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Abstract: With the advancement of artificial intelligence, computer vision has become a widely adopted 
method to replace human visual observation. However, the complexity of the greenhouse tomato-growing 
environment poses significant challenges in using computer vision to quickly and accurately assess the 
ripeness of tomatoes. In order to solve these problems, we incorporate SPD-Conv and BoTNet to enhance 
the YOLOv8n network’s performance in feature extraction and target recognition capabilities in 
greenhouse tomato-growing environments. In simulations, we compare the performance of YOLOv8n 
with that of BS-YOLOv8n. Empirical findings demonstrate that the proposed BS-YOLOv8n performs 
better than YOLOv8n in both the accuracy and the response speed of tomato recognition in complex 
greenhouse environments. 
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1. Introduction 

Tomato, as an easy-to-grow and common vegetable, holds a prominent position in global agricultural 
activities. For tomato cultivation, real-time monitoring of the growth and development process, and 
ultimately prediction of its yield is crucial. This not only provides a reliable production projection to 
growers, but also helps them to make effective adjustments to their planting methods and marketing 
strategies[1].  

Traditional production forecasting methods are mainly based on biological models of tomato growth. 
To simulate photosynthesis and respiration accurately, the modeler must gather extensive environmental 
data and also the precise planting metrics. Validation of the model requires the destructive weighing of 
the dry weight of the fruit[2]. Meanwhile, machine learning breakthroughs have enabled the widespread 
application of computer vision-based artificial intelligence across various areas, including precise 
agriculture and smart farming. This provides growers with new ways to predict crop yields[3]. Image 
detection, as one important learning technology, has become a popular way of collecting crop growth 
information. The convenience brought by integrating computer vision technology into the field of tomato 
yield prediction is mainly reflected in several levels: first, it can accurately detect the ripening state of 
fruits; second, it can accurately determine the growing stage of plants; In addition, it can effectively 
identify the lack of water and pigmentation of plants, as well as timely detect the pests and diseases and 
other problems. Among the tasks related to computer vision, fruit detection is closely associated with 
yield prediction, which has become the top priority of research in this field[4]. 

In the context of rapid development of machine learning and deep penetration into the field of visual 
image processing, target detection algorithms represented by deep learning are becoming the core 
technical support for smart agriculture research and application. The most popular methods include R-
CNN[5], Faster R-CNN[6], Mask R-CNN[7], SDD[8] and YOLO[9] series. YOLO series are in the rapid 
iteration, while maintaining the fast speed characteristics, and its accuracy is also gradually improved. 
Wang et al. [10] introduced an improved version of Mask R-CNN for the recognition and segmentation of 
apples at three distinct stages of ripeness within an orchard setting. Wang Z et al.[11] presented an 
enhanced version of Faster R-CNN for the recognition and detection of tomatoes in greenhouse 
environments. Although they both work to effectively detect fruit, both networks are structured as two-
layer networks, which leads to the problem of training speed for accuracy. The SSD and YOLO 
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architectures, as representative single-stage frameworks, exhibit superior processing speed in comparison 
to two-stage networks. Liu ell al.[12] used an improved YOLOv3 for tomato recognition model to enable 
the model to correctly recognize yellow tomatoes in a shaded environment. Yan et al.[13] improved 
YOLOv5 for detecting apple fruits based on the problem that the fruits are easily occluded and the fruits 
directly overlap each other. Xue et al.[14] proposed an enhancement of YOLOv2 for unripe mango 
identification, and the model was mainly used to overcome the difficulty of detecting mangoes that are 
occluded or overlapped. Tang et al.[15] improved YOLOv7 to include an attention mechanism for 
detecting plum fruits in complex environments. The training images in some studies are usually close-
up images, which is very difficult to get under greenhouse environment. So, it not only needs to handle 
the issue of overlapping occlusion at close range, but also the challenge of detecting small targets at larger 
distances.  

In response to this limitation, an enhanced yolov8n network, referred to as bs-yolov8n, is proposed 
to address the challenges of occlusion, small-scale target detection, and low-resolution image resolution 
commonly encountered in complex greenhouse environments. We also apply the method to detect tomato 
fruits in complex greenhouse environments, and categorize the images into three ripeness levels, aiming 
to determine the developmental stage of tomato fruits with the help of webcams. The key contributions 
of this study can be summarized as follows: 

(1) SPD-Conv is employed to transfer spatial information from the feature map to the depth dimension, 
thereby minimizing information loss and enhancing detection performance, particularly for low-quality 
images and small targets. 

(2) BoTNet is incorporated into the backbone network to integrate a multi-head self-attention 
mechanism, thereby enhancing the model’s overall performance. 

2. Methods  

2.1 YOLOv8 

YOLOv8[16] is a prominent version in the YOLO series, and since it ensures that the accuracy is still 
good while being fast, this network is widely utilized for multiple tasks, including object detection, image 
categorization, and instance segmentation. 

The YOLOv8 architecture incorporates three fundamental modules: a backbone network, a feature 
fusion neck, and a detection head. The backbone part, CSP-Darknet53[17], serves as the primary feature 
extractor that processes input images to generate hierarchical feature representations. CSP-Darknet53 
incorporates several crucial modules, including convolutional layers (Conv), enhanced CSP bottleneck 
implementation utilizing two convolutional layers(C2f) and efficient spatial pyramid pooling-fast variant 
(SPPF). The C2f module is an important innovation that differentiates YOLOv8 from other networks, 
and its function is to learn residual features, aiming to achieve lightweighting while maintaining the 
gradient flow information. SPPF, the Spatial Pyramid Pooling-Fast module, performs multi-scale pooling 
and transforms variably-sized feature maps into dimensional-fixed feature representations, improving 
spatial information aggregation. 

The Neck of YOlov8 is the Path Aggregation Network (PAN)[18], which is conceived with the 
innovative approach of incorporating a bottom-up pyramid structure alongside the traditional top-down 
architecture of a Feature Pyramid Network (FPN). 

Head is responsible for the final object detection prediction. YOLOv8 employs an“Anchor-Free” 
approach, removes the reliance on predefined anchor boxes, and incorporates a decoupled head structure 
to isolate the processing of classification and regression tasks. This separation enhances both efficiency 
and accuracy, allowing for more precise predictions of object categories and bounding box coordinates. 
The decoupling of these tasks streamlines the process, reducing computational complexity while 
improving performance. Additionally, the head processes feature maps at multiple resolutions, enabling 
YOLOv8 to effectively detect objects of varying sizes and complex spatial configurations with high 
precision. 

In this study, we focus on leveraging YOLOv8’s object detection capabilities and select the n-scale 
variant for training. This model architecture is designed to be lightweight while maintaining high 
detection accuracy, making it suitable for a wide range of operational scenarios. 
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2.2 SPD-Conv 

SPD-Conv (Spatial Depth Transformation Convolution)[19] is an innovative convolutional neural 
network (CNN) building block designed to mitigate the performance degradation of traditional CNNs 
when dealing with low-resolution images and small objects. The principal source of these issues stems 
from the loss of fine-grained information attributed to the application of stride-based convolutions and 
pooling layers in traditional CNN architectures. And SPD-Conv is designed to replace the stride-based 
convolutional and pooling layers in traditional CNN architectures. The most important layer, space-to-
depth (SPD) layer, is introduced which is responsible for down sampling the channel dimensions of the 
feature maps while retaining critical information. 

Specifically, the SPD layer expands the incoming image or feature map tensor of the previous layer 
by expanding it in depth according to a set multiple, assuming that the incoming image or feature map 
tensor scale is S × S × C1, and we can thus slice and dice the sub-elements of X as follows: 

f0,0 = X[0: S: scale,0: S: scale], f1,0 = X[1: S: scale,0: S: scale], ..., fscale−1,0 = X[scale−1: S: scale,0 :S: 
scale]; 

f0,1 = X[0: S: scale,1: S: scale], f1,1, ..., fscale−1,1 = X[scale − 1: S: scale,1: S: scale]; 

... 

f0, scale−1 = X[0: S: scale, scale−1: S: scale], f1, scale−1, ..., fscale−1, scale−1 = X[scale−1: S: scale, scale−1: S: 
scale]. 

Where scale is an adjustable tangent scale parameter and fx, y are the tangent sub-feature maps of X’. 
Next, we connect these sub feature maps along the channel-wise, yielding composite feature 
representation X’ with the desired spatial dimensions that decreases by a scaling factor and a channel 
dimension that increases by a scaling factor, i.e., 𝑆𝑆 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
× 𝑆𝑆 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
× 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝐶𝐶1. 

After the SPD layer, SPD-Conv uses a non-step-size (step-size of 1) convolutional layer. This helps 
in extracting important features by utilizing the information in the increased channels followed by 
reducing the channel cardinality. 

2.3 BoTNet 

BoTNet[20], or Bottleneck Transformers for Visual Recognition, a collaborative innovation between 
UC Berkeley and Google Research teams, designed to combine the strengths of Convolutional Neural 
Networks (CNNs) and Transformer[21] models for visual recognition tasks. Through synergistic 
integration of CNN’s hierarchical feature learning and transformer-style global context-awareness 
enabled by the self-attention mechanism in Transformers, BoTNet leverages the complementary 
strengths of both architectures. This hybrid approach allows BoTNet to outperform traditional CNNs and 
self-attention models individually, delivering 84.7% accuracy on ImageNet and demonstrating the 
synergistic potential of CNN-Transformer fusion. 

The BoTNet architecture strategically substitutes the conventional 3×3 convolutional layers in 
ResNet’s final three residual blocks with global multi-head self-attention (MHSA) modules. While 
incorporating self-attention contributes to higher computational complexity and increased memory usage, 
BoTNet addresses these challenges by strategically placing self-attention modules in the final bottleneck 
layers. Each bottleneck originally contains a 3×3 convolution, which is substituted by MHSA, enabling 
multi-scale feature learning through hierarchical receptive field adaptation. In the first bottleneck, where 
the 3×3 convolution uses a stride of 2 and MHSA lacks stride support, BoTNet utilizes 2×2 average 
pooling for down sampling. The architecture of BoTNet is shown in Figure 1. 

 
Figure 1: Structure of the bottleneck transformer. 
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2.4 BS-YOLOv8n 

As deep learning has rapidly advanced, the YOLO network family have seen widespread adoption 
across various detection tasks in agriculture. In this study, we select YOLOv8n developed by Ultralytics 
as the baseline network in order to balance the relatively fast detection speed with high target detection 
accuracy for complex environments. To enhance the model’s efficacy in handling the intricate dynamics 
of the greenhouse environment, the improved YOLOv8n network, BS-YOLOv8n, is presented in Figure 
2. 

In terms of model improvement, in order to reduce the information loss when acquiring features for 
the backbone network, we include several SPD-Conv modules, which are primarily used to convert the 
input feature maps from spatial scale to depth, thereby reducing information loss. In addition to this, 
BoTNet is integrated into the terminal layer of the backbone network to extract salient feature 
representations in the feature maps through its self-attention mechanism, which further improves model’s 
performance in detecting tomatoes. 

3. Experimentation and discussion 

The experiment is carried out on a Windows 11 x64 platform with a 14th generation Intel i7-14700 
KF CPU and an NVIDIA GTX4080 SUPER GPU. The programming environment is created using a 
virtual environment created by Ana conda3 with python3.12, Cuda12.1, and the network is built under a 
pytorch 2.2.2 framework.  

The training parameters are configured as follows. The training parameters are as follows: the input 
image size is 640×640 pixels, with a batch size of 25. The model is trained for 400 epochs, using an 
Intersection over Union (iou) threshold of 0.5 for both training and testing. To prevent overfitting, early 
stopping is implemented, halting training if the mean average precision (mAP) fails to improve 
significantly over 100 consecutive iterations. Comparative ablation studies demonstrate the incremental 
performance gains attributable to each architectural modification in BS-YOLOv8n. Finally, comparing 
BS-YOLOv8n against established detectors including YOLOv7, YOLOv6, YOLOv5s, YOLOv5n, and 
YOLOv3 to validate its superior detection capability. 

 
Figure 2: Structure of the BS-YOLOv8n network. 

3.1 Ablation experiments 

To systematically assess the performance of each individual module in BS-YOLOv8n, ablation 
experiments are con ducted. The findings from each experiment are presented in Table 1. 
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Table 1: Ablation experiments. 

Model SPD-Conv BoTNet AP mAP@0.5 F1 
ripe semi unripe 

YOLOv8n × × 84.2% 80% 84.3% 82.8% 0.78 
× √ 84.9% 82.9% 85.2% 84.3% 0.79 
√ × 83.8% 82.8% 83% 83.2% 0.78 
√ √ 88.3% 85.8% 85.3% 86.4% 0.80 

Initially, only the SPD-Conv module is introduced into the YOLOv8n baseline network, which 
reduces information loss by transferring the spatial information of the feature maps to the depth 
dimension. Experimental results show that this improvement enhances tomato detection accuracy across 
three different maturity levels, with map@0.5 increasing by 1.5% and the F1 score reaching 0.79.  

Next, BoTNet’s attention mechanism is embedded within yolov8n’s backbone, augmenting its spatial 
feature encoding capacity through parallel attention-convolution fusion. The experimental results show 
a further improvement in map@0.5 by 0.4%, with the F1 score increasing to 0.78.  

Finally, both SPD-Conv and BoTNet are incorporated into the yolov8n baseline network 
simultaneously. The experimental results indicate a significant improvement in multi-stage tomato 
detection performance, achieving +3.6% map@0.5 enhancement over the yolov8n baseline and the F1 
score rising to 0.8.  

In conclusion, ablation studies confirm that SPD-Conv and BoTNet each improve model performance. 
But when working together, they provide a substantial improvement in overall performance. 

3.2 Comparison with other networks 

The BS-YOLOv8 nisthoroughl ycompared to othe rYOLO seriesnet works in cluding YOLOv3-
tiny[22], YOLOv5n[23], YOLOv5s[23], YOLOv6[24], and YOLOv7[25]. The evaluation uses six key metrics: 
Recall, Precision, F1 Score, mAP@0.5, FPS, and GFLOPs (see Table2). Comparison results demonstrate 
that the proposed BS-yolov8n performs very fast with a lighter weight, achieving 11.7 GFLOPS and 218 
FPS, while maintaining higher accuracy compared to other models. The training set used in these 
comparison experiments consisted of augmented but unfiltered balanced datasets. In summary, the BS-
YOLOv8n model outperform other models of the same type. The performance of BS-YOLOv8n trained 
on the augmented balanced dataset using the filtering method is further improved. 

Table 2: Comparative experimental results between different models. 

Model Recall Precision F1 mAP@0.5 FPS GFLOPs 
YOLOv3-tiny 72.1% 84.3% 0.78 82% 449 18.9 

YOLOv5n 76% 82% 0.79 83.5% 126 11 
YOLOv5s 76% 84.8% 0.80 84.4% 114 16 
YOLOv6 77.5% 81.6% 0.79 84.2% 280 11.8 
YOLOv7 79.1% 84.9% 0.81 85.7% 166 105.1 

BS-YOLOv8n 77.1% 84.3% 0.80 86.4% 218 11.7 

Finally, we predict the tomato images using the YOLOv8n baseline network and BS-YOLOv8n 
network respectively, and the results are shown in Figure 3, where a1, b1, and c1 are the detection effect 
graphs under yolov8n baseline network. The figure shows that some small objects and occluded targets 
are not detected. a2, b2, and c2 are the detection effect graphs of BS-YOLOv8n network, relative to the 
detection effect of the YOLOv8n baseline network detection effect is obviously improved, the leakage 
rate of misdetection rate is higher than it. a2, b2 and c2 are graphs of the recognition performance of BS-
YOLOv8n on greenhouse tomatoes. Compared with the recognition performance of the baseline 
YOLOv8n, the BS-YOLOv8n network reduces both the false predicted ratio and the false negative ratio. 
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Figure 3: BS-YOLOv8n vs. YOLOv8n detection effect comparison, (a1, b1, c1) is the YOLOv8n 

detection effect graph; (a2, b2, c2) is the YOLOv8n detection effect graph. 

4. Conclusions 

Detection of tomatoes with different ripeness levels in complex greenhouse environments through 
computational vision is of crucial importance for yield estimation and growth status determination in 
modern smart agriculture. In this paper, we address a series of challenges associated with it, which 
include more occlusion in complex environments and very small targets in long-distance situations. This 
paper proposes a BS-YOLOv8n network, compared to the baseline YOLOv8n, it proposed in this paper 
achieves improvements of 3.6% in mAP@0.5 and 0.02 in F1 score for fruit detection, with a processing 
speed of 218 FPS, fulfilling the requirements for real-time monitoring. We will build on the existing 
experimental findings, utilizing binocular cameras for tasks such as segmentation and detection of tomato 
fruits, with a focus on semi-ripe fruits. The goal is to predict the potential yield of fruits nearing ripeness, 
enabling short-term yield forecasting in modern agriculture. 
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