

Table 1: A detailed description of TCGA multimodal dataset. 

The data type Indicators The file fomat Original processing mode 

Gene expression 20530 txt Log2 process 

CNVs 24776 txt None 

Pathological image 1-10(page) svs None 

In this paper, the samples were shuffled and divided into training set, validation set and test set in the 

ratio of 8:1:1 according to the total amount of data samples. At the same time, considering the difference 

in sample quantity distribution of the four molecular subtypes of breast cancer, the same proportion of 

stratified sampling method was used to obtain the sample sets of the four molecular subtypes. 

2.2. Preprocessing of Gene Modal Data 

The gene expression data after standardized processing was integrated with CNVs to obtain gene 

modal data, which contained 45,306 data indicators. Using high-dimensional data for network training 

will lead to more network parameters and longer training time. More importantly, the training samples 

of the data set in this paper are limited, and the final identification results are often inaccurate [7]. In this 

paper, PCA method was used to reduce dimension of gene modal data and the principal component whose 

eigenvalues of the contribution rate reaches 90% was selected as a dimension reduction result. Finally, 

398 data indexes were obtained as the input of gene modal feature extraction network. 

2.3. Image Modal Data Preprocessing 

The number of pixels contained in the full-size pathological images of each sample is tens of millions. 

In this paper, a size of 1024×1024 was selected to cut full-size pathological images, and about 100 

submaps could be cut from each full-size pathological image. As some local areas of full-size 

pathological images tend to be colorless or white, they contain very little characteristic information, as 

shown in Figure 1 (a). This "white" noise image will adversely affect network convergence and lead to 

performance degradation. Therefore, all pathological subgraphs were filtered for the first time in this 

paper to improve the robustness of the data set. Top50 selection method was adopted to select 50 

pathological submaps with the most information as the initial image modal data set of a sample according 

to the average gray value. 

In addition, the residual staining fluid after hematoxylin-eosin staining of tissue sections is the main 

cause of these noises in Figure 1 (b). The existence of such dyeing noise information will deteriorate the 

performance of DCNN and lead to the network convergence difficult. A second filter is used to further 

enhance the effective features of the image set. Due to the fact that an overstained subgraph will usually 

have long strips in place. Therefore, the Hough transform method was used in this paper to filter and 

eliminate the pathological subgraph with excessive staining. 

 
(a)                     (b)                            (c) 

Figure 1: (a) The"white" noise image (b) The overdyed noise image (c) Schematic diagram of the basic 

flow of cutting and secondary filtering of full-dimensional pathological images. 
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Finally, random affine transformation is mainly used in this paper to enhance and standardized the 

pathological subgraph, to break the limitation of small sample data to a certain extent, improve the 

generalization ability of DCNN model and the performance of the model on the test set, and accelerate 

the convergence rate of the network. 

3. Construction of Multi-Mode Fusion Deep Learning Model 

3.1. Multilayer Perceptron Model Based on Gene Modes 

MLP model can well extract features from one-dimensional data, and can describe rich internal 

information of one-dimensional data to obtain feature output. In order to extract the abstract features of 

gene modes more fully, an MLP network structure was innovatively defined in this paper with the design 

of "inverted pyramid" and co- mbining multiple activation functions, which referred to the layer design 

of Lenet-5 [8]. The specific MLP structure and activation functions of each layer are shown in Figure 2 

(a). L2 regularization model [9], exponential weighted moving average model (EWMA) and simple and 

computation-efficient Adam optimizer are also adopted in this paper to prevent the over-fitting 

phenomenon. 

3.2. Image Modal-Based Deep Convolutional Neural Network  

3.2.1. Improved Concrete Structure of Deep Convolutional Neural Network 

Based on the famous VGG16 model [10], this paper independently designed a DCNN model to extract 

high-dimensional abstract features from pathological images. The DCNN model consists of 28 layers, 

including input layer, convolutional layer, Inception layer, pooling layer and output layer, which can fully 

extract the key abstract features of the three-channel pathological submap. Inception layer refers to the 

penultimate layer in InceptionV3 model [11], which is introduced to further break the bottleneck of feature 

extraction from pathological images. The specific CNN model structure is shown in Figure 2 (b). In order 

to prevent overfitting, Dropout technology is introduced in training networks [12]. 

3.2.2. Transfer Learning Method 

 
(a) 

 
(c) 

 
(b) 

Figure 2: (a) Specific structure of each MLP model designed in this paper (b) Specific description of 

the parameters of each layer of the DCNN model (c) The whole process of identification of molecular 

subtypes of breast cancer by a multi-modal fusion architecture. 
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Due to the limited number of effective image training samples, transfer learning is also introduced to 

accelerate network convergence. Firstly, the DCNN model in this paper was pre-trained on ImageNet 

data set to extract reuse features, and then the pre-trained model was converted to pathological image 

data for fine-tuning training. In fine-tuning training, the Inception model trained by Google on ImageNet 

dataset is directly used as the migration module in the DCNN model in this paper. In addition, the "local 

feature learning" part after pre-training is frozen, and only the structural parameters of "high level feature 

learning" part are updated, which including inception layer, max pooling layer, Relu layer and FC layer, 

so as to achieve the purpose of fast matching pathology image data set. 

3.3. Multimodal Fusion 

In order to fuse the features of the two modes, the following fusion methods are defined in this paper: 


















00,10

1






dcnn

result
mlp

result
fusion

result

 

Where dcnnmlp resultresult 、  are respectively the MLP model feature extraction results obtained by 

Softmax classifier from gene modal data and image modal data, and fusionresult  represents the result 

after feature fusion. 

In this paper, simulated annealing algorithm (SA) is used to obtain the best combination of ),(   

is (0.88185, 0.11815) on the verification set. The realization process of the entire multi-mode fusion 

architecture is shown in Figure 2 (c). 

4. Experimental Results and Discussion 

4.1. Multimodal Fusion Results 

The identification accuracy of MLP model, DCNN model and MFDL model is 86.21%, 70.11% and 

88.51%, respectively. The identification accuracy of MFDL model is 2.7% higher than that of the optimal 

single mode model. In addition, the loss value of each model on the loss function is also counted in this 

paper, among which the loss value of MLP model is 0.26036, DCNN model is 0.48633, and MFDL model 

is only 0.17954. 

4.2. Cross Validation and AUC Test 

In order to improve the reliability of model identification results, this paper carried out ten cross-

validation of MLP model, DCNN model and MFDL model. The results of ten fold cross validation are 

shown in Figure 3 (a). The average accuracy of MFDL model was 88.07%, while MLP model was 

85.06%, DCNN model was 72.77%. 

In order to evaluate the performance of MFDL model for identification of a certain molecular subtype 

of breast cancer, ROC curves were made for each molecular subtype, as shown in Figure 3(b)-(e), and 

AUC values of the model for identification of each molecular subtype were calculated, as shown in Table 

2. Since ROC curve drawing and AUC value calculation are based on dichotomies, this paper takes the 

method of classifying other kinds of molecular subtypes into one class when evaluating the identification 

performance of a certain molecular subtype. 

Table 2: The AUC values obtained from the MFDL model, MLP model, and DCNN models on the 

subtype identification work in this pager. 

Molecular subtype category MFDL model MLP model DCNN model 

Basal-like 0.9331 0.8548 0.6364 

Her2-enriched 0.9732 0.8707 0.6902 

Luminal A 0.9316 0.8558 0.6751 

Luminal B 0.9328 0.8425 0.6709 

Average 0.9427 0.8561 0.6682 



Frontiers in Medical Science Research 

ISSN 2618-1584 Vol. 4, Issue 4: 64-69, DOI: 10.25236/FMSR.2022.040410 

Published by Francis Academic Press, UK 

-68- 

The results show that MFDL model is superior to the other two models based on single mode in the 

prediction of various molecular subtypes from the size of AUC value, and in the AUC level rating, MFDL 

model has opened a gap with MLP model to some extent. In the ten-fold cross validation, the accuracy 

of MFDL model is 3.53% higher than that of MLP model, and the difference between them is not 

particularly large. At the AUC level, the average AUC value of MFDL model is 10.12% higher than that 

of DNN model, which also indicates that MFDL model is more robust and has stronger prediction ability 

than MLP model. 

5. Conclusions 

This paper mainly studies the intelligent recognition of molecular subtypes of breast cancer. A multi-

modal fusion deep learning (MFDL) model is proposed to identify the molecular subtypes of breast 

cancer, and extract the deep features of gene modal data and image modal data. Finally, the two modal 

data are fused to identify the molecular subtypes of breast cancer intelligently. The results of 10 fold 

cross validation and AUC test show that the multimodal MFDL model proposed in this paper is superior 

to the traditional single mode model, and may become potential choice for intelligent identification of 

molecular subtypes of breast cancer in the future. However, the number of samples in the data set used 

in this paper is limited and the interference information in the image source is not completely removed, 

so this paper still has some room for improvement. As a new feature recognition technology, multimodal 

fusion technology shows great advantages in the field of recognition and can be extended to more 

research fields.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3: (a) Specific outcome plots of ten times of ten-fold cross-validation (b), (c), (d) Plot of the 

representation of the ROC curves made by the different molecular subtypes. 

References 

[1] McGranahan N, Swanton C, Clonal heterogeneity and tumor evolution: past, present, and the future 

[J]. Cell, 2017, 168(4): 613-628. 

[2] Guiu S, Michiels S, André F, et al., Molecular subclasses of breast cancer: how do we define them? 

The IMPAKT 2012 Working Group Statement [J]. Annals of oncology, 2012, 23(12): 2997-3006. 

[3] Ha R, Mutasa S, Karcich J, et al., Predicting breast cancer molecular subtype with MRI dataset 

utilizing convolutional neural network algorithm [J]. Journal of digital imaging, 2019, 32(2): 276-282. 

[4] Couture H D, Williams L A, Geradts J, et al., Image analysis with deep learning to predict breast 

cancer grade, ER status, histologic subtype, and intrinsic subtype [J]. NPJ breast cancer, 2018, 4 (1): 

1-8. 



Frontiers in Medical Science Research 

ISSN 2618-1584 Vol. 4, Issue 4: 64-69, DOI: 10.25236/FMSR.2022.040410 

Published by Francis Academic Press, UK 

-69- 

[5] Lahat D, Adali T, Jutten C, Multimodal data fusion: an overview of methods, challenges, and 

prospects [J]. Proceedings of the IEEE, 2015, 103(9): 1449-1477. 

[6] Quackenbush J, Microarray data normalization and transformation [J]. Nat Genet, 2002, 32: 496–

501. 

[7] Fu X, Wang L, Data dimensionality reduction with application to simplifying RBF network structure 

and improving classification performance [J]. IEEE Transactions on Systems, Man, and Cybernetics, 

Part B (Cybernetics), 2003, 33(3): 399-409. 

[8] LeCun Y, Bottou L, Bengio Y, et al., Gradient-based learning applied to document recognition [J]. 

Proceedings of the IEEE, 1998, 86(11): 2278-2324. 

[9] Murugan P, Durairaj S, Regularization and optimization strategies in deep convolutional neural 

network [J]. arXiv preprint arXiv: 1712.04711, 2017. 

[10] Simonyan K, Zisserman A, Very deep convolutional networks for large-scale image recognition [J]. 

arXiv preprint arXiv:1409.1556, 2014. 

[11] Szegedy C, Vanhoucke V, Ioffe S, et al., Rethinking the inception architecture for computer vision 

[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 2818-2826. 

[12] Srivastava N, Hinton G, Krizhevsky A, et al., Dropout: a simple way to prevent neural networks 

from overfitting [J]. The journal of machine learning research, 2014, 15(1): 1929-1958. 


