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Abstract: Advances in technology and the Internet have brought about the era of big data, and massive 
amounts of data have swept through almost every industry, especially in the medical field. With the 
penetration and expansion of information, countries around the world have started to build databases 
to explore the mysteries of health. In addition, the application of data storage, mining and analysis 
technologies in medicine has led to the involvement of biological big data in the study of many diseases. 
Long-term practice has revealed that combining biomacro data to analyze diseases can lead to more 
beneficial prevention and treatment options than conventional methods, which is a more favorable 
choice than ordinary methods. This review will present the progress of extensive data in medical 
research from the perspective of biological big data and neurodegenerative diseases (NDD), tumor, 
diabetes, and other applications, as well as the challenges and future directions of big data in 
medicine. 

Keywords: Big data, Precision medicine, Artificial intelligence, Biomarkers 

1. Introduction 

The growing number of studies shows that big data has shown its great value in all aspects of 
human life. There are five 'Vs' in big data, compared to traditional data: volume, variety, velocity, 
veracity, and value[1]. It is generally recognised that biological data fall into several categories, such as 
genomics, transcriptomics, proteomics, and metabolomics[2]. Biomedical data is entering the age of big 
data due to technological advances in genome sequencing and omics analysis. Therefore, biological big 
data has the characteristics of both big data and biological data. It has been hypothesized that big data 
in biomedicine will provide a platform for future biomedical research and personalized medicine 
studies[3]. The stage of human exploration has evolved from individual to group, and biological big data 
is the main trend of future life science development. 

With the continuous progress and development of biological big data, human beings have opened a 
new chapter in the field of medical research and clinical applications. By applying multi-omics 
sequencing and machine learning (ML), big data analytics for medicine and healthcare enables faster 
disease surveillance, treatment decisions, and outcome prediction[4]. There is reason to believe that this 
approach to improving precision medicine can lead to lower cost, higher quality, and more effective 
health care. In 2003, the Human Genome Project (HGP) sequenced 92% of the human genome for the 
first time, which greatly improved our understanding of genes and their regulatory elements and helped 
researchers identify targets for numerous drugs[5]. The famous study published by the American 
consulting firm McKinsey in May 2011 marked the dawn of the era of big data 
(https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/big-data-the-next-frontier-for-in
novation). Since then some experts have been convinced that all the problems of modern medicine can 
be solved by big data. By 2022, the T2T Consortium has completed the remaining 8% of the HGP, and 
these fragments contain important immune response genes. It helps humans adapt to and fight off viral 
and bacterial infections, and also helps predict drug responses[6]. The ability to make initial inferences 
about the treatment of human diseases by analyzing the genomes of just a few people is the beauty of 
big data. 

Today, the results generated by biological big data are in turn contributing to this trend, which acts 
as a perpetual motion machine for the advancement of global medicine. The era of big data allows a 
more comprehensive understanding of the development of various physiological activities and 
pathological phenomena in the human body, so as to make precise judgments about diseases for the 
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benefit of all human beings on health. In this review, we present research advances in biological big 
data regarding diseases such as neurodegenerative diseases (NDD), tumor and diabetes for better 
prevention, diagnosis and treatment of diseases. 

2. Biological Big Data and NDD 

2.1 Characteristics of NDD 

As populations age in many countries, the World Health Organization (WHO) predicts that 
neurodegenerative diseases will overtake cancer as the second most lethal disease after cardiovascular 
disease by 2040[7]. The prevalence of various types of NDD should not be underestimated (Table 1), 
but the etiology of these diseases is still unclear. In 2004, Ross and Poirier of Johns Hopkins University 
showed that protein misfolding and aggregation are common features of NDD[ 8] and that their 
occurrence may be due to specific protein-protein interactions. In addition, other scientists have 
successively demonstrated that axonal degeneration[ 9] and neuronal death[ 10] are also important 
features.  

The symptoms of Alzheimer's disease (AD)[11], Parkinson's disease (PD)[12] and amyotrophic lateral 
sclerosis (ALS)[13] often do not appear until there is a significant loss of neurons, but by that time 
irreparable damage has been done to the patient, so early diagnosis of neurodegenerative diseases is 
essential. While conventional medicine has many challenges in accurately diagnosing 
neurodegenerative diseases that require trained specialists, artificial intelligence (AI) helps us to more 
accurately classify multiple diseases. It is known that the accumulation of abnormal tau proteins in the 
brain is a feature of AD and is also associated with the pathogenesis of more than 20 other NDD[14]. At 
the time of 2019 researchers from Icahn School of Medicine at Mount Sinai developed an AI platform 
capable of identifying neurogenic fiber tangles with high accuracy directly from digitized images[15]. 
This is the first framework for evaluating NDD in neuropathology using deep learning algorithms from 
large-scale image data. By combining Mask Regional-Convolutional Neural Network (Mask R-CNN) 
with GPU computing, scientists were able to collect all relevant data from images in seconds and thus 
identify and classify neurodegeneration in nematodes[16]. Although this deep learning approach to 
identifying degenerated neurons has not been validated in humans, it is a new and possible model. 

Table 1: Statistics on the prevalence of various types of neurodegenerative diseases. 

Type Disease numbers per 
100 000 people time (year) Link 

Acute NDD epilepsy 327 2016 doi:10.1016/S1474-4422(18)30499-X 

Chronic 
NDD 

Alzheimer's disease 682.48 2019 http://ghdx.healthdata.org/gbd-results
-tool 

Parkinson's disease 94 2016 doi:10.1016/S1474-4422(18)30499-X 
Huntington's disease 2.7 2016 doi:10.1159/000443738 
amyotrophic lateral 

sclerosis 4.5 2016 doi:10.1093/ije/dyw061 

Spinocerebellar 
Ataxias 1-5 2014 doi:10.1159/000358801 

Today, we live in a big data world where a lot of information is now widely shared. Using brain 
scan data from the ENIGMA Consortium[17], which contains data from more than 10,000 people and 
more than 20,000 rats, researchers analyzed human hippocampal size and the corresponding genes that 
regulate hippocampal size in 2014. These genes were then matched with mouse genes from the Mouse 
Brain Library database, which contains data from more than 10,000 human and 20,000 mouse brains, 
to identify a new gene, MGST3, that regulates hippocampal size in both mouse and human brains, 
another marker for the highest risk of developing NDD[18]. When University of Edinburgh researchers 
analyzed the molecular and morphological diversity of 5 billion excitatory synapses throughout the 
mouse brain from birth to old age in 2020, they mapped the lifelong changes in synapses throughout 
the mouse brain[19]. This mapping will provide clues to how the brain ages and reveal the different 
ways in which brain regions age. By mining big data, we can gain a lot of knowledge to advance our 
understanding of diseases and ultimately improve treatment for diagnosis. 

2.2 Generation of Alzheimer's Disease 

As we know from Table 1, AD is the largest category of NDD According to a cross-sectional study 
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in 2020, the prevalence of Alzheimer's disease in China is 5.56% in the elderly population over 65 
years of age, and there are about 9.83 million AD patients, ranking first in the world[20]. It seriously 
endangers the health of the elderly and even deprives patients of their ability to take care of themselves, 
causing serious mental and economic burdens to their families and society. AD causes irreversible 
damage, so early diagnosis is especially important. Researchers at Boston University School of 
Medicine (BUSM) have developed an algorithm to accurately predict and diagnose the risk of AD. 
Combining brain MRI, cognitive impairment measurement scales, and age and gender data, and 
validated in three independent cohorts[21]. In retrospect, Alois Alzheimer first discovered plaques and 
protein deposits in the brains of AD patients when he dissected them more than 100 years ago, but at 
that time it was still unclear what the substances were. It was not until the 1980s that Glenner and 
Wong discovered and isolated beta amyloid (Aβ) in the brains of Alzheimer's patients[22], which opened 
up the study of Aβ at the molecular level. Since then, the "amyloid hypothesis" has occupied an 
important place in the field of Alzheimer's disease research. More than 30 years after the discovery of 
amyloid precursor protein (APP), the various forms of β-amyloid present have been revealed and 
updated[23,24,25]. For example, oligomers (AβOs) produced by Aβ in an acidic environment induce Tau 
protein mismatches[26], which may promote the development of AD. In addition, Aβ56 has fallen into 
question because almost no one has been able to replicate the experiments on oligomeric Aβ56 for 16 
years and the related drugs have little efficacy[27]. In contrast, as a monomeric Aβ42, scientists recently 
looked at its structure in the human brain for the first time and found that its two types differ in 
distribution and composition in emanating AD versus familial AD[28]. There is also a newly proposed 
structure called PANTHOS, which explains the temporal and spatial relationship between autophagy 
and amyloid[29] (Figure 1). Here, it is important to mention the academic misconduct that rocked the 
medical world when a seminal paper on Aβ56 in AD 16 years ago turned out to be the result of image 
manipulation. Schrag commented that "you can't cure a disease by cheating, biology doesn't care"[30]. 
Technological advances should be the mysteries we use to get to the truth, and the biggest victims of 
falsification can only be innocent patients. But fortunately, the vast majority of our researchers are 
using technology to do what is right for human health, and it is this constant questioning and thinking 
that drives us forward. 

 
Figure 1: β-amyloid has been a hot topic in Alzheimer's disease research since its discovery. 

2.2.1 Genetic Mutations 

Increasingly, AD is being studied at the genetic level. Members of the International Genome 
Alzheimer's Project (IGAP) analyzed genetic data from more than 94,000 individuals, revealing five 
new risk genes for Alzheimer's disease and identifying 20 other known genes[31]. In addition, a 
researcher identified 19 families in Utah with a higher-than-normal frequency of AD and then 
performed whole-genome sequencing of two cousins from each of these families. The results identified 
11 rare genetic mutations spanning 10 genes, including ABCA7 and TTR, previously unknown 
mutations in known Alzheimer's disease risk genes[32]. With these findings, it is believed that future 
researchers can study these genetic centers in greater depth to reveal disease mechanisms and potential 
drug targets. 

2.2.2 Epigenetic 
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Without altering the DNA sequence, epigenetic traits can be modulated by environmental factors 
and personal habits. In the first large-scale adoption of the Whole Epigenome Association Study 
(EWAS), the researchers analyzed 708 donated brain samples and found that changes in DNA 
methylation may play a role in the onset of AD[33]. Another study reveals that histone H3K27ac and 
H3K9ac modifications affect AD-related pathways through transcriptional and chromatin gene 
dysregulation by analyzing multi-omics data from human brain samples, including transcriptome, 
proteome and epigenome[34]. This confirms the potential value of epigenetics in the treatment of early 
AD, and future research needs to comprehensively and systematically explore the intrinsic relationship 
between different epigenetic modifications in the developmental process of AD. 

2.3 Other NDD 

The Neurodegenerative Diseases Variation Database (NDDVD) has included 616 DNA variants in 
43 genes associated with PD, but the exact genetic composition remains unknown[35]. Therefore, future 
studies should use these associated genes as a starting point to find the causal genes behind them. A 
new idea was recently proposed. In this study, a systematic review of all known risk loci for 
Parkinson's disease was performed using bioinformatics tools in conjunction with multiple multiple 
databases[36]. Revisiting previous results through the latest technology can give us a full and more 
comprehensive understanding of known biomarkers. However, biomarkers often need to be performed 
at specialized medical facilities and do not meet the requirements for early diagnosis or continuous 
follow-up of disease progression. For this reason a team of researchers at MIT has developed an AI 
model that can detect Parkinson's disease simply by reading a person's breathing characteristics[37]. 

Genome-wide association studies (GWASs) of ALS have identified several genetic risks. However, 
these changes occur in <10% of ALS patients[38], so there may be a large number of ALS risk genes that 
have not yet been identified. Using the AI biologic target discovery platform PandaOmics™, 
researchers have identified many previously unreported potential therapeutic targets for amyotrophic 
lateral sclerosis (ALS), 18 of which have also been validated in animal models[39]. The combination of 
AI and life sciences research represents a new trend that promises to significantly reduce the cost and 
time of drug development. 

Huntington's disease (HD) is a rare NDD, and over-repeated CAG variants on chromosome 4 are 
the main cause of Huntington's chorea[ 40]. However, traditional short-read long gene sequencing 
technology is difficult to achieve accurate identification, while the long-read long sequencing platform 
can better identify duplicated tandem variants. Currently, the LinkedSV developed by Kai Wang's team 
can accurately identify various structural variants including inversions and deletions[41]. It also has the 
potential to greatly improve disease management by providing valuable data in the future as a genetic 
advisor to HD. Moreover, researchers from the University of Copenhagen, Denmark, analyzed more 
than 117,000 neurons to obtain the largest single-cell dataset of brain disease to date[42]. The newly 
discovered neurons may promote epileptogenesis and are therefore ideal therapeutic targets, but need to 
be validated on a functional level. 

Epilepsy has a predominantly childhood onset, so scientists combined clinical information with 
large-scale genomic data to discover associations between 11 characteristic manifestations of childhood 
epilepsy and specific genetic variants[43]. In addition, 816 patients, previously negative for sequencing 
of hereditary epilepsy, were re-clustered and analyzed through a big data cloud platform. This 
suggested a rare de novo variant of the CSNK2B gene in Chinese epilepsy patients[44]. As we know, 
epilepsy is caused when there is a sudden abnormal discharge of neurons in the brain, yet there are few 
advance warning signs that a seizure will occur. Daoud and Bayoumi developed an AI-driven model to 
predict seizures in this situation with an accuracy of 99.6% one hour before the onset of the 
condition[45]. 

2.4 Drug Development for NDD 

At present, there is no cure for neurodegenerative diseases, and many researchers are beginning to 
use computer-aided drug design (CADD) for drug screening and development, which has led to a 
significant reduction in the cost and time required to discover potent drugs[46]. The use of computers to 
simulate the docking between a target target and a drug candidate is equivalent to simulating in 
advance how the drug will work against NDD. It is certainly encouraging that the drug Riluzole, 
discovered using CADD, is the first drug to be approved by the Food and Drug Administration (FDA) 
for the treatment of ALS[47,48]. Along with the continuous improvement of the novel drug screening and 
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development platform, researchers have a great possibility to find targeted drugs based on the 
characteristics of the main molecular markers of NDD. 

3. Biological big data of cancer 

Table 2: As the era of personalized medicine progresses, the more comprehensive information we have 
about a patient's tumor, the more targeted and effective medical strategies we can adopt. 

Disease Research results Function References 

breast cancer 

AI for cancer detectors improve the 
efficiency and accuracy of breast cancer 

screening detection. 

Diagnosis&Scr
eening Dembrower, Karin et al. 

Estrogen receptor (ER) expression 
influences the prognostic value of 

certain biomarkers in breast cancer. 
Prognosis Osako, Tomo et al. 

Revealing tumor heterogeneity and 
progression characteristics for accurate 

staging of breast cancer. 
Subtypes Ali, H Raza et al. 

non-small-cell 
lung cancer 
(NSCLC) 

Deep learning model based on 
18F-FDG-PET/CT to select the best 
treatment option for NSCLC patients 

Therapeutic 
Targets Mu, Wei et al. 

hepatocellular 
carcinoma 

(HCC) 

HCC patients receiving the combination 
therapy Lenvatinib and Pembrolizumab 

combination had an improved 
patient-year survival rate of 67.5%. 

Combination 
therapy Finn, Richard S et al. 

A class of viral exposure characteristics 
can identify HCC patients prior to 

clinical diagnosis. 
Diagnosis Liu, Jinping et al. 

Dissects the ecological heterogeneity 
and immune microenvironment of HCC 

to facilitate the study of 
immunotherapeutic targets and 

biomarkers. 

Therapeutic 
Targets 

Sun, Yunfan et al. 

Zhang, Qiming et al. 

skin cancer 

A framework for image based 
diagnostic AI research was constructed 

using skin cancer as a vehicle. 
Diagnosis Tschandl, Philipp et al. 

The largest genome-wide analysis of 
uveal melanoma found that deletion of 

BAP1 predicted metastasis. 

Predicting 
cancer 

metastasis 
Karlsson, Joakim et al. 

drug 
Development 

DrugCell can predict the response to any 
drug in any cancer and design effective 

combination therapies. Drug effects 

Kuenzi, Brent M et al. 

combFM allows large-scale systematic 
prediction of drug combination effects 

in human tumor cell lines. 
Julkunen, Heli et al. 

In 2008 U.S. scientists successfully sequenced the genome of a patient with acute myeloid leukemia 
(AML) for the first time, identifying 10 genetic mutations that may be associated with AML[49], 
groundbreaking work that laid the foundation for sequencing the cancer genome on a large scale and 
revealing the secrets of cancer. By analyzing data from more than 4.8 billion samples from 69 countries 
around the world, the Johns Hopkins University scientists demonstrated that DNA replication error 
mutations are the primary cause of two-thirds of the mutations that occur in human cancers, validating 
the idea that the occurrence of most cancers is actually random, as they suggested in Science two years 
ago[50,51]. But looking for hidden orderly patterns in seemingly completely random disorder is the 
beauty of scientific research. The Spanish team conducted an extensive computational analysis of 
28,076 tumor samples from 66 cancers and identified 568 cancer driver genes[52]. The study provided 
the most complete panorama to date of how these cancer driver genes drive tumor development, an 
endeavor of cancer genomics research. 2 years later scientists in the UK identified 58 new mutational 
signatures by analyzing cancer and matched normal sequencing data from 12,222 patients[53]. Genomic 
sequencing studies of multiple cancer types to reveal heterogeneous mutational information will 
enhance our understanding of mutational signatures and cancer development in general, and enable 
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reliable precision medicine. 

At the beginning of the 21st century, the study of molecular classification of breast cancer has 
become a hot topic and the corresponding prognosis and treatment varies with the subtype[54]. 20 years 
later it has become possible to combine protein profiling imaging with multidimensional genomics in a 
way that allows precise staging of breast cancer[55]. This not only explains tumor heterogeneity 
horizontally, but also dissects tumor progression characteristics vertically. In the same year, a study 
used a commercially available AI cancer detector to diagnose patients' mammography and found that 
the instrument improved the efficiency and accuracy of breast cancer screening detection[56]. This will 
greatly reduce the workload of radiologists. Through the analysis of transcriptome data of 3071 breast 
cancers and gene expression of 42 age-related proteins in 5001 breast cancers and 537 normal breast 
tissues, the expression of estrogen receptor (ER) in breast cancer patients influenced the value of 
certain biomarkers for prognostic judgment[57]. Therefore, the authors suggest that the effect of age as 
well as ER expression should be taken into account when determining prognosis in clinical work (Table 
2). 

There are two main treatment strategies used in non-small cell lung cancer (NSCLC), tyrosine 
kinase inhibitors (TKI) and immune checkpoint inhibitors (ICI). It is well known that the right 
treatment for the right disease is the only way to achieve the right efficacy and the greatest health 
benefits for patients. According to the Moffitt Cancer Center study, the selection of the best treatment 
for NSCLC patients can be achieved through a deep learning model based on 18F-FDG-PET/CT [58] 
(Table 2). 

While serum alpha-fetoprotein (AFP) is used to identify hepatocellular carcinoma (HCC), recent 
studies by Xinwei Wang's team at the National Cancer Institute have shown that a class of viral 
exposure signatures can identify patients with hepatocellular carcinoma (HCC) prior to clinical 
diagnosis and are superior to AFP[59,60]. single-cell sequencing is a powerful tool to study the cellular 
components of the tumor microenvironment and their Single-cell sequencing is a powerful tool for 
studying cellular components and their interactions in the tumor microenvironment, and has been 
widely used in a large number of tumor heterogeneity studies. Currently, single-cell sequencing has 
provided insights into the immune microenvironment, immune cell dynamics, microenvironmental 
reprogramming, clonal evolution, and immune evasion mechanisms in HCC. Some recent studies[61,[62] 
provide valuable data resources for hepatocellular carcinoma research by providing insight into the 
ecological heterogeneity and immune microenvironment of HCC, contributing to a deeper 
understanding of hepatocellular carcinoma pathogenesis and helping to develop more effective 
immunotherapeutic targets and biomarkers for hepatocellular carcinoma. With the combination of 
Lenvatinib and Pembrolizumab, 104 patients with HCC treated with this "cola" combination showed a 
significant improvement in patient survival cycle, with an annual survival rate of 67.5%[63] (Table 2). 

The image diagnosis of skin cancer by human-machine collaboration has been successfully 
applied[64]. In contrast, uveal melanoma belongs to is a rare but highly malignant skin cancer. Through 
the largest genome-wide analysis of uveal melanoma, it was found that deletion of BAP1 could predict 
cancer metastasis[65] (Table 2).  

The two software, DrugCell and combFM, after deep learning can predict the response of any 
cancer with drugs and design effective combination therapies[66,67] (Table 2). In addition, this study 
combines genome-wide fragmentation patterns and urinary cfDNA localization to successfully screen 
cancer patients[68]. Since the genome of cfDNA fragments can be stably distributed in urine, this 
non-invasive assay may in the future complement plasma testing as the basis for liquid biopsy methods 
for diagnosis and monitoring of cancer. 

4. Biological Big Data and Diabetes 

Through deep learning analysis, smartphones can detect signals from blood vessels to predict 
glycated hemoglobin[69]. This can be used as a stand-alone, non-invasive digital biomarker for diabetes. 
Using data from five global biobanks investigating genetic susceptibility to type 2 diabetes mellitus 
(T2DM) in a global study population of 1.4 million people, 558 independent genetic variants were 
identified and varied across people[70]. Although the study did not identify key variant genes, it is 
possible that a large number of accumulated variants are responsible for the increased risk of T2DM. 
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5. Other Applications of Biological Big Data 

5.1 Define Health and Disease 

Dwivedi, Sanjiv K et al. used deep learning to analyze GWAS data in a neural network that can 
discern gene expression patterns associated with disease and which are associated with health[71]. They 
can master the definition of health and the signals of disease. Researchers tested the levels of different 
metabolites in the urine of more than 1,500 people in the United States and found that using urine 
spectral characterization can measure dietary health in five minutes[72]. Based on this technique we 
understand the functional relationship between nutrients and health outcomes and can then personalize 
the right type of diet.  

With the aim of understanding how genes affect human health, researchers have delved into the 
switches or enhancers of genes that regulate the body. Now, researchers at the La Jolla Institute for 
Immunology have mapped enhancer sequences and how genes interact in several immune cells in 
3D[73]. This work improves understanding of the risk of diseases in individuals such as asthma, cancer, 
and even COVID-19. 

5.2 Biological Big Data for Non-Human Primates 

The average genetic similarity between humans and macaques is 93%[74]. Compared to other model 
animals, non-human primates have a significant advantage in the study of human diseases. A 
multinational team of researchers has developed the first whole-body organ cell atlas of the macaque, 
and the results have important implications for understanding the structural composition of organs, 
human diseases and the evolution of life[75]. The cellular composition of each organ is resolved, and the 
specific molecular features in each cell and the interactions with other cells can be refined. In addition, 
NHPCA (https://db.cngb.org/nhpca/) provides transcriptomes of all single cell types in each organ of 
non-human primates, and the current version includes the results of single cell visualization analysis of 
approximately 1.14 million cells in 45 organs of adult macaques. It provides the most comprehensive 
resource and tools for the study of human diseases and precision therapy. 

5.3 Epidemic Prediction 

In the field of public health, pandemic disease management is an important task that affects the 
health and even the lives of all human beings. The Google Flu Trends (GFT) product was launched by 
Google in 2008, and a year later it successfully predicted the spread of influenza A (H1N1) across the 
United States just weeks before the outbreak[ 76 ]. Because the software often had problems 
overestimating incidence, GFT was taken offline the year after researchers raised questions in 2014[77]. 
The root cause of this failure was that Google engineers did not take into account that search behavior 
could affect the predicted results, but opened up public health changes. Since then, various countries 
have developed infectious disease surveillance systems, among which BlueDot (https://bluedot.global/), 
a system from a Canadian company, has performed well in automatic surveillance of epidemics. If AI 
can be a better early warning mechanism for epidemics, it is not a bad way to carry out epidemic 
prevention mechanisms for health authorities in various countries. At the same time, these surveillance 
platforms need to face the test of public responsibility as well as open information. 

6. Conclusions and Challenges 

Based on the shared data, mining information from the data and transforming it into application 
value will become a new trend in the future development of scientific research biobig data. At present, 
biobig data technology mainly combines various biomics data and artificial intelligence deep learning 
models for analysis. With the improvement of living standards people's health care awareness is 
gradually awakening, bringing the demand for health and disease management. The realization of 
precision medicine depends on the accumulation of biological big data and the subsequent mining and 
interpretation of these data. 

Because large datasets may be freely available to anyone with an Internet connection, this new form 
of research puts people at risk of information harm in the form of privacy breaches or algorithmic 
discrimination[78]. The Institutional Review Board (IRB), which conducts ethical review of all types of 
biomedical research and experiments involving human subjects, is dedicated to protecting the rights 
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and welfare of human subjects who are recruited. Responsible big data research does not mean 
stopping research from being conducted. While regulating data security, protecting data justice is also 
necessary. Dencik et al.[79] propose that data justice should go beyond a relatively narrow focus on 
privacy and data security to seek ways to understand data that more explicitly engage issues of power, 
politics, inclusion, and interest. The advances that biological big data has brought to healthcare are 
evident, and in the face of problems we should address it in the future rather than deny the value of big 
data. We can promote the legislation of laws and regulations related to personal health information and 
privacy protection as soon as possible, and promote the data security technology to keep up with the 
times. In addition, multi-source health care big data are prone to bias, and the measurement methods 
and access to some information are difficult to know. Therefore, it is important to strictly control the 
quality of research and achieve standardization and standardization of data collection and processing. 
The regulatory network constructed by multi-omics is extremely complex and scattered, and how to 
integrate multi-omics information to form a systematic understanding is also one of the important 
challenges facing biological big data. 

Driven by both supply and demand, the era of biological big data has arrived in the pharmaceutical 
industry. Biological big data, as a means of scientific research, has been widely used in many fields 
such as clinical diagnosis, health insurance analysis, cancer research, health management, etc. There 
are endless possibilities for the data itself to be mined, and the value is immeasurable. In general, 
biological big data is a driving force for medical progress and an inevitable trend. 
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