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Abstract: To address the challenges of excessive fault features and low identification accuracy in 
motor bearings, this paper proposes a bearing fault identification method integrating multilevel 
dimensionality reduction with Improved Bitterling Fish Optimization (IBFO)-optimized Variational 
Mode Decomposition (VMD) and Support Vector Machine (SVM). Specifically, Tent chaotic mapping 
is introduced to optimize BFO's initial population and mitigate local optima entrapment, while 
convergence parameters are refined to accelerate convergence and enhance robustness, and Cauchy 
variation is incorporated to improve local search capability. For VMD requiring tuning of 
decomposition layer count K and penalty coefficient α, IBFO optimizes these parameters to enhance 
decomposition performance, with features from optimal components forming eigenvectors subjected to 
multilevel dimensionality reduction. Furthermore, IBFO optimizes penalty factor C and kernel 
parameter g of SVM to boost recognition accuracy. Experimental results demonstrate 7.29% accuracy 
improvement through algorithmic parameter optimization and an additional 9.369% gain via 
multilevel dimensionality reduction, with simulations confirming its efficacy in enhancing bearing fault 
identification accuracy. 

Keywords: Bearings; Bitterling Fish Optimization; Multilevel Dimensionality Reduction; Fault 
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1. Introduction 

Electric motors serve as driving units for equipment and play critical roles across various 
industries[1]. Under continuous operation in harsh environments, even minor faults may lead to severe 
consequences. Therefore, real-time monitoring of motor conditions has become a research priority. 
Timely fault detection/diagnosis and preventive maintenance can reduce economic losses caused by 
motor failures and mitigate their severe impacts on industrial production[2][3]. Rolling bearings 
undergo continuous rotation during operation and are prone to damage, accounting for 45%–55% of 
rotating machinery failures[4]. Thus, the operational condition of rolling bearings directly affects motor 
safety and reliability[5]. Since bearing vibration signals enable early-stage anomaly detection and 
capture comprehensive low-to-high-frequency information, vibration analysis is essential for rolling 
bearing fault diagnosis. 

Early-stage faults typically exhibit weak vibration characteristics that are easily masked by noise. 
Such noise interferes with fault feature extraction, leading to misdiagnosis or missed detection. 
Extracting fault features while suppressing noise remains a key research challenge[6]. Researchers 
have developed vibration signal feature extraction methods with notable achievements: huang et al.[7] 
proposed Empirical Mode Decomposition (EMD), but this method suffers from end effects and mode 
mixing that compromise feature extraction. Wu Z.H. et al.[8] developed Ensemble Empirical Mode 
Decomposition (EEMD) by combining EMD with white noise statistical characteristics. While EEMD 
addresses some EMD limitations, the added noise increases computational load. Cai Xinyi et al.[9] 
introduced an improved composite interpolation envelope EMD method, but it lacks subsequent data 
processing and classification. Gilles J. et al.[10] proposed Empirical Wavelet Transform (EWT) to 
reduce computational complexity and accelerate decomposition. However, EWT may partition spectra 
suboptimally or excessively[11]. Dragomiretskiy et al.[12] established Variational Mode 
Decomposition (VMD) as a fully non-recursive model with significantly stronger robustness to 
sampling and noise. Nevertheless, VMD requires predefined parameters, and improper selection may 
cause over-decomposition or under-decomposition[13]. Shan Yuting et al.[14] optimized VMD 
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parameters using genetic algorithms but obtained suboptimal solutions due to weak local search 
capability despite strong global exploration. Liu Qiang et al.[15] optimized decomposition level K 
through energy ratio analysis but did not optimize the penalty factor α. 

Additionally, feature processing and fault identification remain necessary after VMD 
decomposition. Lei Chunli et al.[4] applied Convolutional Neural Networks (CNN) without feature 
preprocessing. Yatsugi Kenichi et al.[16] diagnosed motor faults via Support Vector Machine (SVM) 
using stator current features, but overlapping features reduced accuracy. Liu Xinya et al.[17] employed 
Principal Component Analysis (PCA) for dimensionality reduction, but its linear nature cannot handle 
nonlinear data structures. Liu Yunhang et al.[18] developed a Center Modified Projection (CMP) 
method combined with Improved Grey Wolf Optimization (IGWO)-SVM for bearing fault 
classification, optimizing SVM parameters and applying CMP dimensionality reduction, though VMD 
parameters were not optimized. Lida Zareian et al.[19] demonstrated through benchmark testing that 
Bitterling Fish Optimization (BFO) outperforms Grey Wolf Optimization and Whale Optimization 
algorithms.  

These studies confirm VMD’s effectiveness for vibration signal decomposition/noise suppression 
and SVM’s utility for bearing fault identification, yet both require parameter optimization. Moreover, 
nonlinear dimensionality reduction remains underexplored. Therefore, this paper proposes a bearing 
fault identification method combining multilevel dimensionality reduction with Improved BFO 
(IBFO)-optimized VMD-SVM. First, IBFO optimizes VMD decomposition level K and penalty 
parameter α to enhance decomposition performance. Second, vibration signals are decomposed using 
optimized VMD to extract effective components. Subsequently, multilevel dimensionality reduction is 
applied. Finally, IBFO optimizes SVM penalty factor C and kernel parameter g, with experimental 
validation. Results demonstrate the method’s efficacy in improving rolling bearing fault diagnosis 
accuracy. 

2. Theoretical Foundation 

2.1 Variational Mode Decomposition 

Variational Mode Decomposition (VMD) is an adaptive signal processing method that decomposes 
complex signals into several Intrinsic Mode Functions (IMFs). Each IMF represents a specific 
frequency component of the signal, enabling independent analysis of different frequency characteristics. 
The fundamental principles of VMD are as follows:  

The objective of VMD is to decompose the input signal f(t) into a sum of modal functions uk(t), 
each possessing a specific center frequency ωk. 

Each modal function uk(t) is obtained by solving the optimization problem in Equation (1):  
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αt  denotes the temporal gradient, δ(t) is the Dirac delta function, ∗ represents the convolution 
operation, and j is the imaginary unit. 

The sum of all modal functions should approximate the original signal: 
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K is the decomposition layer index, k is the current decomposition layer index, and f(t) is the input 
signal.  

To solve the optimization problem in Equation (1), Lagrange multipliers and a penalty term are 
introduced to construct the augmented Lagrange function: 
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α is a penalty parameter and λ(t) is the Lagrange multiplier. 

By solving the Lagrangian function in Equation (3), uk(t),ωk , and are iteratively updated until 
convergence is achieved. The resulting modal functions uk(t) represent distinct frequency components 
of the signal, with each corresponding to a center frequency ωk . This analysis confirms that the 
decomposition level K and penalty coefficient α constitute critical parameters in VMD.  

2.2 Support Vector Machine 

Support Vector Machine (SVM) is a supervised learning model for classification and regression 
analysis. In practical applications, it trains on collected bearing vibration data to find optimal decision 
boundaries separating different classes. The fundamental principles for linearly inseparable cases are as 
follows: 

To handle linearly inseparable data, slack variables  ξi and penalty factor are introduced, 
transforming the optimization problem into:  
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The Lagrange function for Equation (4) is constructed as: 
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According to the strong duality of convex optimization, it is transformed into a dual problem: 
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For nonlinear separable data, kernel function K�xi,xj� replaces the dot product yielding the dual 
problem: 
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The Gaussian radial basis function (RBF) kernel is defined as: 
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These steps demonstrate SVM's capability to handle both linear and nonlinear classification 
problems. The core lies in determining appropriate penalty factor C and kernel parameter g, where 
optimal parameter selection enhances classification performance and recognition accuracy. 
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2.3 Bitterling Fish Optimization 

Bitterling Fish Optimization (BFO) is a swarm intelligence optimization algorithm inspired by the 
behavior of bitterling fish, mimicking their collective intelligence in foraging, predator avoidance, and 
social interactions. 

Initial population is created: 

 ( ).= + −j
iF l u l r                                                 (12) 

The initial population is generated within a specified interval [l,u], where each dimension of the 
solution is determined by a random number r between 0 and 1. 

Each fish (solution) is evaluated using an objective function f. 

 ( )= j
iFittness f F                                               (13) 

In BFO, each fish explores the problem space to locate better oyster positions. Each fish operates 
autonomously, roaming the environment in search of oysters. When a fish identifies a target oyster, it 
moves toward it without interference from other fish. This behavioral pattern enables each fish to 
independently select and pursue the most suitable oyster. The oyster occupation status is represented as 
follows: 

 

( )
( )

1
. . .    

. . .    

δ

δ

+

+

∗

 + − ≤= 
+ − >

t t
i it

i t t
i i

J F F J F r P
F

J F F J F r P
                                     (14) 

The i-th solution's current position at time t and new position at t+1, respectively, is the optimal 
solution and a randomly selected oyster from the population. δ and r are random numbers between 0 
and 1, and J represents the step size or the rate at which fish move to evade or approach oysters.  

The decrease in parameter J over time can be interpreted as a natural phenomenon where increased 
successful mating among male fish leads to a gradual reduction in their activity levels. This reduced 
activity may occur because they no longer need to search for oysters as frequently, having already 
found mates. Thus, as J decreases, the fish tend to focus more on local search. To reduce parameter J, 
the following formula is used:  

1(1).( 1) (1) .cos( cos ( ( )))− + = − × 
 

J tJ t J t U t
Maxt                                 (15) 

J(1) is the initial step size and jump value for each fish; t is the current iteration count; Maxt is the 
maximum number of iterations; U(t) is a generated random sequence. 

Over time, to enhance exploration around the optimal solution, parameter P is gradually decreased 
to meet the condition r > P in Equation (14), expressed as follows:  
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Parameter a is a predefined exponent. 

Subsequently, the position updates for fish in escape, failure to capture an oyster, and reproduction 
behaviors correspond to Equations (17) and (18) as follows: 
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R is the distribution radius around the oyster, which decreases over iterations, and M represents the 
average position of the fish swarm, calculated using Equation (19):  
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Based on the fishing concept, the probability of losing a solution is given by: 
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By simulating bitterling fish behavior and employing probabilistic decision-making and iterative 
updates, the BFO algorithm combines global and local search in the solution space to ultimately find 
the optimal solution. It underscores the importance of initial population setup, adaptive step size, and 
strategies to avoid local optima.  

3. Parameter Optimization and Feature Dimensionality Reduction 

3.1 Improved Bitterling Fish Optimization Algorithm 

3.1.1 Initial Population Optimization 

The original BFO algorithm randomly generates an initial population of bitterling fish, which then 
searches the problem space for suitable mating oysters. If the initial population distribution is uneven, it 
can easily lead to local optima and reduce global search capability. Since chaotic mapping performs 
better than pseudo-random number generation, this study employs chaotic mapping to optimize the 
initial population. Commonly used chaotic sequence models include Cubic, Logistic, Sine, and Tent 
mappings, as shown in Figure 1. Among these, the Tent mapping produces more uniformly distributed 
sequences compared to others. This uniform distribution enhances population diversity, achieves better 
optimization performance with less computational time, avoids local optima, and improves the 
algorithm's ability to find global optimal solutions. 

 
(a) Cubic chaotic mapping    (b) Logistic chaotic mapping 

 
(c) Sine chaotic mapping     (d) Tent chaotic mapping 

Figure 1 Distribution of chaotic sequences 

3.1.2 Convergence Factor Optimization 

In the BFO algorithm, the convergence factor exhibits significant fluctuations in early iterations 
(Figure 2), which may destabilize the algorithm and affect convergence stability. In mid-to-late 
iterations, it decreases linearly at a slow rate, requiring more iterations to approach the optimal solution. 
To address this, this study optimizes the convergence factor by making it follow an exponential decay 
pattern. 

In the early stage, the optimized convergence factor remains relatively stable, helping the algorithm 
find optimal solutions more steadily and reducing initial oscillations. As iterations progress, the 
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convergence factor gradually decreases and approaches zero more smoothly, maintaining smaller step 
sizes in later stages. This prevents premature convergence or entrapment in local optima, significantly 
enhancing the algorithm's local search capability. The optimized position update formula is given in 
Equation (21): 

 
2(3 / )eω −= t T
                                                   (21) 

Among them, ω is the convergence factor value, t is the current iteration count, T is the total 
number of iterations. Equation (15) is replaced by Equation (21). 

 
Figure 2 Adaptive weighting curves 

3.1.3 Cauchy Mutation 

Optimization problems aim to find the optimal solution for a given objective function. Many 
optimization algorithms tend to get trapped in local optima or converge prematurely. The Cauchy 
distribution, a heavy-tailed distribution, enables large jumps in the search space. By applying the 
Cauchy mutation operator to perturb the current best solution, new candidate solutions can be 
generated, mitigating the risk of local optima. 

This study integrates the Cauchy mutation strategy into the BFO algorithm. The mathematical 
expression is as follows: 

 Cauchy(0,1)= + ×newbest best bestx x x                                  (22) 

xnewbest is the updated optimal solution, xbest is the current best solution, Cauchy(0,1) is the Cauchy 
factor. 

3.2 IBFO-Optimized VMD and SVM 

When applying VMD for fault signal decomposition, the decomposition results are significantly 
influenced by the number of modes K. An inappropriate K value may lead to unsatisfactory diagnostic 
outcomes. Additionally, the penalty factor α affects the smoothness of data and the sparsity of IMFs, 
necessitating proper adjustment of this parameter to achieve better decomposition performance. In 
SVM, the penalty factor C serves as a regularization term that balances fitting training data and 
preventing overfitting. Meanwhile, the kernel parameter g influences data partitioning and distribution. 
Therefore, selecting appropriate C and g parameters is crucial for improving SVM classification 
performance. 

To optimize VMD parameters (K and α) and SVM parameters (C and g), this study employs the 
Improved Bitterling Fish Optimization (IBFO) algorithm. The IBFO-based parameter optimization can 
effectively enhance the overall performance of fault signal decomposition and classification, thereby 
improving the accuracy and reliability of fault diagnosis. The specific implementation steps are as 
follows: 

Step 1: Initialize IBFO parameters, including parameter dimensions, value ranges, population size, 
and maximum iteration count.  

Step 2: Generate initial values for K, α, C, and g using chaotic mapping. 

Step 3: Perform VMD decomposition on the signal and conduct SVM training with cross-validation.  
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Step 4: Calculate the fitness value of decomposed components using cross-validation accuracy as 
the fitness metric. Update the optimal parameters if a better solution is found. 

Step 5: Terminate the process if reaching maximum iterations; otherwise, return to Step 2. 

3.3 Multi-Level Dimensionality Reduction 

As VMD-extracted optimal components often contain high-dimensional features that increase data 
complexity, a two-stage dimensionality reduction approach is adopted. First, Principal Component 
Analysis (PCA) is applied for initial dimensionality reduction by projecting data onto directions with 
maximum variance, preserving essential information while removing redundancy and noise. 
Subsequently, Uniform Manifold Approximation and Projection (UMAP) is employed to further reduce 
dimensions to 2D for visualization, capturing complex nonlinear relationships and detailed features 
[20]. 

Stage 1: Preliminary Dimensionality Reduction via PCA. 

The data samples are centered (∑ xii =0). A new orthogonal coordinate system is established, where 
each ωi is an orthonormal basis vector (‖ωi‖2=1, ωi

Tωj=0). By discarding less significant coordinates 
and reducing dimensions to d'<d, the projection of sample xi in the low-dimensional space becomes 
zi=�zi1;zi2;⋯;zid'�, where zij = ωj

Txi represents the j-th coordinate of xi. Reconstructing from yields 

x�i=∑ zij
d'
j=1 ωj=Wzi, where W is the orthonormal basis matrix. For the entire training set, the objective is 

to minimize the distance between all samples and the hyperplane, as expressed in Equation (23).  
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By rearranging Equation (23), we obtain: 
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∑ xixi
Tm

i  is the covariance matrix of the dataset, and ∑ xi
Txi

m
i  is a constant. Minimizing Equation (25) 

is equivalent to: 
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Using the Lagrange function and taking the derivative with respect to W yields: 

  
T λ=XX W W                                                   (27) 

Thus, we only need to perform eigenvalue decomposition on the covariance matrix. The obtained 
eigenvalues are sorted as λ1≥λ2≥⋯λd . Then, by setting a reconstruction threshold β, we select the 
minimum value that satisfies Equation (28):  
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The corresponding eigenvectors form W=(ω1,ω2,⋯ωd'), which constitutes the solution of principal 
component analysis. 

Stage 2: Final Dimensionality Reduction via UMAP. 

Define the metric space d as X×X∈R≥0. Given the input hyperparameter k, for each ωi, use the 
nearest neighbor descent algorithm to compute the k-nearest neighbor matrix for the set 
�ωii1,ωii2⋯,ωiik�. The distance is determined to the first nearest neighbor sample and the normalization 
factor σi:  
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In the high-dimensional space, the relationship between the initial point and other points can be 
represented by Equation (31): 
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Among them, W𝑖𝑖𝑖𝑖 represents the overall relationship, Wi|j describes the relationship between initial 
point and other points j, and Wj|i describes the relationship between initial point j and other points i. 
Equation (32) combines these into a unified topological representation while ensuring symmetry.  

In the low-dimensional space, the relationships between points are described by Equation (33): 
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Among them, hyperparameters a and b can adjust the clustering behavior of the mapped low-
dimensional data. 
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In practical applications, Equation (34) is curve-fitted based on the set hyperparameter min_dist. 

The low-dimensional embedding is optimized by minimizing the difference between the high-
dimensional and low-dimensional graphs. This optimization problem can be formulated using the 
cross-entropy loss function: 
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UMAP employs stochastic gradient descent to minimize the aforementioned loss function, adjusting 
the coordinates and in the low-dimensional space to make the structure of the low-dimensional graph as 
close as possible to that of the high-dimensional graph. 

3.4 Diagnostic Procedure 

First, the collected vibration signals are processed and decomposed into several modal components 
using VMD. Next, the optimal components are extracted from each modal component through 
envelope entropy, and their feature values are extracted and subjected to dimensionality reduction. 
Finally, IBFO is used to optimize SVM parameters to train the fault diagnosis model, achieving 
identification and diagnosis of bearing faults. The diagnostic flowchart is shown in Figure 3.  
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Figure 3 Diagnostic process 

4. Experimental Analysis 

4.1 Algorithm Comparison Test 

This paper selects six algorithms for comparison experiments: Grey Wolf Optimization (GWO), 
Particle Swarm Optimization (PSO), Sparrow Search Algorithm (SSA), Beluga Whale Optimization 
(BWO), BFO, and IBFO. The population size is set to 50, and the maximum number of iterations is 
500. Multimodal (F1, F2) and fixed-dimensional multimodal (F3, F4) test functions are selected to 
evaluate the global search performance and local search performance of the algorithms. Their 
expressions are shown in Table 1, and the test results are shown in Figure 4. 

 
(a) F1                                                      (b) F2 

 
(c) F3                                                    (d) F4 

Figure 4 Test results 

As can be seen from Figure 4, in F1 and F2, SSA has faster convergence speed with optimization 
accuracy of 10^(-5), while other algorithms have relatively slower convergence speed. However, 
IBFO's optimization accuracy improves as the number of iterations increases. In F3 and F4, IBFO 
achieves the fastest convergence speed when reaching the optimum compared to other algorithms, with 
higher convergence accuracy. By balancing global and local search, the algorithm not only improves 
convergence speed but also enhances convergence accuracy, proving the effectiveness of the 
improvement strategy and providing a solid foundation for using IBFO for parameter optimization. 
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4.2 Dimensionality Reduction Performance Analysis 

Table 1: Test Functions 

Name Function Dimension Optimum 

F1 

 

30 0 

F2 

 

30 0 

F3 
 

4 0 

F4 
 

2 3 

This experiment utilized the publicly available Case Western Reserve University (CWRU) dataset, 
comprising four groups of bearing drive-end vibration signals. The experimental data specifications are 
presented in Table 2. For each fault type, 120 samples were prepared, with each sample containing 
1,000 sampling points. For every sample, features listed in Table 3 were extracted through IBFO-
optimized VMD parameters, subsequently forming a feature matrix.  

Table 2: Case Western Reserve University Rolling Bearing Test Data Sheet 

Label Motor speed Fault diameter Fault category Data 
1 1797  Normal 97.mat 
2 1797 0.007 Inner ring 103.mat 
3 1797 0.007 Rolling elements 118.mat 
4 1797 0.007 Outer ring 130.mat 

Table 3: Characterization parameter table 

Number Features Number Features 
1 Min 6 Kurtosis 
2 Max 7 Root mean square 
3 Average  8 Crest factor 
4 Variance 9 Pulse factor 
5 Peak-to-peak 10 Margin factor 

The high-dimensional feature matrix underwent dimensionality reduction using PCA, t-SNE, 
UMAP, and PCAUMAP respectively. For t-SNE, the algorithm was configured with exact computation 
mode and Mahalanobis distance metric. Both UMAP and PCAUMAP were set with a target embedding 
closeness of 0.1 and Mahalanobis distance metric. All four methods generated 2-dimensional 
visualizations, as shown in Figure 5.  

As shown in Figure 5(a), PCA exhibits severe aliasing between categories 2 and 3 with poor 
separation. Category 1 shows compact clustering while category 4 appears scattered. Figure 5(b) 
demonstrates that t-SNE achieves better separation than PCA, though minor aliasing persists between 
categories 2 and 3, with clusters being relatively dispersed. In Figure 5(c), UMAP yields superior 
clustering for categories 1 and 4, but category 2 and 3 clusters show partial aliasing with indistinct 
boundaries. Figure 5(d) reveals that PCAUMAP delivers optimal clustering results: only two instances 
of category 1 are misclassified into category 2, and six instances of category 4 appear in category 3. 
Other categories show significant inter-cluster distances with clear separation, indicating effective 
preservation of global information and extraction of high-dimensional nonlinear features while 
maintaining excellent clustering performance.  
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(a) PCA                                                          (b) TSNE 

 
(c) UMAP                                                            (d) PCAUMAP 

Figure 5 Results of dimensionality reduction 

4.3 Dimensionality Reduction Comparison Experiment 

Experimental data from Table 2 were processed through IBFO-optimized VMD parameters to 
extract Table 3 features, forming a feature matrix. After dimensionality reduction, samples were 
randomly split (80% training, 20% testing) for SVM model training and fault classification. 
Classification results are shown in Figure 6.  

 
(a) PCA-SVM                              (b) TSEN-SVM 

 
(c) UMAP-SAM                 (d) PCAUMAP-SVM 

Figure 6 Classification results of confusion matrix 

Figure 6(d) indicates that PCAUMAP-based classification achieves 98.9583% accuracy, with only 
one instance of true category 1 misclassified as category 2. This represents a 2.0833% absolute 
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improvement over UMAP and 33.3333% over PCA, confirming that PCA-to-UMAP sequential 
reduction better preserves high-dimensional information and enhances inter-class discriminability. 

4.4 Fault Recognition Accuracy Comparison 

To validate the proposed diagnostic model, Table 4 compares accuracy across methods 
with/without parameter optimization and dimensionality reduction: 

Table 4: Fault Recognition Accuracy of Different Methods 

Number Method Accuracy% 
1 VMD-SVM 73.9583% 
2 BFO-VMD-SVM 82.2917% 
3 IBFO-VMD-SVM 89.5833% 
4 IBFO-PCAUMAP-VMD-SVM 98.9523% 

As evidenced by Table 4, Group 1 exhibits the lowest accuracy (73.9583%), indicating that using 
VMD and SVM alone yields limited feature extraction and classification performance. Group 2 
achieves improved accuracy (82.2917%) through BFO-optimized VMD and SVM parameters, 
confirming that optimized VMD more effectively extracts discriminative features and enhances SVM 
performance. Group 3 demonstrates IBFO's superior optimization capability compared to conventional 
BFO. Group 4 shows a 9.369% absolute accuracy gain over Group 3, proving that integrating 
multilevel dimensionality reduction with optimization algorithms significantly enhances classifier 
performance and achieves high recognition accuracy.  

5. Conclusions 

This paper proposes a bearing fault identification method integrating PCAUMAP with IBFO-
optimized VMD-SVM parameters to address low modal recognition accuracy and global feature loss. 
Key conclusions: (1) IBFO incorporating Tent mapping, convergence factor optimization, and Cauchy 
mutation effectively optimizes VMD/SVM parameters. This enhances modal extraction and increases 
recognition accuracy by 7.29%. (2) For high-dimensional features, PCA retains maximum-variance 
components to reduce noise, while UMAP preserves local neighborhoods and global structures. 
Sequential PCA-to-UMAP reduction achieves efficient dimensionality reduction and improves 
accuracy by 9.369%. (3) The integrated PCA-UMAP-IBFO-VMD-SVM methodology processes high-
dimensional vibration signals effectively, achieving 98.95% accuracy and enhanced robustness in fault 
diagnosis. 
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