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Abstract: Since its official launch on August 17, 2016, Lombarda China Medical Health Fund has mainly 

focused on the potential leaders of medical services. It has performed very well in the medical-theme 

funds. Thus, it has become a signature product in the field. However, with the acceleration of the process 

of centralized pharmaceutical purchase in the second half of 2021, the relevant top holdings of the fund 

continued to slump, resulting in the continuous decline of its revenue. This paper selects the top ten 

holdings of Lombarda China Medical Health Fund as the representative portfolio, estimating its VaR 

(Value at Risk) using Monte Carlo Simulation method to provide investors with quantifiable fund risk 

information so that they can choose a more appropriate investment scheme. 
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1. Introduction 

In recent years, with the continuous advancement of economic globalization and the emergence of a 

variety of economic innovations, financial risk management issues have caused discussions in the 

industry and academia, and the corresponding research has been carried out. For the financial industry, 

financial risk is well-known for its significant concentration, potential destruction and far-reaching 

dissemination. Nowadays, with the increasingly complex asset structure, the defects of the traditional 

financial risk management methods are becoming much more obvious [1]. Compared with the commonly 

used risk quantification indicators in the past, such as the standard deviation of return, σ, β, Sharpe ratio, 

maximum retracement rate and so on, VaR is more concise and effective. Therefore, it has become a 

common indicator of the risk of funds [2]. 

The calculation of Value at Risk (VaR) has become the mainstream method of risk management and 

financial regulation in the international financial market [3], and has been widely used in the measurement 

of financial market risks. Its basic idea is to calculate the maximum potential loss of a financial asset or 

portfolio on the premise of a certain period and a certain confidence level [4]. Compared with other risk 

quantification indicators, the greatest advantage of VaR is that it can accurately estimate the risk using 

algorithm before the event happens. There are numerous methods to calculate VaR, and three of them are 

commonly used: Extreme Value Theory, Historical Simulation Method and Monte Carlo Method. 

In the financial market, Monte Carlo Simulation Method is used to simulate the asset portfolio in 

different situations in certain periods, and it is the most effective method to calculate VaR. For different 

distributions of portfolio and various nonlinear situations, satisfactory results can be obtained by Monte 

Carlo Simulation Method. It has the following advantages: it can produce a large number of scenarios 

and is more accurate and reliable; it is a full-value estimation method, which can deal with nonlinear, 

large fluctuation problems, namely thick tail problems; different behaviors (such as white noise, auto 

regression and bilinear, etc.) and different distributions of returns can be simulated [5]. 

2. Data Sources and Processing 

2.1. Data Sources 

In this paper, the top ten holdings in the fourth quarter of 2021 in Lombarda China Medical Health 

Hybrid Fund A (003095) are chosen to be the representatives of the fund to measure the value at risk of 
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the fund, WuXi App Tec (603259), Aier Eye Hospital (300015), Asymchem (002821), Tigermed 

Consulting (300347), Pharmaron (300759), Mindray Medical (300760), Pien Tze Huang (600463), 

Topchoice Medical (600763), Porton Pharma Solutions (300363) and Jiuzhou Pharmaceutical (603456). 

They make up 56.68% of the total, and the positions are 65716080, 140833948, 11987613, 36283674, 

32347682, 11871360, 7869304, 15711313, 26660397, and 40737316, respectively. 

Since these ten had ex-dividend date in 2021, the closing quotations of the stock jumped on the second 

day of the ex-dividend date, so the value of portfolio is discontinuous. To solve this problem, this paper 

selects the split-adjusted share prices of 243 trading days from January 4, 2021 to December 31, 2021 of 

10 stocks as the daily stock prices. 

Respectively, Set the selected ten shares as variables X1、X2、X3、X4、X5、X6、X7、X8、X9、

X10. 

The closing price data of each stock is shown in Table 1: 

Table 1: Ten heavy warehouse stocks before the right to close 

data 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 

2021.01.04 114.02 52.52 297.44 166.53 120.83 431.69 279.39 268.00 37.04 34.84 

2021.01.05 118.08 53.17 303.11 170.90 125.31 433.82 295.76 283.69 36.62 35.55 

2021.01.06 119.54 55.04 302.59 165.52 124.86 447.53 293.83 296.5 34.77 35.06 

2021.01.07 121.37 59.59 307.86 170.21 125.21 453.69 299.28 303.44 35.29 34.96 

2021.01.08 121.59 58.46 294.78 164.72 116.34 447.63 295.97 304.84 32.84 33.05 

… … … … … … … … … … … 

2021.12.27 114.19 43.99 448.7 120.6 143 371.21 472.3 200.36 84.72 56.5 

2021.12.28 119.1 43.6 455 124.88 146.41 379 476.15 199.21 90 56.68 

2021.12.29 119.19 43.49 443 124.79 145 376.14 428.54 203.02 92.33 57.87 

2021.12.30 120.01 43.65 456.08 127.31 143 383 423.03 205.73 93 58.11 

2021.12.31 118.58 42.28 435 127.8 141.27 380.8 437.15 199 89.45 56.26 

Data source: Wind 

2.2. Data Processing 

For the individual stocks can vary from each other vastly, the differences in closing prices of each 

stock can be relatively obvious. Therefore, to make the data more stable and eliminate the influence 

brought by dimensional, logarithmic return rate will be used in this paper to represent the changes of 

stock prices. The logarithmic return of the stock is calculated from the previous and closing prices: R =

ln
𝑃𝑡

𝑃𝑡−1
。The mean 𝜇̂ and standard deviation 𝜎̂ of changes in price are calculated by logarithmic return 

rate R: 

𝜇̂ =
1

𝑛
∑ 𝑅𝑖
𝑛
𝑖=1  (1) 

𝜎̂ = √
1

𝑛−1
∑ (𝑅𝑖 − 𝜇̂)

2𝑛
𝑖=1

2
 (2) 

Since the stocks of this portfolio belong to Chinese Stock Market and the pharmaceutical sector, there 

is a significant correlation among them. The correlation coefficient matrix ρ of the price changes of ten 

stocks is calculated by logarithmic return rate. The calculation results are shown in Table 2 and Table 3: 

Table 2: Parameters results 

Variable 𝜇̂ 𝜎̂ 

𝑋1 0.0002336739 0.03264120 

𝑋2 -0.0012765615 0.03381816 

𝑋3 0.0015474796 0.03361441 

𝑋4 -0.0009588617 0.03619305 

𝑋5 0.0006635860 0.03915683 

𝑋6 -0.0004407461 0.03189977 

𝑋7 0.0020297207 0.03226022 

𝑋8 -0.0013538203 0.03905935 

𝑋9 0.0036958306 0.04130748 

𝑋10 0.0018789867 0.03513666 
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Table 3: Correlation coefficient matrix 

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 1 0.62211 0.68210 0.77992 0.77892 0.69029 0.47891 0.64099 0.57083 0.60239 

X2 0.62211 1 0.48616 0.61543 0.54613 0.65036 0.49305 0.77994 0.37651 0.46592 

X3 0.68210 0.48616 1 0.64976 0.69272 0.49963 0.42002 0.49042 0.62733 0.6175 

X4 0.77992 0.61543 0.64976 1 0.74423 0.60216 0.48587 0.61911 0.56439 0.605074 

X5 0.77892 0.54613 0.69272 0.74423 1 0.59977 0.46690 0.57727 0.65205 0.595733 

X6 0.69029 0.65036 0.49963 0.60216 0.59977 1 0.51296 0.62670 0.36807 0.463517 

X7 0.47891 0.49305 0.42002 0.48588 0.46690 0.51296 1 0.53070 0.30359 0.29977 

X8 0.64099 0.77994 0.49042 0.61911 0.57727 0.62670 0.53070 1 0.39857 0.478429 

X9 0.57083 0.37651 0.62733 0.56439 0.65205 0.36807 0.30359 0.39857 1 0.593063 

X10 0.60239 0.46592 0.61749 0.60507 0.59573 0.46352 0.29977 0.47843 0.59306 1 

3. Calculation of VaR Based on Monte Carlo Simulation 

3.1. Model Specification 

As is assumed that stock price changes follow Geometric Brownian Motion, GBM model is selected 

as a stochastic model to reflect asset price changes. 

Because the logarithmic distribution of geometric Brownian Motion obeys the normal distribution, 

that is, the log-return obeys the normal distribution, the model should generate random numbers obeying 

the normal distribution. 

The continuous geometric Brownian Motion model is discretized and can be expressed as: 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑆1,𝑡+𝑖∆𝑡 = 𝑆1,𝑡+(𝑖−1)∆𝑡(1 + 𝜇1∆𝑡 + 𝜎1𝜀1,𝑖√∆𝑡), 𝑖 = 1,2, . . . , n

𝑆2,𝑡+𝑖∆𝑡 = 𝑆2,𝑡+(𝑖−1)∆𝑡(1 + 𝜇2∆𝑡 + 𝜎2𝜀2,𝑖√∆𝑡), 𝑖 = 1,2, . . . , n

𝑆3,𝑡+𝑖∆𝑡 = 𝑆3,𝑡+(𝑖−1)∆𝑡(1 + 𝜇3∆𝑡 + 𝜎3𝜀3,𝑖√∆𝑡), 𝑖 = 1,2, . . . , n

𝑆4,𝑡+𝑖∆𝑡 = 𝑆4,𝑡+(𝑖−1)∆𝑡(1 + 𝜇4∆𝑡 + 𝜎4𝜀4,𝑖√∆𝑡), 𝑖 = 1,2, . . . , n

𝑆5,𝑡+𝑖∆𝑡 = 𝑆5,𝑡+(𝑖−1)∆𝑡(1 + 𝜇5∆𝑡 + 𝜎5𝜀5,𝑖√∆𝑡), 𝑖 = 1,2, . . . , n

𝑆6,𝑡+𝑖∆𝑡 = 𝑆6,𝑡+(𝑖−1)∆𝑡(1 + 𝜇6∆𝑡 + 𝜎6𝜀6,𝑖√∆𝑡), 𝑖 = 1,2, . . . , n

𝑆7,𝑡+𝑖∆𝑡 = 𝑆7,𝑡+(𝑖−1)∆𝑡(1 + 𝜇7∆𝑡 + 𝜎7𝜀7,𝑖√∆𝑡), 𝑖 = 1,2, . . . , n

𝑆8,𝑡+𝑖∆𝑡 = 𝑆8,𝑡+(𝑖−1)∆𝑡(1 + 𝜇1∆𝑡 + 𝜎8𝜀8,𝑖√∆𝑡), 𝑖 = 1,2, . . . , n

𝑆9,𝑡+𝑖∆𝑡 = 𝑆9,𝑡+(𝑖−1)∆𝑡(1 + 𝜇9∆𝑡 + 𝜎9𝜀9,𝑖√∆𝑡), 𝑖 = 1,2, . . . , n

𝑆10,𝑡+𝑖∆𝑡 = 𝑆10,𝑡+(𝑖−1)∆𝑡(1 + 𝜇10∆𝑡 + 𝜎10𝜀10,𝑖√∆𝑡), 𝑖 = 1,2, . . . , n

 (3) 

𝑆1,𝑡+𝑖∆𝑡 ~𝑆10,𝑡+𝑖∆𝑡  represent the share prices at time t, 𝑆1,𝑡+(𝑖−1)∆𝑡~𝑆10,𝑡+(𝑖−1)∆𝑡 represent the share 

prices at time t-1, 𝜇1~𝜇10 represent the mean of log-return, 𝜎1~𝜎2 represent the standard deviation of 

log-return, 𝜀1,𝑖~𝜀10,𝑖 respectively are random numbers obeying the standard normal distribution, 

calculated by 𝜀1~𝜀10, random variables generated by randomness. 

3.2. The Empirical Analysis 

Assume that 1000 trades are spaced over the next trading day, so the mean and standard deviation of 

each time period 𝛥𝑡 =
1

1000
 are respectively

𝜇

1000
and

𝜎

√1000
, and GBM model can be expressed as: 
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 (4) 

Due to the correlation among the price changes of ten stocks, the random variable 𝜀1,𝑖~𝜀10,𝑖 cannot 

simply be directly generated by the random number generator, but is determined jointly by the computer-

generated random number and the correlation coefficient. 

The correlation coefficient matrix in Table 3 is decomposed into lower triangular matrix T by 

Cholesky factor decomposition method, as shown in Table 4: 

Table 4: Cholesky decomposed the lower triangular matrix T 

variable X1 X2 X3 X4 X5 X6 X7 X8  X9 X10 

X1 1 0 0 0 0 0 0 0  0 0 

X2 0.62211 0.78293 0 0 0 0 0 0  0 0 

X3 0.68210 0.07897 0.72699 0 0 0 0 0  0 0 

X4 0.77992 0.16635 0.14394 0.58595 0 0 0 0  0 0 

X5 0.77892 0.07862 0.21351 0.15859 0.56246 0 0 0  0 0 

X6 0.69029 0.28219 0.00895 0.02656 0.06007 0.66294 0 0  0 0 

X7 0.47891 0.24921 0.10135 0.09613 0.06648 0.15777 0.81223 0  0 0 

X8 0.64099 0.48686 0.02031 0.06021 0.04593 0.06382 0.10025 0.57605  0 0 

X9 0.57083 0.02733 0.32436 0.11596 0.20913 -0.07877 -0.02719 0.00686  0.70994 0 

X10 0.60234 0.11644 0.27154 0.13107 0.06863 0.00725 -0.07826 0.04590  0.17821 0.69850 

Then the vector formed by random variable 𝜀1,𝑖~𝜀10,𝑖 is: 

(
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𝜀8,𝑖
𝜀9,𝑖
𝜀10,𝑖)

 
 
 
 
 
 
 

=T

(

 
 
 
 
 
 
 

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6
𝜀7
𝜀8
𝜀9
𝜀10)

 
 
 
 
 
 
 

 (5) 

Firstly, 1000 independent random variable values 𝜀1~𝜀10 subject to standard normal distribution are 

generated by R. Through the calculation of the correlation coefficient relation described in Formula (3-

3), 1000 random variables 𝜀1,𝑖~𝜀10,𝑖 affecting the price changes of ten stocks can be obtained. Further, 

the known parameters𝜇1~𝜇10, 𝜎1~𝜎2 and 𝜀1,𝑖~𝜀10,𝑖 , are substituted into the GBM stochastic model 

respectively, and 1000 possible values of ten stock price changes in the next day can be calculated, so as 

to obtain a sample trajectory of stock price changes in the next day. When t is 1000, we can get a set of 

ten stock prices in the next day that might be 𝑃𝑇,1
1 ~𝑃𝑇,10

1 . 

Repeat the above steps 1000 times, then 1000 groups of similar possible values can be obtained, as 

shown in Table 5: 
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Table 5: Possible value of each share price (YUAN/share) 

NO. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

1 118.34 41.43 412.13 126.70 137.43 378.74 435.59 194.13 90.60 53.61 

2 120.02 41.74 446.33 133.58 147.45 399.04 444.49 200.03 91.17 56.93 

3 115.34 40.66 420.82 125.60 130.32 364.62 445.56 191.81 83.90 55.83 

4 117.11 43.04 442.81 127.30 144.46 379.51 440.51 198.28 92.10 58.02 

5 125.31 43.93 475.19 137.64 150.64 392.80 454.18 196.346 96.43 60.03 

6 117.49 40.48 423.87 121.95 136.52 364.11 435.40 188.02 89.08 54.54 

7 116.86 43.25 439.03 129.60 137.85 377.95 451.06 202.14 90.45 57.63 

8 117.95 42.64 440.56 131.59 142.60 374.63 430.16 204.97 86.18 55.55 

9 115.55 41.64 431.24 126.97 137.45 365.31 446.03 196.20 86.50 56.08 

10 115.44 42.71 447.51 122.14 136.87 370.69 435.45 196.48 87.87 54.3 

… … … … … … … … … … … 

584 112.58 41.14 426.79 122.01 132.95 352.84 428.48 182.88 89.14 55.66 

… … … … … … … … … … … 

991 120.03 41.37 447.82 127.71 139.42 374.67 433.00 193.99 90.66 57.95 

992 123.61 42.78 456.73 131.52 139.41 395.08 452.51 201.67 87.15 56.70 

993 119.98 41.88 436.44 130.74 147.27 394.61 451.91 208.43 91.02 56.71 

994 114.68 41.68 422.12 122.06 135.04 375.93 442.31 195.272611 91.81 54.88 

995 109.88 40.29 392.93 118.05 121.17 366.53 406.01 182.05 79.06 52.24 

996 112.60 40.04 424.56 122.33 137.32 345.23 430.92 192.71 89.17 56.55 

997 115.75 40.31 422.98 122.24 134.19 373.44 410.47 191.13 88.66 56.09 

998 123.77 43.56 440.79 130.14 147.62 402.72 441.01 203.51 91.47 54.07 

999 118.30 42.37 450.16 133.40 146.82 383.89 419.667 195.44 88.39 57.31 

1000 116.72 42.30 434.93 128.61 140.75 383.71 443.20 195.67 87.28 52.81 

By substituting the holding position of each stock into the calculation, 1000 possible values of profit 

and loss in the next day of the portfolio composed of the ten can be obtained, and the 1000 possible 

values are sorted, that is, the distribution table of investment income of the portfolio as shown in Table 6 

can be obtained: 

Table 6: Portfolio income distribution statement 

NO. Portfolio income (YUAN) Rank of return 

1 -763,561,919.3 759 

2 927,446,284 211 

3 -1,449,846,707 897 

4 332,061,475.7 372 

5 2,390,634,012 31 

6 -1,288,542,955 865 

7 234,085,655.6 405 

8 105,645,226.9 458 

9 -731,914,276.8 745 

10 -637,224,423.8 713 

… … … 

584 -1,819,261,553 950 

… … … 

991 -24,562,473.29 504 

992 1,024,972,267 191 

993 841,711,491.5 230 

994 -974,305,652 807 

995 -3,482,565,927 1000 

996 -1,725,787,815 943 

997 -1,487,042,047 904 

998 1,206,634,229 151 

999 416,555,463.3 348 

1000 -275,944,014.6 593 

At the 95% confidence level, the confidence upper limit is 1000 × 95% = 950. In the results shown 

in Table 6, the corresponding profit and loss value at the 950th is the VaR, that is, the VaR at the 95% 

confidence level is the loss value of 1,819,261,553 yuan obtained from the 584th simulation result. 

4. Conclusion 

In this paper, with the top ten holdings of The Lombarda China Medical Health Hybrid A Fund 

constituting a portfolio as its representative, the split-adjusted closing prices of 243 trading days from 

January 4, 2021 to December 31, 2021 are selected as sample data to study the value at risk of the fund. 

The empirical results show that on January 3, 2022, the first trading day of 2022, the VaR of the portfolio 

at the 95% confidence level is 1,819,261,553 yuan. That is, under the 95% confidence level, the fund 

represented by this portfolio may suffer a maximum loss of 1,819,261,553 yuan on the first trading day 
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of 2022, but in a more extreme market environment, the loss value may be higher than the estimated 

value at risk. 

To sum up, VaR can be used as a practical risk management tool for investors, financial institutions 

and financial regulators. Investors and financial institutions can analyze individual stocks, portfolios and 

even financial markets through the estimation of VaR, and combine the estimated VaR with their own 

risk preferences for asset allocation. By estimating VaR in the market, financial regulatory departments 

detect market risks, give early warning to corresponding risks and take corresponding preventive 

measures, so as to promote the overall positive and healthy development of the financial market [6]. 
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