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Abstract: With the advancement of artificial intelligence, computer vision has become a widely adopted
method to replace human visual observation. However, the complexity of the greenhouse tomato-growing
environment poses significant challenges in using computer vision to quickly and accurately assess the
ripeness of tomatoes. In order to solve these problems, we incorporate SPD-Conv and BoTNet to enhance
the YOLOV8n network’s performance in feature extraction and target recognition capabilities in
greenhouse tomato-growing environments. In simulations, we compare the performance of YOLOvSn
with that of BS-YOLOv8n. Empirical findings demonstrate that the proposed BS-YOLOvSn performs
better than YOLOvSn in both the accuracy and the response speed of tomato recognition in complex
greenhouse environments.
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1. Introduction

Tomato, as an easy-to-grow and common vegetable, holds a prominent position in global agricultural
activities. For tomato cultivation, real-time monitoring of the growth and development process, and
ultimately prediction of its yield is crucial. This not only provides a reliable production projection to
growers, but also helps them to make effective adjustments to their planting methods and marketing
strategies'l.

Traditional production forecasting methods are mainly based on biological models of tomato growth.
To simulate photosynthesis and respiration accurately, the modeler must gather extensive environmental
data and also the precise planting metrics. Validation of the model requires the destructive weighing of
the dry weight of the fruit’?. Meanwhile, machine learning breakthroughs have enabled the widespread
application of computer vision-based artificial intelligence across various areas, including precise
agriculture and smart farming. This provides growers with new ways to predict crop yields®l. Image
detection, as one important learning technology, has become a popular way of collecting crop growth
information. The convenience brought by integrating computer vision technology into the field of tomato
yield prediction is mainly reflected in several levels: first, it can accurately detect the ripening state of
fruits; second, it can accurately determine the growing stage of plants; In addition, it can effectively
identify the lack of water and pigmentation of plants, as well as timely detect the pests and diseases and
other problems. Among the tasks related to computer vision, fruit detection is closely associated with
yield prediction, which has become the top priority of research in this field™.

In the context of rapid development of machine learning and deep penetration into the field of visual
image processing, target detection algorithms represented by deep learning are becoming the core
technical support for smart agriculture research and application. The most popular methods include R-
CNNPJ, Faster R-CNNI® Mask R-CNNI, SDD!®! and YOLO!! series. YOLO series are in the rapid
iteration, while maintaining the fast speed characteristics, and its accuracy is also gradually improved.
Wang et al. ['% introduced an improved version of Mask R-CNN for the recognition and segmentation of
apples at three distinct stages of ripeness within an orchard setting. Wang Z et al.l'!l presented an
enhanced version of Faster R-CNN for the recognition and detection of tomatoes in greenhouse
environments. Although they both work to effectively detect fruit, both networks are structured as two-
layer networks, which leads to the problem of training speed for accuracy. The SSD and YOLO
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architectures, as representative single-stage frameworks, exhibit superior processing speed in comparison
to two-stage networks. Liu ell al.'?'used an improved YOLOv3 for tomato recognition model to enable
the model to correctly recognize yellow tomatoes in a shaded environment. Yan et al.l'¥! improved
YOLOVS for detecting apple fruits based on the problem that the fruits are easily occluded and the fruits
directly overlap each other. Xue et al.l'¥l proposed an enhancement of YOLOv2 for unripe mango
identification, and the model was mainly used to overcome the difficulty of detecting mangoes that are
occluded or overlapped. Tang et al.l'l improved YOLOvV7 to include an attention mechanism for
detecting plum fruits in complex environments. The training images in some studies are usually close-
up images, which is very difficult to get under greenhouse environment. So, it not only needs to handle
the issue of overlapping occlusion at close range, but also the challenge of detecting small targets at larger
distances.

In response to this limitation, an enhanced yolov8n network, referred to as bs-yolov8n, is proposed
to address the challenges of occlusion, small-scale target detection, and low-resolution image resolution
commonly encountered in complex greenhouse environments. We also apply the method to detect tomato
fruits in complex greenhouse environments, and categorize the images into three ripeness levels, aiming
to determine the developmental stage of tomato fruits with the help of webcams. The key contributions
of this study can be summarized as follows:

(1) SPD-Conv is employed to transfer spatial information from the feature map to the depth dimension,
thereby minimizing information loss and enhancing detection performance, particularly for low-quality
images and small targets.

(2) BoTNet is incorporated into the backbone network to integrate a multi-head self-attention
mechanism, thereby enhancing the model’s overall performance.

2. Methods
2.1 YOLOvS

YOLOvS8!'9 is a prominent version in the YOLO series, and since it ensures that the accuracy is still
good while being fast, this network is widely utilized for multiple tasks, including object detection, image
categorization, and instance segmentation.

The YOLOVS architecture incorporates three fundamental modules: a backbone network, a feature
fusion neck, and a detection head. The backbone part, CSP-Darknet53['7], serves as the primary feature
extractor that processes input images to generate hierarchical feature representations. CSP-Darknet53
incorporates several crucial modules, including convolutional layers (Conv), enhanced CSP bottleneck
implementation utilizing two convolutional layers(C2f) and efficient spatial pyramid pooling-fast variant
(SPPF). The C2f module is an important innovation that differentiates YOLOv8 from other networks,
and its function is to learn residual features, aiming to achieve lightweighting while maintaining the
gradient flow information. SPPF, the Spatial Pyramid Pooling-Fast module, performs multi-scale pooling
and transforms variably-sized feature maps into dimensional-fixed feature representations, improving
spatial information aggregation.

The Neck of YOlov8 is the Path Aggregation Network (PAN)!'8), which is conceived with the
innovative approach of incorporating a bottom-up pyramid structure alongside the traditional top-down
architecture of a Feature Pyramid Network (FPN).

Head is responsible for the final object detection prediction. YOLOv8 employs an“Anchor-Free”
approach, removes the reliance on predefined anchor boxes, and incorporates a decoupled head structure
to isolate the processing of classification and regression tasks. This separation enhances both efficiency
and accuracy, allowing for more precise predictions of object categories and bounding box coordinates.
The decoupling of these tasks streamlines the process, reducing computational complexity while
improving performance. Additionally, the head processes feature maps at multiple resolutions, enabling
YOLOVS to effectively detect objects of varying sizes and complex spatial configurations with high
precision.

In this study, we focus on leveraging YOLOVS8’s object detection capabilities and select the n-scale
variant for training. This model architecture is designed to be lightweight while maintaining high
detection accuracy, making it suitable for a wide range of operational scenarios.
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2.2 SPD-Conv

SPD-Conv (Spatial Depth Transformation Convolution)!'”! is an innovative convolutional neural
network (CNN) building block designed to mitigate the performance degradation of traditional CNN’s
when dealing with low-resolution images and small objects. The principal source of these issues stems
from the loss of fine-grained information attributed to the application of stride-based convolutions and
pooling layers in traditional CNN architectures. And SPD-Conv is designed to replace the stride-based
convolutional and pooling layers in traditional CNN architectures. The most important layer, space-to-
depth (SPD) layer, is introduced which is responsible for down sampling the channel dimensions of the
feature maps while retaining critical information.

Specifically, the SPD layer expands the incoming image or feature map tensor of the previous layer
by expanding it in depth according to a set multiple, assuming that the incoming image or feature map
tensor scale is S x S x C1, and we can thus slice and dice the sub-elements of X as follows:

foo = X][0: S: scale,0: S: scale], fio = X[1: S: scale,0: S: scale], ..., fscale-1.0 = X[scale—1: S: scale,0 :S:
scale];

fo1 = X[0: S: scale,1: S: scale], {11, ..., fscale-1.1 = X[scale — 1: S: scale,1: S: scale];

fo, scate-1 = X[0: S: scale, scale—1: S: scale], i, scale-1, ---» fscale-1, scale-1 = X[scale—1: S: scale, scale—1: S:
scale].

Where scale is an adjustable tangent scale parameter and fy y are the tangent sub-feature maps of X’.
Next, we connect these sub feature maps along the channel-wise, yielding composite feature

representation X’ with the desired spatial dimensions that decreases by a scaling factor and a channel
s

scale scale

dimension that increases by a scaling factor, i.e., x scale?C;.

After the SPD layer, SPD-Conv uses a non-step-size (step-size of 1) convolutional layer. This helps
in extracting important features by utilizing the information in the increased channels followed by
reducing the channel cardinality.

2.3 BoTNet

BoTNet?, or Bottleneck Transformers for Visual Recognition, a collaborative innovation between
UC Berkeley and Google Research teams, designed to combine the strengths of Convolutional Neural
Networks (CNNs) and Transformer?!! models for visual recognition tasks. Through synergistic
integration of CNN’s hierarchical feature learning and transformer-style global context-awareness
enabled by the self-attention mechanism in Transformers, BoTNet leverages the complementary
strengths of both architectures. This hybrid approach allows BoTNet to outperform traditional CNNs and
self-attention models individually, delivering 84.7% accuracy on ImageNet and demonstrating the
synergistic potential of CNN-Transformer fusion.

The BoTNet architecture strategically substitutes the conventional 3x3 convolutional layers in
ResNet’s final three residual blocks with global multi-head self-attention (MHSA) modules. While
incorporating self-attention contributes to higher computational complexity and increased memory usage,
BoTNet addresses these challenges by strategically placing self-attention modules in the final bottleneck
layers. Each bottleneck originally contains a 3x3 convolution, which is substituted by MHSA, enabling
multi-scale feature learning through hierarchical receptive field adaptation. In the first bottleneck, where
the 3x3 convolution uses a stride of 2 and MHSA lacks stride support, BoTNet utilizes 2x2 average
pooling for down sampling. The architecture of BoTNet is shown in Figure 1.
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Figure 1: Structure of the bottleneck transformer.
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2.4 BS-YOLOv8n

As deep learning has rapidly advanced, the YOLO network family have seen widespread adoption
across various detection tasks in agriculture. In this study, we select YOLOv8n developed by Ultralytics
as the baseline network in order to balance the relatively fast detection speed with high target detection
accuracy for complex environments. To enhance the model’s efficacy in handling the intricate dynamics
of the greenhouse environment, the improved YOLOvS8n network, BS-YOLOVSn, is presented in Figure
2.

In terms of model improvement, in order to reduce the information loss when acquiring features for
the backbone network, we include several SPD-Conv modules, which are primarily used to convert the
input feature maps from spatial scale to depth, thereby reducing information loss. In addition to this,
BoTNet is integrated into the terminal layer of the backbone network to extract salient feature
representations in the feature maps through its self-attention mechanism, which further improves model’s
performance in detecting tomatoes.

3. Experimentation and discussion

The experiment is carried out on a Windows 11 x64 platform with a 14th generation Intel 17-14700
KF CPU and an NVIDIA GTX4080 SUPER GPU. The programming environment is created using a
virtual environment created by Ana conda3 with python3.12, Cudal2.1, and the network is built under a
pytorch 2.2.2 framework.

The training parameters are configured as follows. The training parameters are as follows: the input
image size is 640x640 pixels, with a batch size of 25. The model is trained for 400 epochs, using an
Intersection over Union (iou) threshold of 0.5 for both training and testing. To prevent overfitting, early
stopping is implemented, halting training if the mean average precision (mAP) fails to improve
significantly over 100 consecutive iterations. Comparative ablation studies demonstrate the incremental
performance gains attributable to each architectural modification in BS-YOLOv8n. Finally, comparing
BS-YOLOv8n against established detectors including YOLOv7, YOLOv6, YOLOv5s, YOLOv5n, and
YOLOV3 to validate its superior detection capability.
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Figure 2: Structure of the BS-YOLOvS8n network.
3.1 Ablation experiments

To systematically assess the performance of each individual module in BS-YOLOv8n, ablation
experiments are con ducted. The findings from each experiment are presented in Table 1.
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Table 1: Ablation experiments.

Model SPD-Conv | BoTNet AP mAP@0.5 F1
ripe semi unripe
YOLOvVS8n X X 84.2% 80% 84.3% 82.8% 0.78
X N 84.9% | 82.9% | 85.2% 84.3% 0.79
N x 83.8% | 82.8% 83% 83.2% 0.78
v v 88.3% | 85.8% | 85.3% 86.4% | 0.80

Initially, only the SPD-Conv module is introduced into the YOLOvVS8n baseline network, which
reduces information loss by transferring the spatial information of the feature maps to the depth
dimension. Experimental results show that this improvement enhances tomato detection accuracy across
three different maturity levels, with map@0.5 increasing by 1.5% and the F1 score reaching 0.79.

Next, BoTNet’s attention mechanism is embedded within yolov8n’s backbone, augmenting its spatial
feature encoding capacity through parallel attention-convolution fusion. The experimental results show
a further improvement in map@0.5 by 0.4%, with the F1 score increasing to 0.78.

Finally, both SPD-Conv and BoTNet are incorporated into the yolov8n baseline network
simultaneously. The experimental results indicate a significant improvement in multi-stage tomato
detection performance, achieving +3.6% map@0.5 enhancement over the yolov8n baseline and the F1
score rising to 0.8.

In conclusion, ablation studies confirm that SPD-Conv and BoTNet each improve model performance.
But when working together, they provide a substantial improvement in overall performance.

3.2 Comparison with other networks

The BS-YOLOVS nisthoroughl ycompared to othe rYOLO seriesnet works in cluding YOLOvV3-
tiny??, YOLOv5n?¥], YOLOv5s?, YOLOv64, and YOLOv7!2), The evaluation uses six key metrics:
Recall, Precision, F1 Score, nAP@0.5, FPS, and GFLOPs (see Table2). Comparison results demonstrate
that the proposed BS-yolov8n performs very fast with a lighter weight, achieving 11.7 GFLOPS and 218
FPS, while maintaining higher accuracy compared to other models. The training set used in these
comparison experiments consisted of augmented but unfiltered balanced datasets. In summary, the BS-
YOLOv8n model outperform other models of the same type. The performance of BS-YOLOvV8n trained
on the augmented balanced dataset using the filtering method is further improved.

Table 2: Comparative experimental results between different models.

Model Recall Precision F1 mAP@0.5 FPS GFLOPs
YOLOV3-tiny 72.1% 84.3% 0.78 82% 449 18.9
YOLOvV5n 76% 82% 0.79 83.5% 126 11
YOLOVS5s 76% 84.8% 0.80 84.4% 114 16
YOLOV6 77.5% 81.6% 0.79 84.2% 280 11.8
YOLOvV7 79.1% 84.9% 0.81 85.7% 166 105.1
BS-YOLOv8n 77.1% 84.3% 0.80 86.4% 218 11.7

Finally, we predict the tomato images using the YOLOvS8n baseline network and BS-YOLOv8n
network respectively, and the results are shown in Figure 3, where al, bl, and cl are the detection effect
graphs under yolov8n baseline network. The figure shows that some small objects and occluded targets
are not detected. a2, b2, and c2 are the detection effect graphs of BS-YOLOv8n network, relative to the
detection effect of the YOLOvVS8n baseline network detection effect is obviously improved, the leakage
rate of misdetection rate is higher than it. a2, b2 and c2 are graphs of the recognition performance of BS-
YOLOvS8n on greenhouse tomatoes. Compared with the recognition performance of the baseline
YOLOvVS8n, the BS-YOLOvV8n network reduces both the false predicted ratio and the false negative ratio.
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Figure 3: BS-YOLOv8n vs. YOLOvS8n detection effect comparison, (al, bi, cl) is the YOLOvSn
detection effect graph; (a2, b2, c2) is the YOLOvSn detection effect graph.

4. Conclusions

Detection of tomatoes with different ripeness levels in complex greenhouse environments through
computational vision is of crucial importance for yield estimation and growth status determination in
modern smart agriculture. In this paper, we address a series of challenges associated with it, which
include more occlusion in complex environments and very small targets in long-distance situations. This
paper proposes a BS-YOLOvVS8n network, compared to the baseline YOLOvVS8n, it proposed in this paper
achieves improvements of 3.6% in mAP@0.5 and 0.02 in F1 score for fruit detection, with a processing
speed of 218 FPS, fulfilling the requirements for real-time monitoring. We will build on the existing
experimental findings, utilizing binocular cameras for tasks such as segmentation and detection of tomato
fruits, with a focus on semi-ripe fruits. The goal is to predict the potential yield of fruits nearing ripeness,
enabling short-term yield forecasting in modern agriculture.
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