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Abstract: This paper focuses on the ride quality and operation stability of high-speed train by employing 
the lateral semi-active secondary suspension, First, the full-scale railway vehicle dynamics with 17-
degree-of-free (DOF) are introduced, where German low disturbance and high disturbance track 
irregularities are considered. Then, in order to improve the operation stability and robust stability of the 
train system at the same time, the H∞ loop shaping controler is proposed. This controller has good 
results in dealing with the structural uncertainty of the system, and the coprime factorization 
decomposition uncertainty modeling used is more general and universal than other uncertainty modeling. 
Moreover, the train simulation model of CRH3 is established in SIMPACK. Finally, the German low and 
high disturbance track irregularities are employed to show the efficiency of the proposed loop-shaping-
control-based semi-active suspension by comparing with the open loop. 

Keywords: High Speed Train; Semi-Active Suspension; H-Infinity Loop Shaping Control; Operation 
Stability

1. Introduction 

As a proficient and cost-effective type of transportation, the high-speed train has received a lot of 
attentions in the past few decades, especially in China. However, with the continuous improvement of 
train speed and the application of lightweight design, the vibration caused by track irregularities, cross 
winds, tunnels, bridges and other factors has a significant impact on the running stability, ride confort 
and safety of high-speed train. Hence, the active suspension system [1-3] or semi-active suspension 
system [4-10] is applied to suppress car body vibration by adopting modern control methods. 

Semi-active suspension system has been widely used in theoretical research and practical application 
of train due to its excellent vibration isolation performance, low external energy consumption, simple 
structure and strong robustness. In order to further improve the ride quality, more and more advanced 
control strategies are being explored and applied. 

In the devoted literatures, semi-active control strategies can usually be divided into four parts. The 
first one is sky-hook damping control method. This method was first proposed by Professor Karnopp 
from the University of California [1]. In order to reduce the derailment coefficient of railway vehicle, a 
new semi-active control strategy based on the skyhook control theory was presented [11]. The second 
one is linear quadratic (LQ) optimal control method. To improve the ride quality of train, an linear 
quadratic Gaussian (LQG) controller with a Kalman estimator was presented to estimate acceleration 
state variables in [12-13]. To improve ride confort and hunting stability simultaneous, a LQG control 
strategy was employed to secondary and primary suspension [14]. The third strategy is H∞ robust 
control.For reducing lateral vibration acceleration of carbody with a semi-active suspension system, a 
H∞ controller was adopted [15]. In order to improve the lateral ride quality,semi-active H∞ control with 
magnetorheological (MR) dampers for railway vehicle suspension systems is investigated [16]. The last 
one is Intelligent control strategy, such as adaptive control, fuzzy control, neural network control, genetic 
algorithm, etc. In [17],the low-cost adaptive fault-tolerant PD controller was developed to suppresses 
excessive motion of train body in vertical and lateral directions effectively. In [18], the fuzzy logic and 
PID controllers were employed for the active vertical suspension system. A fuzzy control strategy based 
on particle swarm optimization was proposed for the lateral semi-active suspension [19]. 
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In this paper, the H∞  loop shaping control method is proposed to improve the train’s ride quality. 
For the lateral vibration suppression of trains, H∞  controller can achieve good results, but the effect of 
this method in dealing with the structural uncertainty is not ideal. H∞Loop shaping method has been 
widely used in the field of modern control. At present, loop shaping method has been applied in the 
design of various aircraft control algorithms in aerospace [20-21], robot[22], vehicle control and 
vibrarion control[23]. Therefore, a H∞  loop shaping control method is proposed in this paper to design 
the damping controller for the second suspension system. The purpose of this paper is to suppress the 
lateral acceleration of train body by using H∞  loop shaping control algorithm, and improve ride 
comfort and guarantee operation stability. 

2. Analysis Model Of Railway Vehicle 

2.1 Dynamics of Railway Vehicle 

The railway vehicle consists of a car body, two bogies and four wheelsets,as conceptually shown in 
Figure. 1. The two bogies, which are identified as the front and rear bogies, are connected to the car body 
by the secondary suspension. Each of the two bogies is also connected to two wheelsets by the primary 
suspension. The motions of the car body, the bogies, and the wheelsets of the railway vehicle, the control 
forces of actuators, and the disturbances generated by track irregularities involved in the modeling are 
listed in Table 1, where 1,2, 1,2,3,4i j= = . 

 
Figure 1: Analytical model of a full-scale railway vehicle integrated with actuators 

Table 1: 17-DOF,Control force ,and Disturbance of the lateral active secondary suspension system. 

 Symbol Definition 

17-DOF 

,c tiy y  Lateral displacement of car body or bogie. 
wjy  Lateral displacement of wheelset. 

,c tiϕ ϕ  Lateral displacement of wheelset. 

wjϕ  Yaw angle of wheelset. 
,c tiθ θ  Roll angle of car body or bogies 

Control force iu
 

Front or rear active force produced by the actuators equipped on 
front or rear bogie. 

Disturbance 
ajy  Lateral alignment of track irregularities related to the four 

wheelset. 

cljθ  Cross-level of track irregularities related to the four wheelset. 
Considering the configuration of spring and damping of high speed train suspension system, the 

following typical train dynamics for the car body, bogies, and wheelsets are established by using 
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Newton’s law. 

1) Car body dynamics: 

1 2 1 2 1 2 1 2 1 2(2 2 ) (2 2 )c c sy c cs c t t ts t ts t sy c cs c t t ts t ts tm y k y h y y h h c y h y y h h u uθ θ θ θ θ θ= − − − − − − − − − − − − + +  
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            (1) 
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2) Bogie dynamics( 1,2i = ): 

(2 1) (2 ) (2 1) (2 )

( ( 1) ) ( ( 1) ) (2 2

) (2 2 )

i i
t ti sy c c cs c ti ts ti sy c c cs c ti ts ti py ti tp ti

w i w i py ti tp ti w i w i i

m y k y l h y h c y l h y h k y h
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θ− −
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  


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(2 2 ) (2 2 ) 2
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k h y h y y c h y h y y k

θ ψ θ θ ψ θ θ θ θ θ θ

θ θ− −

= − − − − − + − − − − − + − + −

+ − − − + − − − −

    

 



  

2 22pz p ti pz p ti i tsd c d f hθ θ− −
    (6)

 3) Wheelset dynamics( 1,2,i = while 1,j = 3,4,i = while 2j = ); 

1

2
0 0 0

22 0

( ( 1) ) ( ( 1) )

12 (1 ) ( )

i i
w w py tj tj tp tj wi py tj tj tp tj wi
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                          (7) 
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r V ψ
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               (8)

 
2.2 State-space Formulation 

Let [ ]1 1 2 3 4 1 2 3 4, , , , , , ,a a a a cl cl cl clw y y y y θ θ θ θ=

[ ]1 1 1 2 2 2 1 1 2 2 3 3 4 4, , , , , , , , , , , , , , , , T
c c c t t t t t t w w w w w w w wq y y y y y y yψ θ ψ θ ψ θ ψ ψ ψ ψ= ， [ ]1 1, Tw w w=   and [ ]1 2, Tu u u= . 

Then,the above equations (1)-(8) can be rewritten in the following matrix form: 

u wMq Cq Kq E u E w+ + = + 
                           (9) 

Where 17 17M R ×∈  is the mass coefficient matrix of the train system; 17 17C R ×∈  is the damping 
coefficient matrix; 17 17K R ×∈  is the stiffness coefficient matrix; 17 2

uE R ×∈ , 17 16
wE R ×∈  are the 

controlled force and disturbance matrixes,respectively. 

According to the standards of railway vehicle,we have that cy  is used to evaluate the ride quality. 
Consider placing the acceleration sensor on the train body above the front and rear bogie. Based on the 
following relationship: ( ) ( )1 2 1 2/ 2; / 2c c c c c cy y y y y lψ= + = − . Where 1 2,c cy y  represent the lateral 
displacement of the car body above the front and rear bogies,respectively. It can be known that lateral 
acceleration and yaw acceleration of car body meet the following equation:

( ) ( )1 2 1 2/ 2; / 2c c c c c cy y y y y lψ= + = −     . Let the state variable of the system be expressed as: [ ]Tx q q=  . For 
the purpose of suppressing lateral vibration of vehicle body, it is assumed that the controlled output 
variables of the train system are denoted as follows: [ ]1 2

T
c cy y y=   . Thus,the state-space equations can 

be written as follows:  

1 2

1 2

x Ax B w B u
y Cx D w D u





= + +
= + +


                             (10) 

Where 34 34A R ×∈ , 34 16
1B R ×∈ , 34 2

2B R ×∈ , 2 34C R ×∈ , 2 16
1D R ×∈ , 2 2

2D R ×∈  are the system matrices 
derived from dynamic equations (1)-(8). 
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2.3 Track irregularities 

The lateral vibration of the train is mainly caused by the lateral alignment( aiy ) and cross level( cliθ ) 
of the track irregularities. Thus, these two irregularity signals are used as external excitation sources. 

During the operation of the train, due to the reason of wheelset contact distance and truck center pin 
spacing, the lateral alignment irregularity and cross level irregularity meet the following requirements, 
where 1,2,3,4i = , 1=2a/Vτ , 2 =2l/Vτ , 3 =2( ) /a l Vτ + ,and V  denotes running velocity. Let 

31 2ˆ ( ) 1
Tss s

wW s e e e ττ τ −− − =   . Then, we can get : ( ) ( ) ( )wd s W s w s= . Where 

{ }ˆ ˆ ˆ ˆ( ) , , ,w w w w wW s diag W W W W= . 

2 1 1 3 1 2

4 1 3 2 1 1

3 2 2 4 3 3

( ) ( ), ( ) ( )
( ) ( ), ( ) ( )
( ) ( ) ( ) ( )

a a a a

a a cl cl

cl cl cl cl

y t y t y t y t
y t y t t t

t t t t

τ τ
τ θ θ τ

θ θ τ θ θ τ

= − = −
= − = −
= − = −，                     (11) 

The lateral alignment and cross level track irregularities of German track spectrum are usually 
described by their power spectral densitm ies (PSDs), which are denoted as: 

2 2 2 2

2 2 2 2 2 2 2 2 2 2( ) ; ( )
( )( ) ( )( )( )

a c v c
a c

r c r c s

A A bS S
−Ω Ω Ω

Ω = Ω =
Ω +Ω Ω +Ω Ω +Ω Ω +Ω Ω +Ω

         (12) 

Where Ω  represents spatial frequency; c sΩ Ω、  and rΩ  all denotes runcated wavenumbers 

(rad/m); aA  and vA  are the scalar factors used to denote the amplitude of track irregularities 
( 2 /m m rad⋅ ). The value of these scalar factors are listed in Table 2. 

Table 2: The parameters of german track irregularities. 

 cΩ  
rΩ  

rΩ  
aA  vA  

Low disturbance 0.8246 0.0206 0.4380 72.119 10−×  76.125 10−×  
High disturbance 0.8246 0.0206 0.4380 74.032 10−×  61.08 10−×  

3. H∞  Loop Shaping Controlfor High-Speed Train 

3.1 Loop shaping 

The left coprime factorization of the train system G  is described as follows 1G M N−=   . The left 
coprime factor perturbed plant denoted as: 1(s) ( ) ( )M NG M N−

∆ = + ∆ + ∆  . Where ( , )M N   are assumed to be a 
left coprime factorization ,and ,M N RH∞∈  ; ,M N∆ ∆  is the stable and unknown perturbation, and satisfies 

M N ε
∞

∆ ∆ < , in which ε  denotes the system stability margin. In order to cope with environmental 
variability and unknown factors during the train operation, the stability margin is required to satisfy 

0.3ε > . 

According to the superposition principle of linear system, the train system output can be expressed 
as: ( ) ( ) ( ) ( )u wy G s u s G s d s= + . Where 1

2 2( ) ( )uG s C sI A B D−= − + , represents the transfer function from the 
controlled input to the system output; 1

1 1( ) ( )wG s C sI A B D−= − + , represent the transfer function from 
track irregularity disturbance to system output. 

Under the influence of input disturbance and interference noise, the close-loop output of the train 
system can be obtained as follows: 

1 1( )=(1+ (s) (s)) ( ) ( ) (1+ (s) (s)) ( ) ( ) ( )= ( ) ( ) ( )u w u u u w uY s G K G s D s G K G s K s N s S G s D s T N s− −− −    (13) 

Where ( )D s  is disturbance of track irregularity; ( )N s  is the output noise of the system;
1=(1+ (s) (s))u uS G K − and 1=(1+ (s) (s)) (s) (s)u u uT G K G K−  denote the sensitivity function and the supplementary 

sensitivity function of the train system,respectively. It is not difficult to see that ( ) ( )wG s D s  denotes the 
open loop transfer function of the system. Let's assume ( ) ( )wG s D s as an external disturbance, then 
Equation (13) can be rewritten as: 
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( ) ( ) ( )u uY s S W s T N s= −                             (14) 

In order to make the system output as small as possible, uS  is required to be close to zero in the low 
frequency range to improve the disturbance suppression ability. uT  is as close to zero as possible in the 
high frequency range to improve the system noise suppression ability. Therefore, the desired loop 
function ( ) ( )uL G s K s=  satisfies that it has a low gain in the low frequency range and a high gain in the 
high frequency range. First, the spectrum of ( )W s  is analyzed. Figure 2 shows the singular value curve 
of the external disturbance ( )W s , also known as the singular value curve of the open-loop transfer 
function. 

 

Figure 2: The singular value curve of the external disturbance ( )W s . 

It can be seen from Figure 2 that the external disturbance ( )W s  has a dominant natural frequency 
2.18nw Hz= . When the frequency is less than 0.5Hz  and higher than 50Hz , the singular value 

(absolute value) of external disturbance ( )W s  is close to zero. Based on the equation (14),we can get 
that in the range of 0.5 50Hz Hz , the value of the sensitivity function uS  no longer determines the 
output ( )Y s . Therefore, as long as the designed controller can restrain the external disturbance within 
the range of 0.5 50Hz Hz , it can have good control effect. Of course, in order to obtain better control 
effect, the controller designed should have a wider frequency disturbance suppression range. 

Figure 3 shows the singular value curve of the train system uG . As can be seen from the figure, when 
the frequency is lower than 0.01Hz , the system has a very low singular value. No matter how the 
controller is selected, the loop transfer function and sensitivity function satisfies 0uL G K= ≈  and 1uS ≈ , 
respectively. The uS  is no longer the decisive factor determining the system output. 

 

Figure 3: Singular value graph of the train system uG . 

In summary, the frequency below 0.5Hz  can be ignored in the design of vibration reduction for train 
system. Therefore, the following work in this paper is to shape the open-loop system by setting the 
preposition and post-position weight matrix function at frequencies above 0.5Hz , so that the loop 
function is close to the desired function. 

Due to 1S T+ = , the sensitivity performance index satisfies 1 1W S
∞
< , and the complementary 

sensitivity performance index satisfies 2 1W T
∞
< , and there is a relationship between them:

1 2 1W S W T
∞

+ < . As we can known, the performance design goal and the robust stability goal are a pair 
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of contradictory and mutually constrained control goals. Therefore, it is very important to choose the 
appropriate weight matrix function to achieve a compromise between the control performance and the 
robust stability of the system. When solving the robust stabilization controller, the selection of the weight 
matrix function should meet the following requirements: 

[ ]
[ ]

1
1

1
2

( ) ( )

( ) ( )

W s S jw

W s T jw

σ

σ

−

−

≥

≥                               (15) 

Where 1
1 ( )W s−  has high pass characteristics; 1

2 ( )W s−  has low pass characteristics.The maximum peak 
SM  of the sensitivity function satisfies the equation = max ( )S w

M S jw S
∞

= ; The maximum peak TM  of 
the complementary sensitivity function satisfies the equation = max ( )T w

M T jw T
∞

= . In order to avoid 
poor system performance and robust stability, the values of SM  and TM  should not be too large (higher 
than 4). In general, there are the following requirements for the peak value: 2, 1.25S TM M< < . 

In order to achieve low frequency and high gain, the diagonal elements of the pre-compensation 
matrix function are usually in the form of proportional integral (PI): ( ) ( )1( ) / / *b bw s s M w s w A= + + . 
Where M  is the gain attenuation coefficient at high frequency. Usually selected as =2M ;. A  is the 
gain at low frequency; bw  is the minimum bandwidth frequency. M , A  and bw  are used as knobs 
to adjust the sensitivity function. They determine the minimum bandwidth and amplitude of the 
sensitivity function at low and high frequencies respectively. 

The purpose of post-compensator 2W  is to achieve noise suppression, so 2W  should include a low-
pass filter for hysteresis correction to achieve low gain in high frequency range. In general, the desired 
low gain requirement can also be obtained by introducing an integral part. Finally, for the diagonal form 
of weight matrix, designers can directly adjust the weight between each input and output channel by 
experience and accumulation, so as to realize the adjustment of output results. 

After the above analysis, the diagonal elements of the weight function 1W  for the train system are 
selected as follows: ( ) ( )1( ) 2.5 100 / 0.1w s s s= + + .The weight matrix function 1W  is presented as:

1
1

1

( ) 0
( )

0 ( )
w s

W s
w s

 
=  
 

. The diagonal elements of the weight function 2W  are selected as:

( )2 ( ) ( )* 1/ 0.005 1w s w s s∂= +   . Where ( ) ( )( ) 0.002 1 / 0.03 1w s s s∂ = + + . The final weight function 2W  

is denoted as: 2
2

2

( ) 0
( )

0 ( )
w s

W s
w s

 
=  
 

. Thus, the desired loop transfer function can be expressed as: 

[ ]
[ ]

1
1

1
2

( ) ( )

( ) ( )

W s S jw

W s T jw

σ

σ

−

−

≥

≥                              (16) 

The comparison of singular value curves between the train system before shaping and the desired 
train system is shown in Figure 4. 

 
Figure 4: Comparison diagram of singular value curve before shaping and desired. 

It can be seen from Figure 4 that the shape of the desired singular value curve of the train system 
meets the design requirements: the low frequency band has high gain,and the high frequency band has 
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low gain. Hence, we can get the selected weighting function can make the system have good performance 
robustness. 

3.2 Robust stabilization for normalized coprime factor perturbations 

Consider the desired loop transfer function of the train system : 

2 1 2 2 1

2 1 1 2 2 1

( ) s s
s

s s

A B w Aw w B w
G s

C D w C w w D w
   

= =   
                            (17) 

Solving the robust stabilization controller K∞  for a normalized corprime factor perturbed plant: 
2

1 1 1/2 1
min max

max

1inf ( ) (1 ) =
1 ( )S Sk H

K
I G K M N M

I XZ
γ ε

λ
∞ − − − −

∞

∞

   + = − = =    − 
  

           (18) 

Where H
  is Hankel  norm; maxλ  is maximum eigenvalue.We can get that the maximum stability 

margin of the train system can be expressed as: 
2

1/2
max max(1 ) 1 ( ) 1

H
N M XZε λ = − = + < 
 

               (19) 

X  and Z  are the unique positive definite solutions to the Riccati algebraic equations expressed in 
Equation (20): 

1 1 1 1

1 1 1 1

( ) ( ) ( ) 0
( ) ( ) ( ) 0

S S S S S S S S S S S S S S

S S S S S S S S S S S S S S

A B S D C X X A B S D C XB S B X C I D S D C
A B D R C Z Z A B D R C ZC R C Z B I D R D B

− ∗ − ∗ − ∗ ∗ − ∗

∗ − ∗ − ∗ − ∗ − ∗

 − + − − + − =


− + − − + − =

         (20) 

Where S SS I D D∗= + , S SR I D D ∗= + . 

By calculating formula (19) and (20) in MATLAB, we can get the maximum robust stability boundary 
of the train system max = 0.5512ε . 

In order to meet the robust stability requirements of the train system, the performance index can also 
be further improved. Therefore,letting max=0.3ε ε< , there exists: 

1 1 1inf ( )S Sk

K
I G K M

I
ε∞ − − −

∞

∞

 
+ < 

 


                       (21) 

By solving equation (21), H∞  loop shaping robust stabilization controller with stability margin 
=0.3ε  can be obtained: 

2 1 2 1( ) ( ) ( )T T T T
S S S S S S

T T
S S

A B P Q ZC C D P Q ZC
K

B X D
ε ε− − − −

∞

 + + +
=  −                (22) 

Where 1( )T T
S S SP S D C B X−= − + , 2(1 )Q I XZε −= − + . 

By combining with the weights functions 1W  and 2W , the final 2-input-2-output H∞  loop shaping 
controller is obtained: 

1 2K W K W∞=                                    (23) 

3.3 Controller model reduction 

Due to the order of H∞  loop shaping controller of train system is 46. Hence, the Hankel norm 
optimal algorithm is used to reduce the order of the controller model. This model reduction method was 
first proposed by British scholar Glover. 

Hankel singular values ( 1,2,......,46)i iσ =  of the H∞  loop shaping controller are:333.3738, 
325.6090, 53.6655, 50.2857, 5.9009, 5.5730, 1.694 0, 1.6629, 0.1600, 0.1493, 0.1093, 0.0875, 0.0667, 
0.0601, 0.0360, 0.0345, 0.0240, 0.0219, 0.0135, 0.0134, 0.0014, 0.0011, 0.0003, 0.0002, 0, 0,0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0. The eighth singular value and the ninth singular value have 
relatively large numerical jump. Moreover, the values from the 9th to the 46th are all small, indicating 
that the relative energy of the controller in these order states is small and has little influence on the system. 
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Thus, consider computing the eighth-order approximation of the controller ( )K s , and let it be ( )Kr s . 
The Hankel singular value curve of the controller is shown in Figure 5. 

 
Figure 5: The Hankel singular value curve of H∞  loop shaping controller. 

The coefficient matries of the state space equation of the final controller after order reduction are 
expressed as follows: 

   -0.0762   -0.0018    0.0017    0.0354    0.0162   -0.0140   -0.0069    0.0075
   0.0019   -0.0779   -0.0366    0.0020    0.0039   -0.0034    0.0074    0.0067
   -0.0057    0.0361   -0.0183    0.0

KrA =

025    0.0040   -0.0037    0.0095    0.0080
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   -0.0141   -0.0032    0.0011   -0.0216   -1.5949   -0.0422   -0.0221    0.0395
   -0.0069    0.0074   -0.0106   -0.0075   -0.0431   -0.0229   -0.0652    0.0018
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   -6.0555    3.7579    0.7697    1.1724    0.5389   -0.4845   -0.4544    0.1375
   -3.7591   -6.0479   -1.1695    0.7865    0.5393   -0.4855    0.1198    0.4498KrC  

=  
 

 
 0     0
 0     0KrD  

=  
 

 

The sensitivity function and the complementary sensitivity function constituted by ( )Kr s  can be 
denoted as ( )1/ 1u uS G Kr= +  and ( )/ 1u u uT G Kr G Kr= + . The maximum peaks SM  and TM  of uS  and 

uT  can be calculated as: 

=1.3058 =1.0224S TM M；                            (24) 

Satisfy the requirements. 

Figure 6 shows the singular value curve of the sensitivity function uS . It can be seen from the figure 
that: in the low frequency , uS  has a small singular value, which reflects that the designed controller can 
make the train system achieve good disturbance suppression effect. In the high frequency range, the 
singular value is close to unit. Based on the relation that the sum of uS  and uT  is equal to unit, it can 
be known that the complementary sensitivity function has a small singular value at high frequencies, 
which reflects that the designed controller can achieve good noise suppression effect for the train system. 

 

Figure 6: The singular value curve of the sensitivity function uS . 
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4. Conclusions Simulation validation and evaluation 

In order to show the efficiency of the proposed H∞  loop shaping controller, the multi-body 
dynamics simulation model of CRH3 is built in SIMPACK, as shown in Figure 7.  

 
Figure 7: Multi-body dynamic model of CRH3. 

Letting the simulation running speed as 300km/h and the simulation running time as 100s. 
Considering the German low disturbance track irregularities and German high disturbance track 
irregularities, the vibration profiles of open loop and H∞  loop shaping control are shown in Figure. 8. 
The mean squares and peaks are given in Table 3. The operation stability index are listed in Table 4. 
According to the table, after using the loop shaping control strategy, the operation stability is improved 
by about 33% and 31% compared with the open loop for low and high disturbance respectively. 

 
Figure 8: Vibration profiles for German disturbance track irregularities. 

Table 3: The mean squares and peaks for track irregularities. 

 lateral acceleration YAW ACCELERATION 
Mean squares Peaks Mean squares Peaks 

low disturbance 
track irregularities 

Open loop 0.0851 0.2928 0.0187 0.0785 
Controller 0.0308 0.1153 0.0109 0.0424 

high disturbance 
track irregularities 

Open loop 0.1179 0.4743 0.0292 0.1128 
Controller 0.0568 0.2866 0.0181 0.0704 

Table 4: The operation stability index for track irregularities. 

 Operation stability index 
low disturbance 

track irregularities 
Open loop 2.4173 
Controller 1.6165 

high disturbance 
track irregularities 

Open loop 2.8153 
Controller 1.9425 

5. Conclusions 

The purpose of this paper is to suppress the lateral vibration of train body and improve the operation 
stability. To suppress both external disturbance and noise for high-speed train, the H∞  loop shaping 
control method was proposed to the lateral active/semi-active suspension system. In order to realize the 
robust stability requirement at the same time, the stability margin is set as 0.3. Based on the fact that the 
designed controller is a high-order model, a Hankel norm optimal algorithm is used to reduce the order. 
And then the full-scale train model of CRH3 was established in SIMPACK to test the effectiveness of 
loop shaping control method. The simulation results of German low and high  disturbance track 
irregularities show that the H∞  loop shaping control can successfully suppress the vibration of high-
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speed railway and improve operation stability.  
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