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Abstract: In order to improve the overall performance of the speech emotion recognition system, the 

problem of insufficient emotion information due to a single speech feature and the problem of recognition 

models not making full use of the emotion information contained in the features are addressed. In this 

paper, a self-attentive residual temporal convolution network (S-ResTCN) fusing Mel frequency cepstrum 

coefficients with rhythmic features is proposed. Firstly, the rhythmic features and mel frequency cepstral 

coefficients of speech were extracted on the EMO-DB and CASIA databases respectively, and their 

statistical functions were calculated to form 128-dimensional acoustic fusion features; then, the S-

ResTCN network was designed and built, and the dependency modeling between the feature elements 

was completed by using the residual temporal convolution network, which made the network pay more 

attention to the parameters related to the emotional state in the features through the self-attentive 

mechanism, and generated the self-attentive mechanism feature matrix; finally, the softmax function was 

used for classification and recognition. The results showed that the S-ResTCN network improved the 

accuracy by 1.52%-14.12% over the existing network of the EMO-DB database and improved the 

accuracy by 1.27%-6.53% over the existing network of the CASIA database. 

Keywords: speech emotion recognition, temporal convolution network, self-attention mechanism, mel-

frequency cepstral coefficients, rhyme features 

1. Introduction 

Speech emotion recognition (SER)[1]enables computers to predict the changing patterns of emotions 

carried in a speaker's speech by analyzing and processing the correlations between feature information 

in speech and emotions and is one of the important research directions in human-computer interaction. 

Acoustic features emotional information and highly accurate classification and recognition networks are 

important components of the SER task[2]. 

In recent years, researchers have proposed many speech features based on human voice characteristics, 

among which the mel-frequency cepstral coefficients (MFCC)[3], linear predictive coding (LPC)[4], and 

rhythmic features[5] are the most classic. The most classical methods are at the same time, researchers 

have proposed some more targeted features for the continuity and temporality of speech signals. For 

example, the literature[6] proposed non-linear geometric features and demonstrated that the proposed 

features could not only effectively characterize the emotional variability in speech signals, but also make 

up for the shortcomings of features in portraying emotional states. The literature[7] explored the 

relationship between the dimensional spatial model of emotion and speech features and extracted 

dimensional features corresponding to arousal and validity. Although there has been some research on 

features such as MFCC, LPC, and resonance peaks, they are still single-feature exploration, and there is 

a lack of research on fusing multiple types of acoustic features for emotion recognition. 

Speech emotion recognition models mainly include the traditional gaussian mixture model (GMM)[8] 

and support vector machine (SVM)[9] models, as well as the latest TCN[10] and long short-term memory 

(LSTM)[11]. The literature[12] addresses the speaker discrepancy problem by forming spectral features into 

a channel feature input network, combining convolutional neural networks (CNN), bi-directional long 

short-term memory (BiLSTM), and attention mechanism to build the model, and proposing a method to 

assign channel weights using a deep residual shrinkage network. The literature [13] proposes a main and 

auxiliary network speech emotion recognition algorithm. Using BiLSTM as the main network and CNN-

GAP as the auxiliary network, the extracted depth features are fused with features in a main and auxiliary 

network to solve the problem of unsatisfactory recognition results. In addition, inspired by the human 

attention mechanism, scholars have proposed various attention mechanisms for different problems in the 
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field of speech signal processing, such as the channel attention mechanism, the spatial attention 

mechanism, and the temporal attention mechanism. Although the aforementioned studies have achieved 

good results, they have not taken into account the dependence and variability of deep-seated intra-feature 

elements. 

In summary, the current SER research faces two main problems: 1) it only considers a single type of 

speech feature and does not fully use the complementarity between acoustic features for the classification 

task; 2) it only models the acoustic features and emotional states of the speaker and fails to use the 

dependency relationships of the elements within the features to generate a depth feature map at a deeper 

level, and because the model uses the same weights for all the extracted depth features, it makes the 

classification recognition effect much less effective, i.e. it fails to adaptively reassign weights to the depth 

feature map. 

To address the problem of single acoustic features, this paper proposes a 128-dimensional MFEZ 

feature set incorporating mel frequency cepstrum coefficient, fundamental frequency, energy, and zero 

crossing rate. To address the problem that the network fails to adaptively reassign weights to the depth 

features, this paper proposes a residual temporal convolutional network with a self-attention mechanism 

(S-ResTCN) by means of the residual temporal convolutional network (ResTCN) that can be used to 

model the dependency analysis of the elements within the features, which in turn enables the model to 

take into account the correlation between the elements within the features when generating the depth 

feature map. The self-attention mechanism enables the calculation of the sentiment information stored in 

each feature in the depth feature map and the reallocation of the weight of each feature according to the 

proportion of sentiment information, so as to maximise the use of sentiment information in the features 

and improve the recognition rate of sentiment classification. 

2. Self-attentive residual time convolutional networks 

The S-ResTCN network consists of two parts, the ResTCN network, and the self-attentive mechanism. 

Among them, the ResTCN network part will complete the modeling of the correlation between MFEZ 

features and sentiment, while the self-attentive mechanism layer will redistribute weights according to 

the proportion of sentiment information carried by the features. As shown in Figure 1, the ResTCN 

network consists of a TCN and a residual connection, where the TCN network learns the sentiment 

information by processing the feature sequences in parallel, and then uses the residual connection to 

make the model generate a stable gradient optimization path during the training process; the Query and 

Key in the self-attentive mechanism are multiplied to obtain the sentiment information weight feature, 

and this is applied to the Value so as to increase the local The self-attentive weight feature is generated 

by multiplying Query and Key in the self-attentive mechanism. Finally, the softmax function is used for 

sentiment classification. 

2.1. ResTCN 

In traditional speech emotion recognition research, scholars tend to model only speaker features and 

emotion states to analyze correlations, while neglecting the analysis of correlations between elements 

within features, so this paper proposes a ResTCN network. ResTCN network consists of two parts, TCN, 

and residual connectivity, the TCN layer uses an inflated convolutional layer to process feature sequences 

in parallel. The expansion factor is set to model the intrinsic dependencies between elements at different 

positions in the feature sequence, and the residual connectivity will enable the model to produce more 

stable gradient optimization paths during training. 

Figure 2 shows the principle of the i layer of the ResTCN network. Firstly, the input features xi 
will pass through the Batch Normalization, ELU activation function, and Dropout layer (dropout=0.5) 

after passing through the dilated convolutional layer; then the output of the Dropout layer will be fused 

with xi to obtain xi+1 and fed into the i + 1 layer ResTCN; finally, the output of the last ResTCN 

layer will be fed directly to the Self-Attention Mechanism module. 
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Figure 1: Block diagram of S-ResTCN-based speech emotion recognition network 

The ELU activation function accelerates the learning of the mean towards zero by reducing the effect 

of the bias offset so that the normal gradient is closer to the unit’s natural gradient. The ELU expression 

is shown in equation (1). 

 

, 0
ELU( ) =

1 , 0x

x x
x

e x




 

                       (1) 

α is an adjustable parameter that controls the degree of saturation of the ELU in the negative part. 

When the input is greater than 0, the output can effectively alleviate the gradient disappearance; when 

the input is less than 0, the output means is as close to 0 as possible to improve the convergence speed. 

The principle formula for residual connectivity in ResTCN networks is 

    ,
i,d

h w  
i+1 i i

x x x                         (2) 

i ∈ {1,2,3,4,5}, h(xi) is the direct mapping part of xi ; Γ(xi, w(i,d)) is the residual part, w(i,d) 

denotes the i layer convolution operation, and d ∈ {20, 21, 22, 23, 24} is the expansion rate. In the 

training process, the convolution kernel of the inflated convolution layer is 2, and the number of filters 

is f = {25,26,27,28} respectively. 
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Figure 2: Layer I ResTCN network structure 
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2.2. Self-attention mechanism 

Different types of feature parameters have different roles in sentiment recognition, but during model 

training, the network assigns the same weights to the feature maps, which will lead to the under-

utilization of sentiment information. In this paper, we combine the ResTCN model with the self-attention 

mechanism to better utilize the information significantly related to emotion in the acoustic signal by 

weighting the output feature maps of the inflated convolutional layer in ResTCN with the emotion 

information. 

The core module of the self-attention mechanism, which can better focus on the dependencies 

between the input features, is the scaled point multiplied attention mechanism. The scaled dot product 

attention mechanism non-linearly maps the elements in the input feature sequence to generate three 

different representations, Query, Key, and Value, where Query and Key denote the vectors for calculating 

the attention weights and Value denotes the input feature vector. Where, qt, kt, vt are calculated as 

shown in equation (3). 

; ;t t t t t t  T T T

q v kq w x v w x k w x                       (3) 

wq
T, wv

T, wk
T are the hyperparameters of the network, which are obtained by training and learning. 

In this paper, qt , kt, vt of all elements of the input, features are represented by matrices as Q , K, 
and V. The dot product attention mechanism is calculated as shown in equation (4). 

( , , ) softmax( )
k

Attention
d

 
TQK

Z Q K V V                 (4) 

In the network, the features of speech are input as a matrix, and self-attention calculates the 

correlation coefficient between the current speech feature and other speech features by calculating the 

feature weights[13]. The process can be summarised in three stages, with the specific operations of each 

stage shown in Figure 3. 
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Figure 3: The calculation process of Self-attention 

At stage 1, the dot product operation between qi of group i and each group k is performed to 

obtain the similarity score matrix si. At stage 2, si is normalized by the softmax function to ensure that 

the weight parameters of si  sum to 1. At stage 3, the resulting matrix of weight coefficients 
{a1, a2, ⋯ , an} is applied to v , which is weighted and summed to obtain the final self-attentive feature 

matrix. 
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3. Fusion of rhythmic features and MFCC features 

3.1. Rhythmic features 

Rhyme features reflect changes in the intensity and intonation of speech emotion signals. The rhyme 

features extracted in this paper are shown below. 

1) Zero crossing rate: The number of times a waveform crosses the zero level in a frame of speech is 

known as the zero crossing rate, which is defined as shown in equation (5). 

 
1

0

1
sgn ( ) sgn[ ( )]

2

N

n n n

m

m m -1




 Z x x                     (5) 

2) Energy: Let the short-time energy of the n frame of the speech signal be expressed as 

1
2

0

( )
N

n n

m

m




E x                              (6) 

3) Fundamental frequency: The frequency at which the vocal folds vibrate when a turbid tone is 

pronounced. When a person pronounces a sound, the vocal tract is strongly excited, and this is reflected 

in a dramatic increase in the amplitude of the speech waveform. The inverse of the length of time between 

the closure of two adjacent vocal folds is the fundamental frequency at that point. 

3.2. MFCC features 

Mel frequency is a speech characteristic parameter constructed from the auditory properties of the 

human ear. Since the sound height heard by the human ear does not correspond linearly to frequency, but 

more closely to a logarithmic relationship, the mayer frequency scale accurately corresponds to the 

auditory characteristics of the human ear, and its relationship with frequency can be expressed as 

2595lg(1 700)mel hzF f                           (7) 

The steps to extract the MFCC are as follows: 1) first make the signal pass through a high-pass filter 

for pre-emphasis; 2) perform frame-splitting and windowing; 3) perform a fast fourier transform to obtain 

the spectrum of each frame; 4) pass the power spectrum through a set of meier-scale triangular filter 

banks with a filter order of 24 and then log the result; 5) finally, after a discrete cosine transformer, the 

MFCC coefficients can be obtained. 

3.3. MFEZ feature set 

In this paper, the over-zero rate, energy, fundamental frequency, and the corresponding first-order 

difference coefficients of the rhythmic features are extracted, and then their statistical functions are 

calculated and fused with the MFCC statistical functions to form the 128-dimensional MFEZ features, 

which are represented as shown in Equation (8). 

 1 2, , , , , , , , ,u kF Z Z E E F F M M M                     (8) 

where: Z and △ Z denote the vector of statistical functions for the low-level descriptors of the over-

zero rate and the first-order difference coefficients, respectively; E  and △ E denote the vector of 

statistical functions for the low-level descriptors of the energy and the first-order difference coefficients, 

respectively; F and △ F denote the vector of statistical functions for the low-level descriptors of the 

fundamental frequency and the first-order difference coefficients, respectively, where the vector equation 

for Z is shown in equation (10), and the vector equations for Eand F are simply substituted for the 

variable Z in equation (9). 

𝑍 = {𝑚𝑎𝑥(𝑧),𝑚𝑖𝑛(𝑧), 𝑟𝑎𝑛(𝑧),𝑚𝑎𝑥𝑝𝑜𝑠(𝑧),𝑚𝑖𝑛𝑝𝑜𝑠(𝑧), 𝑧̅, 𝑙𝑖𝑛(𝑧), 𝑠𝑡𝑑(𝑧)}         (9) 

The variables in Eq. are, in order, the maximum value, minimum value, range value, absolute range 

of the maximum value, absolute range of the minimum value, mean value, slope, and standard deviation 

value of Z. In addition, m in equation (8) denotes the vector of statistical functions constituting the k 

order MFCC, as shown in equation (10). 

𝑀𝑘 = {𝑚𝑎𝑥(𝑀𝑘),𝑚𝑖𝑛(𝑀𝑘), 𝑟𝑎𝑛(𝑀𝑘),𝑚𝑎𝑥𝑝𝑜𝑠(𝑀𝑘),𝑚𝑖𝑛𝑝𝑜𝑠(𝑀𝑘),𝑀𝑘
̅̅ ̅̅ , 𝑙𝑖𝑛(𝑀𝑘), 𝑠𝑡𝑑(𝑀𝑘)}   (10) 
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The variables in the equation are, in order, the maximum value, minimum value, range value, absolute 

range of the maximum value, absolute range of the minimum value, mean value, slope, and standard 

deviation value of the k order MFCC. In this paper, k taking a value of 10, the final 128-dimensional 

fused acoustic features that make up the MFEZ feature set are shown in Table 1 with the following 

specific information. 

Table 1: MFEZ feature set details 

Features Description of features Dimensionality 
E  & ΔE  Energy and first-order difference coefficients 16 
Z  & ΔZ  Trans-zero rates and first-order difference coefficients 16 

F  & ΔF  
Fundamental frequency and first-order differential 

coefficients 
16 

kM
 

MFCC and kth order difference coefficient 80 

4. Experimental design and analysis of results 

4.1. Speech emotion database 

In this paper, the EMO-DB databases and the CASIA databases are used, and the specific information 

of the databases is shown in Table 2. 

Table 2: Database details 

Databases Language Emotional category Emotional state Number 

EMO-DB German 7 

Anger 71 

Sadness 69 

Happy 81 

Scared 46 

Neutral 127 

Disgusted 79 

Bored 62 

CASIA Chinese 6 

Anger 200 

Surprise 200 

Fear 200 

Happy 200 

Jealous 200 

Sadness 200 

In Table 2, the EMO-DB was recorded at the Technical University of Berlin, with ten subjects 

simulating German speech for each of the seven emotions, emotions including anger, sad, happy, scared, 

neutral, disgusted, and bored, with a total of 535 speech data. CASIA was designed and recorded at the 

Institute of Automation, Chinese Academy of Sciences, by four subjects in a noiseless environment, with 

a male-to-female ratio of 1:1, with each corpus data expressing six emotions: anger, surprise, fear, 

happiness, jealousy, and sadness, with a total of 1200 speech data. 

4.2. Experimental environment settings and evaluation indicators 

Software environment: Windows 10 as the operating system, tensorflow 2.3.0 as the deep learning 

framework, python 3.6 as the programming language environment, and NVIDIA GTX 1080Ti as the 

GPU. 

Model training method and parameter settings: S-ResTCN sentiment recognition network randomly 

divided the dataset, the training set, validation set, and test set was divided in the ratio of 6:2:2. Adam 

was chosen as the optimizer, the learning rate was set to 0.001, the decay index of the first estimation 

was set to 0.5, and the batch size was set to 128. 

To validate the effectiveness of the S-ResTCN network, Accuracy, Area Under The Curve(AUC), 

and Confusion Matrix were used as evaluation metrics. 

Accuracy
TP TN

TP TN FP FN




  
                       (11) 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 6, Issue 3: 42-51, DOI: 10.25236/AJCIS.2023.060306 

Published by Francis Academic Press, UK 

-48- 

(1 M)

2AUC
ii positiveClass

M
rank

M N


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





                   (12) 

Eq. (11) represents the proportion of samples correctly classified in the total sample, where TP is 

the true case, TN is the true negative case, FP is the false positive case and FN is the false negative 

case. Eq. (12) represents the probability that any positive sample is greater than a negative sample, where 

M is the number of positive samples, N is the number of negative samples, and ranki represents the 

number of the i sample. 

4.3. Experimental results and analysis 

4.3.1. S-ResTCN ablation experiment 

To demonstrate the role of S-ResTCN in sentiment recognition and to explore the effectiveness of 

ResTCN and Self-attention in sentiment recognition, this subsection compares the sentiment 

classification recognition rates of TCN, ResTCN, and S-ResTCN using 128-dimensional MFEZ features 

from the EMO-DB and CASIA databases as input. The results of the ablation experiments are shown in 

Table 3. 

Table 3: Ablation experiments 

Database Model Accuracy AUC 

EMO-DB 

TCN 82.09% 82.63% 

ResTCN 89.64% 89.78% 

S-ResTCN 96.62% 97.13% 

CASIA 

TCN 80.36% 80.38% 

ResTCN 87.17% 87.61% 

S-ResTCN 92.35% 93.45% 

Comparing Table 3, it can be found that the ResTCN network improved the sentiment recognition 

accuracy by 7.55% and 6.81% on EMO-DB and CASIA, respectively, compared to the TCN network, 

proving that the residual connection is beneficial to improve the sentiment recognition accuracy. 

Comparing the S-ResTCN with the TCN and ResTCN networks respectively, the accuracy improvement 

was 14.53% and 6.98% on the EMO-DB database and 11.99% and 5.18% on the CASIA database. In 

addition, the S-ResTCN also achieved a certain degree of improvement over the TCN and ResTCN 

networks in terms of the AUC metric, indicating that the self-attentive mechanism can effectively re-

weight the feature maps output by the ResTCN, allowing the sentiment information in the MFEZ features 

to be more fully explored. 

4.3.2. S-ResTCN versus other networks 

In order to further verify the effectiveness of the proposed network in sentiment recognition, the 

MEEZ features of the EMO-DB and CASIA databases were extracted as input, and the S-ResTCN 

network was compared with the existing networks of the EMO-DB and CASIA databases respectively. 

Among them, the existing networks compared in the EMO-DB database are DNN+MLA, 3D CRNN, 

ResNet34, and DCNN+SVM; the existing networks compared in the CASIA database are LnNet-5, 

MTL-RNN, and 3DCNN-BiLSTM, and the comparison results are shown in Figure 4. 

From Fig. 4(a), it can be seen that S-ResTCN has the worst accuracy and poor model stability in 

comparison with the existing models of the EMO-DB database, with the best performance stabilized at 

around 82.50% for DNN+MLA; the best performance of 3D CRNN network is around 82.82%; the best 

performance of ResNet34 and DCNN+SVM networks are stabilized at 92.41% and 95.10%; the accuracy 

of S-ResTCN network was around 96.62%, possessing a higher accuracy rate compared to other 

classification networks. As shown in Fig. 4(b), the accuracy of S-ResTCN was the worst in comparison 

with the existing models in the CASIA database, LnNet-5, which finally stabilized at around 85.82%; 

the accuracy of MTL-RNN and 3DCNN-BiLSTM networks were 90.91% and 91.08% respectively; the 

accuracy of S-ResTCN network was 92.35%, comparing with the S-ResTCN network has better 

recognition results than the current existing networks. 
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(a) Comparison of different networks of the EMO-DB database with the S-ResTCN network 

 
(b) Comparison of different networks of the CASIA database with the S-ResTCN network 

Figure 4: Comparison of the S-ResTCN network with existing networks of different databases 

The experimental results of the proposed method under the EMO-DB and CASIA databases are 

compared with the results of the existing literature as shown in Table 4. By comparing Table 4, it can be 

found that S-ResTCN outperforms the comparative literature in classification recognition on the EMO-

DB and CASIA databases. In the EMO-DB database comparison analysis, S-ResTCN improved the 

accuracy by 14.12%, 13.8%, 4.21%, and 1.52%, and the AUC by 14.17%, 14.02%, 4.26%, and 1.20% 

over DNN+MLA, 3D CRNN, ResNet34, and DCNN+SVM, respectively. In the CASIA database 

comparison analysis, S-ResTCN improved the accuracy over LeNet, MTL-RNN, and 3DCNN-BLSTM 

by 6.53%, 1.44%, and 1.27%, and the AUC by 6.61%, 1.9% and 1.6%, respectively. 

Table 4: Comparison of S-ResTCN with other networks 

Database Model Accuracy AUC 

EMO-DB 

DNN+MLA 82.50% 82.96% 

3D CRNN 82.82% 83.11% 

ResNet34 92.41% 92.87% 

DCNN+SVM 95.10% 95.93% 

S-ResTCN(our) 96.62% 97.13% 

CASIA 

LeNet-5 85.82% 86.84% 

MTL-RNN 90.91% 91.55% 

3DCNN-BLSTM 91.08% 91.85% 

S-ResTCN(our) 92.35% 93.45% 

Since the classification accuracy score refers to the percentage of all correct classifications but does 

not reveal the potential distribution of response values, so to verify the reliability of the classification 

accuracy, the confusion matrix is chosen to calculate the classification accuracy under different sentiment 

states in this paper, and the results are shown in Figure 5. By comparing Fig. 5(a), it can be found that 

the accuracy of happy and scared in S-ResTCN under the EMO-DB database is slightly lower, reaching 

94% and 92%, while the accuracy of other emotions is relatively stable, between 96% and 99% range. 

By comparing Figure 5(b), it can be concluded that in the CASIA database, the accuracy rates of the 

emotional states of fear and sadness are lower, and the accuracy rates of the neutral and surprised states 
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are the highest, reaching 94%. It further proves that the S-ResTCN network proposed in this paper can 

better process the emotion information in speech features and improve speech emotion recognition 

accuracy. 

 
(a) Confusion matrix under EMO-DB database 

 
(b) Confusion matrix under CASIA database 

Figure 5: S-ResTCN network obfuscation matrix  

5. Conclusion 

In this paper, the 128-dimensional MFEZ fusion acoustic feature set is proposed by combining the 

complementary advantages of rhyme features in terms of over-zero rate, energy, fundamental frequency, 

and MFCC features in speech emotion recognition; to improve the speech emotion recognition accuracy, 

an S-ResTCN network is designed and built. The model introduces the correlation between feature 

elements and adaptively reassigns weights to the depth feature map based on the differences in the 

emotional information carried by different types of features, so that the generated depth feature map 

incorporates both the internal dependency relationship between feature elements and the differences in 

the emotion contained in the features, thus maximizing the analysis and modeling of the emotional 

elements in acoustic features.  
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