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Abstract: Java apple (Syzygium samarangense), also known as wax apple, is a tropical fruit prized for 
its unique taste and nutritional value. However, its cultivation faces serious threats from pests and 
diseases, leading to reduced yields and economic losses. Traditional disease detection methods rely on 
manual inspection, which is time-consuming, labor-intensive, and prone to errors. This study proposes 
a classification method using convolutional neural networks (CNN) and transfer learning for efficient 
and accurate disease identification in Java apples. We developed a CNN model with three 
convolutional layers and two fully connected layers, trained on our dataset.Additionally, we fine-tuned 
pre-trained models—VGG16, InceptionV3, and ResNet50—and optimized their training cycles and 
optimizer configurations. The experimental results showed that the InceptionV3 model achieved the 
highest classification accuracy at 99.37%, while ResNet50 and VGG16 had test accuracies of 98.89% 
and 97.23%, respectively. These findings indicate that combining transfer learning with CNNs 
significantly enhances the accuracy of Java apple disease detection, providing an effective and 
scalable solution that supports crop health monitoring. 
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1. Introduction 

Java apple (Syzygium samarangense) cultivation currently faces significant threats from various 
pests and diseases, particularly Anthracnose disease and Fruit Rot, which lead to decreased production 
and substantial economic losses. Traditional detection methods predominantly rely on manual 
inspection, a process that is not only time-consuming but also prone to human error. Given the rapid 
spread of these diseases and the need for early intervention, there is a critical demand for more efficient 
and accurate disease identification methods. 

Recent advancements in agricultural technology and high-resolution imaging have positioned 
computer vision as a promising alternative for pest and disease detection in crops[1]. By leveraging 
image processing and machine learning, computer vision systems can automatically identify and 
classify visual patterns associated with different diseases. Among these, deep learning techniques, 
especially convolutional neural networks (CNNs), have demonstrated remarkable accuracy in image 
recognition tasks across various domains[1]. Despite their success in other crops like rice and wheat, 
deep learning models remain underutilized in the context of Java apple disease detection[2]. The 
scarcity of large, labeled datasets and the focus of research on more common crops contribute to this 
gap. 

Developing an effective detection system for Java apple diseases could significantly enhance crop 
yield, reduce economic losses, and promote sustainable farming practices. This study aims to bridge 
this gap by developing a CNN architecture with three convolutional layers and two fully connected 
layers, and by applying transfer learning models, including ResNet50, VGG16, and InceptionV3, to 
identify and classify diseases in Java apples.Through extensive experiments and evaluations, we seek 
to determine the most effective model configurations, thereby providing scalable and reliable solutions 
for real-time monitoring and management of crop health in Java apple orchards. 
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2. Literature Review 

Recent advances in deep learning, particularly Convolutional Neural Networks (CNNs), have 
significantly improved image-based disease detection in agriculture[1]. Studies have shown the 
effectiveness of architectures like VGG16 and ResNet50 for plant disease classification, particularly in 
crops such as rice, wheat, and tomato[4][6]. These models have demonstrated high accuracy in 
identifying various plant diseases by learning complex visual patterns directly from images. For 
instance, VGG16 has been successfully used in classifying leaf diseases in tomatoes, while ResNet50 
has shown robustness in detecting wheat diseases, as reported in several studies. 

Transfer learning, which leverages pre-trained models such as ResNet50, VGG16, and InceptionV3, 
has proven particularly valuable for agricultural datasets, which are often limited in size[3]. By using 
models pre-trained on large datasets like ImageNet, transfer learning enables enhanced model 
performance without the need for large, labeled training datasets[3]. This approach has been shown to 
significantly reduce the training time and improve the accuracy of disease detection models, even with 
limited agricultural data. 

Additionally, data augmentation techniques, including rotation, flipping, and contrast adjustments, 
have been widely adopted to improve model generalization in the context of small datasets. These 
techniques create variations of existing images, effectively increasing the size of the training set and 
helping models learn more robust features[5]. Studies have consistently shown that applying such 
augmentations leads to better performance in plant disease detection tasks[7]. 

Building on these advancements, this study applies CNNs and transfer learning models to the 
specific context of Java apple disease detection. By utilizing a balanced dataset and strategic data 
augmentation, this research aims to ensure robust and accurate disease classification. Unlike previous 
studies focused on more common crops, this work addresses the gap in the literature regarding the 
application of these advanced techniques to Java apple disease detection, promising a scalable solution 
for effective crop monitoring. 

3. Methodology 

3.1 Dataset Description 

The dataset used in this study comprises 1,500 images of Java apples (Syzygium samarangense), 
evenly distributed across three categories: Fresh (500 images), Rotting (500 images), and Anthracnose 
(500 images). These images were sourced from various origins to ensure diversity and 
representativeness. Fresh Java apple images were collected from supermarkets, market stalls, and 
online stores, reflecting the appearance of the fruit in different environments. Rotting Java apple 
images were captured at various stages of decay, sourced either from field experiments or collected 
online, and were carefully selected to ensure representativeness. The Anthracnose images were sourced 
from Google and relevant academic literature, initially comprising 51 images, which were then 
expanded to 500 images using data augmentation techniques such as mirroring, rotation, and contrast 
enhancement to balance the dataset categories. 

All images were resized to 224x224 pixels, maintaining the original aspect ratio to ensure 
consistency. Additionally, to improve the model's generalization ability and prevent overfitting, we 
applied further data augmentation, including image flipping, scaling, and noise addition. These data 
augmentation techniques increase the diversity of the images, enabling the model to perform better 
when encountering unseen data and effectively reducing the risk of overfitting during training, thereby 
enhancing the model's stability and predictive accuracy. As shown in Figure 1, an example data 
enhancement diagram demonstrates examples of the image enhancement techniques used in this study. 
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Figure 1: Example Data Enhancement Diagram 

3.2 Proposed CNN Model 

The proposed CNN model consists of three convolutional layers. The first layer has 128 filters of 
size 5x5, followed by a second layer with 64 filters of size 3x3 and L2 regularization (0.00005), and a 
third layer with 32 filters of size 3x3, also using L2 regularization. L2 regularization is applied to the 
convolutional layers to prevent overfitting by penalizing large weights. ReLU activation is applied after 
each convolution to enhance nonlinear processing. Max-pooling layers follow each convolutional layer 
to reduce the spatial dimensions while preserving essential features. As shown in Figure 2, the 
architecture of the proposed CNN model includes these convolutional and pooling layers, followed by 
fully connected layers. 

 
Figure 2:cnn-based construction modeling. 

The network incorporates batch normalization to improve training stability and speed up 
convergence. The feature maps are then flattened and passed to a fully connected layer with 224 
neurons and ReLU activation. A Dropout layer with a 50% rate is included to prevent overfitting. The 
final output layer has 3 neurons, corresponding to the three classes (Fresh, Rotting, and Anthracnose), 
and uses a softmax function to convert features into probability distributions for classification. 

The choice of optimizer is critical in CNN models as it influences both training efficiency and final 
performance. We employed grid search to select optimal parameters, testing combinations of SGD, 
Adam, and RMSprop optimizers across 20-50 training epochs. Cross-validation was used to ensure 
robust results by evaluating performance on different data subsets. 

3.3 Proposed Transfer Learning Models 

In our study, alongside the proposed convolutional neural network (CNN), we utilized transfer 
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learning models including ResNet50, VGG16, and InceptionV3 to compare their accuracy with our 
CNN model. Transfer learning is highly effective in computer vision tasks, allowing models to leverage 
knowledge gained from pre-training on large-scale datasets to improve performance on new tasks. We 
utilized pre-trained models (ResNet50, VGG16, InceptionV3) by replacing their original classification 
layers with new ones tailored to our specific task of Java apple disease detection. The weights for these 
models were initialized using ImageNet training results, and all layers were included in the study to 
ensure comprehensive learning. Table 1 lists the common hyperparameters used for these models. 

Table 1: Hyperparameters used in the base models (ResNet50, VGG16, InceptionV3). 

Parameter ResNet50 VGG16 InceptionV3 

Input image (224,224,3) (224,224,3) (224,224,3) 

Weight Initialized to ImageNet Initialized to ImageNet Initialized to ImageNet 
Optimizer Adam Adam Adam 

Loss  Function Sparse categorical cross 
entropy 

Sparse categorical cross 
entropy 

Sparse categorical cross 
entropy 

Classifier Softmax Softmax Softmax 
Epochs 30 30 30 

Dropout rate 0.2 0.2 0.2 

3.3.1 VGG16 model 

In this study, the pre-trained VGG16 'ImageNet' model was customized for the classification of 
'Anthracnose Disease', 'Fruit Rot Disease', and 'Java Apple Healthy'. The original three fully-connected 
layers were replaced with a global average pooling layer, a 1024-dimensional dense layer with ReLU 
activation, and a final dense layer with three output units. This customized model retains 15 trainable 
layers and approximately 30.45 million parameters. To optimize performance, grid search was used to 
fine-tune the model, involving the unfreezing of the top four layers for weight updates. Additional 
layers were added to enhance overfitting resistance and improve generalization. 

3.3.2 InceptionV3 

The InceptionV3 architecture leverages inception modules, which use parallel convolutional layers 
with various kernel sizes to capture features at different scales[5]. This model reduces the number of 
parameters using dimensionality reduction techniques, thus achieving high accuracy in image 
recognition tasks while maintaining computational efficiency. 

3.3.3 Resnet50 

ResNet50 is a 50-layer deep convolutional neural network that uses residual connections to 
facilitate the training of very deep networks[6]. This architecture is particularly effective at overcoming 
the vanishing gradient problem, allowing for more straightforward optimization of deep models and 
achieving impressive performance in image classification tasks. 

3.4 Performance Metric 

In this project, we measure the model's performance using accuracy, a suitable metric given that the 
dataset is evenly distributed across classes. Accuracy is calculated using the following formula: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

where TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative.  

3.5 Hyperparameter Tuning 

To optimize model performance, we tuned two key hyperparameters: learning rate and batch size. 
The learning rate controls the magnitude of updates to the model weights with each step, while the 
batch size determines the number of samples processed before updating the model. We tested learning 
rates of 0.01, 0.001, and 0.0001, along with batch sizes of 32 and 64, across six experiments using 
Keras Tuner. After training, the model with the highest validation accuracy was further evaluated on a 
test set, focusing on both the custom CNN and the transfer learning models. The impact of these 
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hyperparameters on model accuracy is thoroughly analyzed to determine the optimal configuration. 

4. Experiment Results  

In the following four images, the training and validation losses during hyperparameter tuning are 
shown. Generally, both losses decrease over time. However, some trials do not converge and remain 
flat throughout the training period. This issue is particularly evident in the transfer learning models at a 
learning rate of 0.01. On the other hand, the training and validation losses were minimized with a 
learning rate of 0.001. 

 
Figure 3: CNN loss. 

 
Figure 4: VGG16 loss. 
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Figure 5: InceptionV3 loss. 

 

Figure 6: ResNet50 loss. 

Table 2: Best validation accuracy of image classification models for different learning rates and batch 
sizes used during the hyperparameter tuning process. 

Trial Learning Rate Batch Size Validation Accuracy (%) 
CNN VGG16 InceptionV3 Resnet50 

1 0.01 32 28.12 34.22 98.91 78.33 

2 0.01 64 34.37 33.45 98.32 69.00 
3 0.001 32 91.47 82.53 98.87 96.66 
4 0.001 64 68.75 77.84 98.82 95.33 
5 0.0001 32 81.25 96.53 99.37 98.66 
6 0.0001 64 75.30 92.94 99.12 97.57 

Table 2 summarizes the optimal validation accuracies of the proposed CNN and transfer learning 
models using different learning rates and batch sizes during hyperparameter tuning. In general, a 
smaller batch size (32) leads to better validation accuracy compared to a larger batch size (64). For the 
transfer learning models, a smaller learning rate generally results in better validation accuracy. This is 
also true for the CNN model, where a learning rate of 0.001 produced the highest validation accuracy. 
It is worth noting that for all transfer learning models with a learning rate of 0.01, except for the 
InceptionV3 model, the accuracies significantly dropped compared to other learning rates. This is likely 
due to the failure of these models to converge during training, as shown in the loss curves where the 
loss remains flat instead of decreasing over time. 

Table 3 shows the highest validation accuracy for each model from the hyperparameter tuning 
process, while the accuracy values and their corresponding hyperparameters are summarized in Table 2. 
From the hyperparameter tuning process, the best CNN model achieved a learning rate of 0.001, a 
batch size of 32, and a validation accuracy of 91.47%. For the other transfer learning models, the 
highest validation accuracy was achieved with a learning rate of 0.0001 and a batch size of 32. The 
validation accuracies for InceptionV3, ResNet50, and VGG16 were 99.37%, 98.66%, and 96.53%, 
respectively. Based on these validation accuracy scores, we find that InceptionV3 provided the best 
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validation accuracy, followed by ResNet50, VGG16, and the proposed CNN network. Additionally, the 
best-performing models were tested on the test dataset to obtain the test accuracy. Overall, the test 
accuracy is comparable to the validation accuracy, although the ranking differs slightly. Both ResNet50 
and InceptionV3 achieved a detection accuracy of around 98.7%, followed by VGG16 with a detection 
accuracy of 97.23%. 

Table 3 :Validation accuracy and test accuracy of image classification models with their most optimal 
hyperparameters. 

5. Conclusion 

This study proposed a Java apple disease identification method based on Convolutional Neural 
Networks (CNN) and transfer learning and validated its effectiveness by comparing it against various 
deep learning models. We conducted detailed experimental analyses using a custom CNN model as 
well as three pre-trained transfer learning models (VGG16, InceptionV3, ResNet50). The results 
showed that InceptionV3 performed the best on the validation set, achieving a validation accuracy of 
99.37%, while ResNet50 and VGG16 achieved test accuracies of 98.89% and 97.23%, respectively. 
The custom CNN model also achieved a validation accuracy of 91.47% after optimization. 

These findings indicate that transfer learning models, particularly InceptionV3 and ResNet50, have 
significant advantages in handling the Java apple disease classification task, effectively addressing the 
common issue of data scarcity in agricultural image classification. Our research not only provides 
reliable technical support for the early detection of Java apple diseases but also lays a foundation for 
the development of smart agriculture[7]. 

Future research could focus on expanding the range of detectable diseases, refining model 
architectures to further improve accuracy and efficiency, and integrating these models into Internet of 
Things (IoT) systems for real-time monitoring and management of Java apple orchards. Specifically, 
exploring the use of edge computing devices for on-site disease detection and creating a comprehensive 
database of Java apple diseases could significantly enhance the practical application of these models in 
precision agriculture. 
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Model Hyperparameters Validation 
Accuracy (%) 

Test Accuracy 
(%) 

CNN Learning rate: 0.001 
Batch size: 32 91.47 94.53 

VGG16 Learning rate: 0.0001 
Batch size: 32 96.53 97.23 

Inceptionv3 Learning rate: 0.0001 
Batch size: 32 99.37 98.59 

Resnet50 Learning rate: 0.0001 
Batch size: 32 98.66 98.89 


