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Abstract: In this paper, a new relaxed second-order total generalized variational model is proposed for 
image denoising. In this model, the regularization term is a combination of a gradient operator and 
weighted divergence operator, while the data fidelity terms we used is l2-norm. The weighted divergence 
operator in the regularization is used to adjust the higher-order smoothing term, which can reduce the 
computational complexity and guarantee the discrete accuracy. Moreover, the Augmented Lagrangian 
algorithm, which produced several closed form solutions is used to solve the proposed RTGV method. 
Then we applied the denoising model to both gray and color image denoising, and performed numerous 
experiments. Our algorithm is discussed from several aspects, including influence of parameters, 
numerical discretization and comparisons with other methods. Numerical experimental results 
demonstrate that this technique has the significant advantage in preserving image features and can 
effectively prevent the staircase artifacts when compared to several other classical existing based 
methods. 
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1. Introduction 

Image denoising is a fundamental problem in the field of image processing, which provides the basis 
for the subsequent segmentation and recognition. Generally, the images acquired in nature are often noisy 
due to the influence of imaging devices or transmission elements, and image denoising aims to restore 
clean or original images from corrupted ones, which can be expressed by a mathematical formula as 
follows: 

f = u + n  (1) 

where f represents the noisy image, which is transformed by the contamination of clean images u, 
and n represents the random noise like Gaussian noise. 

Image denoising is a crucial fundamental research topic. For restoring the clean original image, 
various methods have been presented such as local based method [1, 2, 3], variational based method [4, 
5, 6, 7, 8, 9, 10, 11], learning based method [12] and recently deep learning based method [13, 14, 15, 
16]. In the paper, we focus on a new variational based technique.  

In 1992, Rudin, Osher and Fatemi first proposed the following classic image denoising variational 
model (TV), which uses the total variable component to transform the image denoising problem into a 
extremum problem by solving the energy functional. 

TV(𝐮𝐮) = sup{∫ 𝐮𝐮div(𝐯𝐯)𝑑𝑑𝑑𝑑|𝐯𝐯 ∈ ℂ𝑐𝑐1(𝛺𝛺), ‖𝐯𝐯‖2,∞Ω ≤ 1} = ∫ |∇𝐮𝐮|Ω 𝑑𝑑𝑑𝑑  (2) 

The success of the total variation regularization (TV) model lies in its ability to remove noise while 
maintaining the original unique features of the image. However, this regularization also has a known 
drawback in that it leads to staircase effect that transforms the smooth regions into piecewise constants. 
To solve this problem, various weighted total variation regularization has been developed [11, 17], which 
has the following form:  

TV𝜙𝜙(𝐮𝐮) = ∫ 𝜙𝜙Ω (𝑘𝑘)|∇𝐮𝐮|𝑑𝑑𝑑𝑑  (3) 

In addition, Bredies et al. considered a more general total variation method in [18], which is named 
generalized variation (TGV).  
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TGV𝛼𝛼𝑘𝑘(𝐮𝐮) = sup{∫ 𝐮𝐮Ω div𝑘𝑘𝐯𝐯𝑑𝑑𝑑𝑑|𝐯𝐯 ∈ ℂ𝑐𝑐𝑘𝑘(Ω,Sym𝑘𝑘(ℝ𝑑𝑑)), ‖div𝑙𝑙𝐯𝐯‖2,∞ ≤ 𝛼𝛼𝑙𝑙 , 𝑙𝑙 = 0,⋯ ,𝑘𝑘 − 1}  (4) 

where Symk(ℝd)  represents the k-order symmetric tensor space in ℝd , lα are fixed positive 
parameters. Actually, when k = 1, Eq. (4) equals to TV. When k = 2, Eq. (4) has the following form: 

TGV𝛼𝛼2(𝐮𝐮) = min
𝐯𝐯
𝛼𝛼1 ∫ |Ω ∇𝐮𝐮 − 𝐯𝐯|𝑑𝑑𝑑𝑑 + 𝛼𝛼0 ∫ |Ω ℰ(𝐯𝐯)|𝑑𝑑𝑑𝑑  (5) 

where ℰ(v) = 1
2

(∇v + ∇vT) denotes the symmetric derivative operator. 

The TGV model has far-reaching implications in field of image restoration [9, 10, 19, 20]. However, 
the second term  ℰ(v) contains mixed partial derivatives, which involve computational complexity. 
Moreover, the discretization of these mixed partial derivatives is more complex, and it is difficult to 
guarantee the accuracy. Learning from the research on 3d mesh [21], it considers using famous 
divergence operator to approximate the symmetrized derivative operator  ℰ(v).  As known, the 
divergence operator and its variant Laplace operator have been successfully used in various fields [5, 6, 
7, 19, 22], due to simple to calculate and can effectively reduce the complexity of the algorithm. Besides, 
there have been many researches discussing about the discretization of these operators, which guarantee 
the theoretical support. 

Therefore, by introducing a weighted divergence operator, we consider a relaxed total generalized 
variation (RTGV) model, which can be reformulated as  

RTGV(∇𝐮𝐮) = min
𝐯𝐯

 𝛼𝛼1‖∇𝐮𝐮 − 𝐯𝐯‖1 + 𝛼𝛼0‖div(𝑤𝑤𝐯𝐯)‖1  (6) 

With the above RTGV model, we then consider an iterative image denoising method. Augmented 
Lagrangian method has been demonstrated effective in solving non-differential optimization problem. In 
addition, variable separation method is also useful for such problems. Numerical implementations 
indicates that the proposed model can effectively remove noise and prevent staircase artifacts while 
retaining distinctive features and structures. Besides, compared with other existing variational models, 
our method verifies the superiority in visually and quantitatively.  

This paper is organized as follows. In section 2, some notations are given for facilitate understanding. 
In section 3, we introduce the RTGV image denoising model and describe some details. Section 4 
presents the Augmented Lagrangian method for solving the proposed non-differential problem. In section 
5, we devoted our proposed method to image denoising experiments and discussed it in various aspects. 
Finally, we summarize our work and next steps in section 6. 

2. Notations 

For a given image f = �fij�:Ω → ℝ with η-channel, we represent the Euclidean spaceℝM×N×ηas U. 
The discrete gradient operator of U is a mapping ∇: U → V, where V = ℝM×N×η×2. Consequently, the 
divergence operator of V is written as div: V → U. 

For u ∈ U, the definition of ∇u as follows: 

(∇𝐮𝐮)𝑖𝑖𝑖𝑖 = �

∇𝑥𝑥𝑢𝑢1,  ∇𝑦𝑦𝑢𝑢1
∇𝑥𝑥𝑢𝑢2,  ∇𝑦𝑦𝑢𝑢2

⋯
∇𝑥𝑥𝑢𝑢𝜂𝜂 ,  ∇𝑦𝑦𝑢𝑢𝜂𝜂

�

𝑖𝑖𝑖𝑖

  (7) 

where i = 1,⋯ , M, j = 1,⋯ , N, the ∇x and ∇y are the partial derivatives in the x directive and the y 
direction, respectively. For discrete divergence operator div, we denote div(v) and div(wv) by 

(div(𝐯𝐯))𝑖𝑖𝑖𝑖 = �
𝜕𝜕𝑣𝑣11
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑣𝑣12
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝑣𝑣21
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑣𝑣22
𝜕𝜕𝜕𝜕

,⋯ ,
𝜕𝜕𝑣𝑣𝜂𝜂1
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑣𝑣𝜂𝜂2
𝜕𝜕𝜕𝜕

�
𝑖𝑖𝑖𝑖

, 

(div(𝑤𝑤𝐯𝐯))𝑖𝑖𝑖𝑖 = �𝜕𝜕𝑤𝑤1𝑣𝑣11
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑤𝑤1𝑣𝑣12
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝑤𝑤2𝑣𝑣21
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑤𝑤2𝑣𝑣22
𝜕𝜕𝜕𝜕

,⋯ , 𝜕𝜕𝑤𝑤3𝑣𝑣𝜂𝜂1
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑤𝑤𝜂𝜂𝑣𝑣𝜂𝜂2
𝜕𝜕𝜕𝜕

�
𝑖𝑖𝑖𝑖

.  (8) 

where w is a weight for capturing the sharp features of images. 

We also present the inner products for u1, u2 ∈ U, v1, v2 ∈ V and the discrete ∞-norms on U and 
V.  
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(𝐮𝐮1,𝐮𝐮2) = � (𝑢𝑢𝑘𝑘1 ,𝑢𝑢𝑘𝑘2)
1≤𝑘𝑘≤𝜂𝜂

,  

(𝐯𝐯1,𝐯𝐯2) = � (𝑣𝑣𝑘𝑘1,𝑣𝑣𝑘𝑘2)
1≤𝑘𝑘≤𝜂𝜂

,  

𝐮𝐮 ∈ 𝐔𝐔: ‖𝐮𝐮‖2,∞ = max
𝑖𝑖𝑖𝑖

�(|𝑢𝑢𝑘𝑘1| + |𝑢𝑢𝑘𝑘2| + |𝑢𝑢𝑘𝑘3|)𝑖𝑖𝑖𝑖
𝑘𝑘

,  

𝐯𝐯 ∈ 𝐕𝐕: ‖𝐯𝐯‖2,∞ = max
𝑖𝑖𝑖𝑖
�∑ (𝑣𝑣𝑘𝑘12 + 𝑣𝑣𝑘𝑘22 )𝑖𝑖𝑖𝑖𝑘𝑘 .  (9) 

3. RTGV image denoising method 

According to the above notations, the relaxed total generalized variational method RTGV can be 
expressed as follows 

RTGV(∇𝐮𝐮) = min
𝐯𝐯

 𝛼𝛼1‖∇𝐮𝐮 − 𝐯𝐯‖1 + 𝛼𝛼0‖div(𝑤𝑤𝐯𝐯)‖1 

= min 
𝐯𝐯
𝛼𝛼1 ∑ ∑ �(∇𝑥𝑥𝑢𝑢𝑘𝑘)𝑖𝑖𝑖𝑖2 + (∇𝑦𝑦𝑢𝑢𝑘𝑘)𝑖𝑖𝑖𝑖2𝑖𝑖𝑖𝑖

𝜂𝜂
𝑘𝑘=1 + 𝛼𝛼0 ∑ ∑ |𝑖𝑖𝑖𝑖

𝜂𝜂
𝑘𝑘=1 div(𝑤𝑤𝑘𝑘𝐯𝐯𝑘𝑘)𝑖𝑖𝑖𝑖|.  (10) 

where α1 and α0 are positive parameters.  

Devoted the above RTGV regularization term to image denoising, and incorporate the data fidelity 
term, we can get the following optimization problem:  

min
𝐮𝐮∈𝐔𝐔

 RTGV(∇𝐮𝐮) +
𝛽𝛽
2
‖𝐮𝐮 − 𝐟𝐟‖22 

= min
𝐮𝐮∈𝐔𝐔,𝐯𝐯∈𝐕𝐕

 𝛼𝛼1‖∇𝐮𝐮 − 𝐯𝐯‖1 + 𝛼𝛼0‖div(𝑤𝑤𝐯𝐯)‖1 + 𝛽𝛽
2
‖𝐮𝐮 − 𝐟𝐟‖22  (11) 

where β is a positive parameter to balance the two terms in the RTGV model.  

Since the relaxed model in (11) is non-differentiable, they are difficult to solve by conventional 
methods. The role of the augmented Lagrange method is to solve optimization problems under the 
equation constraint. Recently, variable splitting and augmented Lagrangian method (ALM) [23] have 
been proven to be very efficient for such non-differential problems [8, 24, 25, 26]. In the following, we 
give the details for solving (11) by the ALM. 

4. Algorithm Details 

Firstly, we introduce three auxiliary variables  p , and  q for converting (11) to the following 
constrained optimization problem:  

min
𝐮𝐮,𝐯𝐯,𝐩𝐩,𝐪𝐪

 𝛼𝛼1‖𝐩𝐩‖1 + 𝛼𝛼0‖𝐪𝐪‖1 +
𝛽𝛽
2
‖𝐮𝐮 − 𝐟𝐟||22, 

s. t.   𝐩𝐩 = ∇𝐮𝐮 − 𝐯𝐯,𝐪𝐪 = div(𝑤𝑤𝐯𝐯).  (12) 

Then, the augmented Lagrangian dual functional for the (13) can be written as:  

ℒ(𝐮𝐮, 𝐯𝐯,𝐩𝐩,𝐪𝐪; λ𝐩𝐩, λ𝐪𝐪) = 𝛼𝛼1‖𝐩𝐩‖1 + 𝛼𝛼0‖𝐪𝐪‖1 +
𝛽𝛽
2
‖𝐮𝐮 − 𝐟𝐟||22                             

+⟨λ𝐩𝐩,𝐩𝐩 − (∇𝐮𝐮 − 𝐯𝐯)⟩ +
𝑟𝑟𝐩𝐩
2
‖𝐩𝐩 − (∇𝐮𝐮 − 𝐯𝐯)‖22             

+⟨λ𝐪𝐪,𝐪𝐪 − div(𝑤𝑤𝐯𝐯)⟩ + 𝑟𝑟𝐪𝐪
2
‖𝐪𝐪 − div(𝑤𝑤𝐯𝐯)‖22         (13) 

It has been proven that the solution of (14) can be translated into the following saddle-point problem: 

max
λ𝐩𝐩,λ𝐪𝐪

 min
𝐮𝐮,𝐯𝐯,𝐩𝐩,𝐪𝐪

 ℒ(𝐮𝐮, 𝐯𝐯,𝐩𝐩,𝐪𝐪; λ𝐩𝐩, λ𝐪𝐪)  (14) 

To facilitate solving the above saddle-point problem, we divide (14) into five sub-problems.  
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u sub-problem: 

min
𝐮𝐮

 ⟨λ𝐩𝐩,−∇𝐮𝐮⟩ + 𝑟𝑟𝐩𝐩
2
‖p − (∇𝐮𝐮 − 𝐯𝐯)‖22 + β

2
‖𝐮𝐮 − 𝐟𝐟‖22  (15) 

v sub-problem: 

min
𝐯𝐯

 ⟨λ𝐩𝐩,𝐯𝐯⟩ + 𝑟𝑟𝐩𝐩
2
‖𝐩𝐩 − (∇𝐮𝐮 − 𝐯𝐯)‖22 + ⟨λ𝐪𝐪,−div(𝑤𝑤𝐯𝐯)⟩ + 𝑟𝑟𝐪𝐪

2
‖𝐪𝐪 − div(𝑤𝑤𝐯𝐯)‖22  (16) 

p sub-problem: 

min
𝐩𝐩

 α1‖𝐩𝐩‖1 + ⟨λ𝐩𝐩,𝐩𝐩⟩ + 𝑟𝑟𝐩𝐩
2
‖𝐩𝐩 − (∇𝐮𝐮 − 𝐯𝐯)‖22  (17) 

it has the following solution: 

𝐩𝐩𝑖𝑖𝑖𝑖 = �
(1 − 𝛼𝛼1

𝑟𝑟𝐩𝐩|𝒄𝒄𝑖𝑖𝑖𝑖|
)𝐜𝐜𝑖𝑖𝑖𝑖 ,    |𝐜𝐜𝑖𝑖𝑖𝑖 > 𝛼𝛼1

𝑟𝑟𝐩𝐩
|

0,                            |𝐜𝐜𝑖𝑖𝑖𝑖 ≤
𝛼𝛼1
𝑟𝑟𝐩𝐩

|
  (18) 

where cij = (∇u − v − λp
rp

). 

q sub-problem: 

min
𝐪𝐪

 α0‖𝐪𝐪‖1 + ⟨λ𝐪𝐪,𝐪𝐪⟩ + 𝑟𝑟𝐪𝐪
2
‖𝐪𝐪 − div(𝑤𝑤𝐯𝐯)‖22  (19) 

which has a unique closed form solution: 

𝐪𝐪𝑖𝑖𝑖𝑖 = �
(1 − 𝛼𝛼0

𝑟𝑟𝐪𝐪|𝐰𝐰𝑖𝑖𝑖𝑖|
)𝐰𝐰𝑖𝑖𝑖𝑖 ,   |𝐰𝐰𝑖𝑖𝑖𝑖 > 𝛼𝛼0

𝑟𝑟𝐪𝐪
|

0,                             |𝐰𝐰𝑖𝑖𝑖𝑖 ≤
𝛼𝛼0
𝑟𝑟𝐪𝐪

|
  (20) 

where wij = (div(wv) − λq
rq

). 

The u subproblem (15) and v subproblem (16) are quadratic problems, which can be solved directly 
with the fast Fourier transform or various numerical packages.  

The ALM algorithm is described in Algorithm 1. 

Algorithm 1 ALM for solving (15) 

1. Initialization 

1.1 λ𝐩𝐩−𝑘𝑘 = 0, λ𝐪𝐪−𝑘𝑘 = 0, 𝐯𝐯−𝑘𝑘 = 0, 𝑙𝑙 = 0, 𝜀𝜀 = 10−5; 

2. Repeat 

2.1 For fixed 𝐯𝐯𝑙𝑙−1,𝐩𝐩𝑙𝑙−1, compute lu by (15); 

2.2 For fixed 𝐮𝐮, 𝐩𝐩𝑙𝑙−1, 𝐪𝐪𝑙𝑙−1, compute lv by (16); 

2.3 For fixed 𝐮𝐮𝑙𝑙 , 𝐯𝐯𝑙𝑙 , compute lp by (18); 

2.4 For fixed 𝐯𝐯𝑙𝑙 , compute 𝐪𝐪𝑙𝑙 , by (20); 

2.5 Update Lagrange multiplier λ𝐩𝐩𝑙𝑙 , λ𝐪𝐪𝑙𝑙 : 

λ𝐩𝐩𝑙𝑙 = λ𝐩𝐩𝑙𝑙−1 + 𝑟𝑟𝐩𝐩�𝐩𝐩𝑙𝑙 − (∇𝐮𝐮𝑙𝑙 − 𝐯𝐯𝑙𝑙)�, λ𝐪𝐪𝑙𝑙 = λ𝐪𝐪𝑙𝑙−1 + 𝑟𝑟𝐪𝐪�𝐪𝐪𝑙𝑙 − div(𝑤𝑤𝐯𝐯𝑙𝑙)�  

Until (‖𝐮𝐮𝑙𝑙 − 𝐮𝐮𝑙𝑙−1‖2 < 𝜀𝜀 or steps > 500). 

5. Numerical Experiments 

In this section, we devoted our proposed RTGV method to image denoising experiments. We present 
in Fig.1 some of the images employed in this paper, which contains both gray and color images.  Our 
algorithm is performed in Window 10 and VS2022 on a computer with Intel(R) Core (TM) i5-7200 CPU 
@2.70GHz and 8GB memory (the other results are generated by MATLAB 2017)  
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Figure 1: Some of the test image. 

In the following, we will discuss our algorithm from multiple angles include discrete of differential 
operators, influences of parameters, and comparing with other typical existing variational methods. And 
then we evaluate these algorithms according to structure noise ratio (SNR) and structure similarity index 
measure (SSIM), the definitions (see [27] for details) are given in the following 

SNR𝑘𝑘 = 10 log10
‖𝒖𝒖−𝒖𝒖‖2

‖𝒖𝒖−𝒖𝒖�𝑘𝑘+1‖2
   (21) 

where u denotes the original image, u denotes the mean value of u and u�k+1denotes the denoised 
image. 

SSIM= (2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝑐𝑐1)(2𝜎𝜎xy+𝑐𝑐2)
(𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝑐𝑐1)(𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝑐𝑐2)

   (22) 

where x denotes the clean image, y denotes the denoised image; µx, µy being the mean values of x 
and y; c1, c2 are two constants for avoiding zero denominators during calculations; σx, σy and σxy are 
the variances of x, y and the covariance of x, y. 

5.1. Numerical Discretization 

For given image u = (uij) with size M × N. We define the periodic partial derivatives as follows: 

∇𝑥𝑥+𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖+1𝑗𝑗 − 𝑢𝑢𝑖𝑖𝑖𝑖 ,∇𝑦𝑦+𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑖𝑖+1 − 𝑢𝑢𝑖𝑖𝑖𝑖 , 

∇𝑥𝑥−𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖−1𝑗𝑗 ,∇𝑦𝑦−𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖−1.  (23) 

For p = (p1, p2), the divergence is defined by 

∇ ⋅ 𝑝𝑝 = div(𝑝𝑝) = ∇𝑥𝑥−𝑝𝑝1 + ∇𝑦𝑦−𝑝𝑝2.  (24) 

In addition, as the weight w in the second term of RTGV model plays important role in capturing the 
sharp features, it needs to be well defined. In our method, we give the definition of w = (wij) as follows, 
and plenty of experiments show that this definition is effective in filtering noise and restoring more sharp 
features and structures.  

 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒−
𝑑𝑑𝑖𝑖𝑖𝑖
2

2𝑑̄𝑑 ,𝑑𝑑𝑖𝑖𝑖𝑖2 = 𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥2 + 𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦2 , 

 𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥2 = (∇𝑥𝑥+𝑢𝑢𝑖𝑖𝑖𝑖)2 + ((𝑢𝑢𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖+1 + 𝑢𝑢𝑖𝑖−1𝑗𝑗 + 𝑢𝑢𝑖𝑖−1𝑗𝑗+1)/4)2, 

 𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦2 = (∇𝑦𝑦+𝑢𝑢𝑖𝑖𝑖𝑖)2 + ((𝑢𝑢𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖−1 + 𝑢𝑢𝑖𝑖+1𝑗𝑗 + 𝑢𝑢𝑖𝑖+1𝑗𝑗−1)/4)2, 

𝑑̅𝑑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑑𝑑𝑖𝑖𝑖𝑖2 �.  (25) 

where average(⋅) denotes the average value of the sum over all dij2. 

5.2. Parameters 

Our image denoising algorithms has algorithm parameter rp, rq,  which have impacts on the 
convergence speed of the algorithm. In addition, there are three model parameters α0,α1,β, which affect 
the quality of restoration.  
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Firstly, according to lots of experimental tests, α1, rp, rq, rz are fixed as α1 = 0.8, rp = 5, rq = 5. Fig. 
2 shows examples of different α1 = 0.2,0.4,0.6,0.8,1.0,1.2 with other parameters held constant. 
Furthermore, α0 impacts the sharp features. The larger the α1 is, the more sharp features are restored. 
α0 can be fixed by 1000 for images containing many sharp features, and by 0.5 for images with smooth 
regions.  

 
Figure 2: Denoising results of different α1 with other parameters fixed. 

Secondly, parameter β affects the effect of denoising. The smaller the β, the smoother the denoising 
result will be. However, it will be failed to restore image if the β is too large. Besides, for this parameter, 
we can not get it automatically, and need to tune it manually.  

5.3. Comparisons with other methods 

For proving the effectiveness of our method, we compare the proposed method with other variational 
methods, including Wang18 [3], TGV [18] and TC (Total Curvature)[11]. The results of Wang2018 are 
provided by the authors, and the other results we adjusted the parameters according to SNR and SSIM to 
get the best results.  

Figure 3 displays the denoising results of images with mixed features. As shown, both of these 
methods are effective in removing noise. However, the TC method produces staircase effects. By 
comparison, our method can effectively mitigate the staircase effects and recover more features. 
Furthermore, our method produces slightly larger SNRs and SSIMs, which further prove the priority of 
our method.  

 
Figure 3: Denoising results of images with many sharp features. 

Figure 4 shows the denoising results of some grayscale images. As observed, our method produces 
better results than the TC method both visually and in terms of the corresponding SNRs and SSIMs for 
each result. Furthermore, we also test the effect of different levels of noise on denoising, and the results 
are shown in Figure 5. In theory, the higher the noise level is, the more difficult it is to recover. We can 
see that the SNRs of the restored images keep decreasing with the noise level increasing. However, the 
results demonstrate that our algorithm can produce satisfying results for different levels of noise.  

To further demonstrate the robustness of our algorithm, we apply the algorithm to color images. The 
denoising results are shown in Figure 6. The results show that the SNRs and SSIMs of our algorithm are 
significantly larger than those of the TC method, and the visually restored images are closer to the original 
clean image.  

In addition, we also compare our method with the classical total generalized variation (TGV) method 
[18] and Wang2018 [3] in Fig. 7. As observed, all the four methods can filter the noise effectively. 
However, the TGV method blurs some features. There are some noise left in the result of Wang2018 [3]. 
The TC method smoothes out some details. By comparison, our method performs well, and the SNRs 
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and SSIMs further indicate the priority of our method.  

5.4. Computational costs  

In the experiments, we found that both the noise level and the choice of parameter β affect the 
convergence speed of the algorithm. Understandably, the higher the noise, the slower the convergence. 
Furthermore, the convergence speed will be slow if β is too small. According to our experiments, for a 
gray image with size 183×180, the CPU costs of our algorithm is about 4s. Generally, at a reasonable 
CPU cost, our method is able to recover more details than other methods.  

 
Figure 4: Denoising results of more gray images. 

 
Figure 5: Denoising results of images with different noise levels. The first row is the images with 

different noise levels, and the second rows are results produced by RTGV. 
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Figure 6: Denoising results of color images. 

 
Figure 7: Denoising results for MRI images. 

5.5. Limitation 

Our approach has been proven to be effective. However, it still has some limitations. Such as our 
method cannot recover some details of the image when the noise level is too high. In Fig. 8, we display 
denoising results for images with higher level noise by TGV, TC and our method. As shown, all the three 
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methods cannot get satisfying results. In contrast, our results are a little better than that of the other two 
methods. In addition, the parameters β and α0 cannot be computed automatically.  

 
Figure 8: Denoising results for higher level noise. 

6. Conclusion 

In this paper, we propose a new relaxed total generalized variation technique for image denoising. 
The proposed technique tries to simplify the classical TGV model by the weighted divergence operator, 
which can reduce the computational complexity and guaranteed the discrete accuracy. In addition, we 
have iteratively solved our relaxed total generalized variation image denoising method by augmented 
Lagrangian method. Our algorithms are discussed from influence of parameters, numerical discretization 
and comparisons with other classical variation methods. The experimental results show that compared 
with other variational models, the proposed method is more advantageous in maintaining structures 
information and alleviate most of staircase effect. In the next, we intend to extend this method to image 
segmentation and image inpainting. 
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