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Abstract: Nowadays, more and more unmanned aerial vehicles are used in the logistics industry. Yet 

these delivery drones are heavy, needing to be charged very often and can’t transport many packages. 

We hope to solve these issues by reducing the weight of wings and slightly increasing the size of the 

drone by using elastic transportation network based on energy optimization. This would help extend the 

work time of these drones and allowing for maximum transportation amount. We first figured out the 

total elastic potential energy of the wings and the gravity potential energy. Then we minimized the total 

energy to find the best geometric value (radius of each pipelines within the wings). Next simulated on 

MATLAB, wings were built according to the pipeline wing radius and the total energy result was 

updated continuously to constantly minimize the energy with a more ideal pipeline radiuses. We expect 

a final pipeline elastic structure similar to that of a dragonfly’s wing with minimum total energy that 

will significantly help reduce the weight of large drone wings. This project will help design significantly 

lighter wings of drones based on elastic transportation network mainly through MATLAB simulations. 

Drones can then be expanded in size to transport more products and fly for longer periods. 

Keywords: network, simulation, transportation  

1. Introduction  

The wings of a large unmanned drone are sturdy and can withstand a decent amount of impact, but 

they cannot allow for long flight time. To try and solve this problem, scientists usually turn to look for 

new adequate materials as the solution for a lighter yet sturdy drone wing.  

But this method is tedious and unsuccessful; for it would perhaps take even decades to find the ideal 

material, too long in the world of developing technology. However, the wings of dragonflies are light, 

allowing for long periods of flight. But the dragonfly wing can’t withstand substantial impact/damage 

like a large drone’s wings can. Airplane wings and dragonfly wings have features that can complement 

and make up for each other’s shortcomings. Thus, we think by using existing materials to make a 

network-like unmanned aircraft wing similar to that of a dragonfly’s wings, we can create wings that 

find a better blend between sturdiness and flight time. The idea is not to replicate exactly how a 

dragonfly’s wing is but draw inspiration from transportation networks like a dragonfly wing. 

 

Figure 1: The structure of the wings of the airplane 
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Figure 2: The shape of global hawk  

To achieve this, we must find out the dynamics of the evolution of the wings of the dragonfly. 

As the technology of unmanned aerial vehicles (drones) develops, more and more of them are used 

in daily tasks such as transporting packages and aerial photography. However, drones tasked with carry 

heavier objects small drones can’t are currently very ineffective and inefficient. As shown on the right, 

the best-unmanned aerial vehicle currently is the DJI, which can only transports light objects like food, 

cellphones, and so on. But even for its relatively small size, a change or renewal in power is still 

needed every 30 minutes. This is very inconvenient and needs a constant replacement of batteries. But 

if we want to transport a greater amount of or heavier objects like washing machines, we need large 

unmanned aircraft like the Global Hawk. Even though the Global Hawk can fly very far, it is notably 

heavy; requiring large batteries only the military has steady access to. If we can redesign the wings 

(shown in the cross-sectional examination photo above) for large-style unmanned aircraft successfully, 

we can make the drone wings significantly lighter. This would allow for more accessible materials and 

sources of energy to be able to power the Global Hawk and other large drones like it more effectively. 

Doing so, that would not only make using large heavy drones more viable, but also allow for more 

efficient transporting.  

The idea of my research comes inspired by dragonfly wings comes from the transportation network 

evolution of slime molds, the vessel system, and that of leaves. Even though the transportation network 

is different from the elastic network I will be using in my research to construct unmanned drone wings, 

they both have similar physical dynamics like energy optimization. The application of energy 

optimization on the transportation network shows that there must be a very simple and direct way to get 

the ideal network structure, even for elastic networks (I will explain that in the introduction of the 

energy optimization later in the research plan). 

 

Figure 3: The network formed by the slime 
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Previously, scientists designed a miniature version of the Tokyo subway network. The slime mold is 

placed in the center of Tokyo, and the food is placed in various subway stations in Tokyo with heavy 

traffic. Over time, the slime mold gradually evolved a transportation network similar to the Tokyo 

subway network. These phenomena show that for low-level single-celled organisms, there is a very 

simple mechanism that allows them to evolve network structures aimed at a certain goal, which is 

similar to the function of more intelligent organisms.  

 

Figure 4: The structure of the blood system 

The diagram on the right describes this process. The largest yellow dot in Figure A is the city center 

where the slime mold is located. The small yellow dots are the subway stations where food is placed. 

Over time, slime bacteria will evolve into a transportation network similar to the Tokyo subway 

network. 

As for the human body, a more intelligent organism, there is a blood vessel network. Blood flows 

out of the arteries of the heart, through the organs and branches of the arteries, transporting nutrients 

(oxygen, protein, etc.) to corresponding organs and at the same time, taking away the waste materials 

of cell metabolism (carbon dioxide, etc.). The structural basis for the successful operation of this 

mechanism is the blood vessel network in the human body. 

As is shown on the right, Arteries carry oxygenated blood away from the heart.  

They’re tough on the outside but contain a smooth interior layer of epithelial cells that allows blood 

to flow easily. Arteries also contain a strong, muscular middle layer that helps pump blood through the 

body. 

For both low and high intelligence level organisms, transportation network evolution occurs. Yet 

how are these vascular networks formed, such as the human blood vessel system? Some previous 

molecular biology studies believed that genes control the growth of blood vessel networks, but this 

explanation is not convincing because in the process of human growth, there will always be some 

accidents (such as falls, or genetic mutations), which are impossible to receive genetic control. Once a 

blood vessel is injured in the process of growth and development, organisms will always grow new 

blood vessels to replace the original blood vessels. Genes cannot control these risks. There are some 

other studies that believe that neural networks control the growth of blood vessels, because neural 

networks control many functions during the growth and development of the human body. But this is 

also not convincing. Facts have proved that the basic blood vessel network forms before the emergence 

of neural networks. Therefore, neural networks cannot control the initial stage of blood vessel growth 

and evolution. 

Perhaps Mulberry leaves can hint at how a transportation network similar to that of a human’s blood 

vessel system is constructed. Mulberry leaves do not have advanced neural networks, but they also 

evolve a tree-like network structure like human blood vessels do during the growth process. The 

growth of a tree-like network structure at the initial stage of the growth process indicates that there is a 

simple and universal way to allow organisms to evolve a tree-like network structure. Our goal is to find 

a universal mechanism to simulate the process of biological evolution of the network structure, so that 

(if possible) a new network structure based on elasticity can be designed for the wing of an unmanned 
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aircraft where the wings can be sturdy and reasonably light. 

2. Research questions 

1) How do we find the dynamic equation (expressed as a differential equation) satisfied by 

evolution using minimum energy principle? 

2) How do we create a method of evolution of the network based on the differential equation? 

3) How do we accelerate the computation of solving the equations obtained in the previous steps? 

4) How can we get the elastic mechanism-based network using the previous work? 

3. Goals and expected outcomes 

The goal of this project is to establish a method to simulate the evolution of biological network 

structure so as to have a deeper understanding of the adaptive process in nature. In this project, we want 

to try a new method by applying the process of network optimization to see if the initial network can 

evolve into a tree structure (in nature, tree-shaped network structure is the most common). Because the 

unique branch structure of a tree network structure is able to adapt to the function of network 

transportation of substances to each small monomer or sub-network, if we can accomplish the above 

tasks, then we can design the most reasonable networked wing (light enough but hard enough) based on 

the weight and speed of the unmanned aircraft. We expect to create a dragonfly-like (in terms of visual 

design) elastic network of a drone wing with minimum elastic potential energy and gravity potential 

energy. 

4. Numerical Simulation of Constrained Problem 

4.1 The gradient flow solution method of the constraint problem 

Recall the model of the constraint problem: 

Minimize 
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Theorem: If there is a multivariate function 1 2( , ,..., )nf x x x , use x represent vector

1 2( , ,..., )nx x x  and consider a negative gradient flow system  ( )
d x

f x
dt

   :. Then along any set 

of solutions of the system, the function 1 2( ) ( ( ), ( ),..., ( ))nt f x t x t x t  is a decreasing function, and 

the equilibrium point 1 2( , ,..., )nf x x x  of the system is the minimum point. 

Proof: According to the chain rule of derivation,      ( ) ( ) ( ) ( )
d x

t f x f x f x
dt




       , 

( ) 0t  , so ( )t
 

is a decreasing function. And, if there is at a certain point, 0x ,
0 0

d x

dt
 , then 

0( ) 0f x  , cause ( )t
 

is a decreasing function, the equilibrium point can only be a minimum 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 4, Issue 1: 35-43, DOI: 10.25236/AJCIS.2021.040106 

Published by Francis Academic Press, UK 

-39- 

point, not a maximum point, and the proof is complete. 

According to this theorem, we define Lagrange function 
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we can get the 0ijd  . The reason for this treatment here is that we want to find an optimal gradient 

flow of this form, that is, when the value is taken, the energy of the equilibrium point obtained by the 

gradient flow is the lowest. If there is no other special instructions in the following, all will be taken. 

In summary, we transform the original minimum problem into the following negative gradient flow 

problem. 

Minus Gradient Problem: Solve the system of ordinary differential equations 
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Finally, we give the flow of the numerical solution, as shown in the figure below. 

 

Figure 5: The steps of computation 

4.2 Several acceleration methods  

The above numerical solution time is mainly consumed in solving the equations AP=I. In order to 

facilitate the calculation of larger N and the data statistics for different situations, it is necessary to 

shorten the calculation time of the program. The methods used in this article to shorten the time mainly 

include The following three: 

4.2.1 Sparse matrix 

There is a very convenient way to deal with sparse matrices in Matlab. Since the order of A is, the 

number of elements in A is, but each row has at most 7 non-zero elements, so the number of non-zero 

elements is, so A is A very sparse matrix. Before using the conjugate gradient method to solve the 

equation group AP=I in matlab, inputting the A=sparse(A) command will greatly shorten the solving 

time of the equation. 
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In matlab, take N=30 to solve AP=I as an example, the code is as follows: 

N=30; 

D=ones(3*N^2+3*N+1); 

D=hexagon_initialD(D); 

p=zeros(3*N^2+3*N+1,1); 

b=-ones(3*N^2+3*N+1,1); 

b(1)=0; 

A=diag(sum(D))-D; 

A(1,1)=1; 

    for i=2:(3*N^2+3*N+1) 

        A(i,1)=0; 

        A(1,i)=0; 

    end 

A=sparse(A); 

tic 

    r=A*p-b; 

    x=b-A*p; 

    while (b-A*p)'*(b-A*p)>0.00001 

        y=(r'*r)/(x'*A*x); 

        p=p+y*x; 

        temp=r+y*A*x; 

        x=-temp+x*(temp'*temp)/(r'*r); 

        r=temp; 

    end 

toc 

The code indicated in red is the command to define A as a sparse matrix. The output results with 

and without this code are: 

elapsed_time =  

   0.0117s 

elapsed_time =  

  0.9478s 

As you can see, the acceleration effect of using the sparse matrix is huge! 

4.2.2 Use the solution of the previous step  

When the entire system gradually stabilizes, the change of matrix C becomes smaller and smaller at 

each step, so the difference between the two steps before and after the equation group AP=I becomes 

smaller and smaller. So if each search with the conjugate gradient method starts from a fixed point, a 

lot of time will be wasted. In fact, if the solution of the previous step is used as the initial value of the 

next step to search, then the number of times to search for the equation system for each iteration in the 

entire iterative process will rapidly decrease, and the time required will gradually decrease. If the 

system of equations is solved from the same point in each iteration, the time consumed for each 

solution will gradually stabilize at a higher value. 
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4.2.3 Runge-Kuta method 

Runge-Kutta method is essentially an improvement of Euler's methodIf we write the right end of 

the above negative gradient flow as a function of
ijC
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dt
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define the local truncation error as follows:： 
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If a Runge-Kuta method has n-order accuracy, then the method is called the n-1 order Runge-Kuta 

method.So the first-order Runge-Kuta method is Euler's method. 

Below we mainly introduce the second-order Runge-Kuta method: 
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It can be seen that the second-order Runge-Kuta method has third-order accuracy, which is more 

accurate than Euler's format. 

Below we do not add proof, give the internationally recognized classic fourth-order Runge-Kuta 

method: 
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The above fourth-order Runge-Kuta method is the most commonly used and is also used in this 

article. 

Because the Runge-Kuta method has higher precision, we can increase the step length of each step 

to achieve the purpose of reducing the number of iterations, which greatly accelerates the operation of 

the program. 

5. Statistical results and conclusions 

This chapter will introduce the results and conclusions of the numerical simulation. Unless 

otherwise specified, the following results are iterated from the initial value to the equilibrium state. 

It is mentioned in the abstract that the value of γ directly affects the topological structure of the 

equilibrium state: when γ>1, it is a uniform sheet, and when γ<1, it is a tree structure. And γ=1 is the 

phase turning point between the two [2]. This section will take the constraint problem as an example, 

and use the negative gradient flow method and the alternating direction method for numerical 

verification.Take N=8, use the negative gradient flow method to solve the constraint problem, take γ as 

0.5, 0.9, 1.1 and 1.5, respectively, to obtain different final equilibrium topological structures, as shown 

in Figure 5.1-1 and Figure 5.1-2. 

It can be seen that there are many loops when γ=1.1 and 1.5, and when γ=0.5 and 0.9, it is a tree 

without loops, and the results meet the conclusion. 

It can be seen that the ordinates of all points are positive, which means that whether it is a relatively 

small-scale constraint problem or a relatively large-scale unconstrained problem, the conclusion is 

almost unanimously obtained: the energy obtained by the negative gradient flow method is It is lower 

than the energy obtained by the alternating direction method. 

In the process of numerical solution, it is found that the network structure of the equilibrium state 

obtained by the two methods is obviously different: the tree structure obtained by the negative gradient 

flow method is thick in the middle and diverging to both sides; while the tree structure obtained by the 

alternating direction method is obtained. The tree-like structure diverges from the beginning, with a 

thin middle and thick sides. The following is the results. 

 

Figure 6: The network generated by numerical simulation 
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