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Abstract: Protein solubility is one of the momentous properties of a protein that can effectively 
participate in and inhibit the physiological and biochemical processes of cancer cells in the human body. 
Therefore, understanding the solubility of proteins may be significant to find the mechanism of diseases 
caused by the solubility of proteins. In this paper, to improve the protein solubility prediction 
performance and address the inadequacy of existing protein solubility prediction methods that more 
feature information about protein sequences is difficult to be obtained. A protein solubility prediction 
model named EL-FFsol is proposed, which is based on the CatBoost ensemble learning framework and 
multiple feature fusion of protein sequences. First of all, protein sequence features were introduced to 
build fusion representation, including the Physicochemical Properties, One-hot Feature Encoding, 
Amino Acid Composition and Statistical Features. Additionally, the CatBoost was employed to construct 
an ensemble learning model to predict protein solubility. Finally, EL-FFsol was tested on the benchmark 
dataset to predict the solubility of proteins. In terms of accuracy, matthews correlation coefficient, 
sensitivity, specificity, area under ROC curve and area under P-R curve, EL-FFsol achieved 0.7679, 
0.5480, 0.6630, 0.8729, 0.8540 and 0.8440 performances. Compared with the DeepSOL and DDcCNN, 
the matthews correlation coefficient was increased by 1.68% and 0.79%, the area under ROC curve was 
increased by 1.60% and 2.20% and the area under P-R curve was increased by 1.70% and 2.40%, 
respectively. 
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1. Introduction 

As the material basis of life, proteins play important roles in cell activities[1–3]. The protein function 
is decided by molecular structures and inherent features. Protein solubility is one of the vital properties 
of a protein, which is significant to human health. For example, the decrease of protein solubility may 
lead to the formation of insoluble aggregates. These aggregates may give rise to varieties of 
neurodegenerative diseases[4], such as Alzheimer’s Disease, Amyotrophic Lateral Sclerosis and 
Parkinson’s Disease, which have a serious effect on human cognitive functions and behavior[5–7]. In 
addition, the sickness rate of cataract may be increased markedly along with the added number of 
insoluble proteins in the lens[8]. The disease not only has a long-term influence on the normal life of the 
elderly but also brings about a series of complications[9]. Additionally, several soluble immune 
checkpoints[10] are based on soluble proteins such as soluble CTLA-4 and soluble PD-1. They may diffuse 
in serums and regulate the immune system in a positive or negative direction. Thus, they are crucial to 
the examination, prognosis and treatment of cancers[11]. Therefore, predicting the solubility of proteins is 
essential and necessary[12]. 

At present, for the detection of protein solubility, there are mainly laboratory wet experimental 
methods and computer methods. 

Protein solubility refers to the mass of proteins dissolved in a certain amount of potassium hydroxide 
solution[13]. For example, to detect the rawness of soybeans by the solubility of proteins, the following 
procedures can be carried out. Firstly, soybeans are heated to different degrees. Secondly, these soybeans 
are soaked in the 0.2% potassium hydroxide solution. Finally, the ratio is used to compute the rawness 
of soybeans by using the Kjeldahl method[14]. The ratio means the protein content in soybeans after 
potassium hydroxide dissolving to the protein content in the original sample. From this, it can be seen 
that the laboratory wet experimental method is a waste of time, costly, highly repeatable and cannot 
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satisfy the demands of high-throughput. While protein solubility is associated with amino acid residues 
that make up these proteins[15]. By studying repetitive regulars between soluble and insoluble proteins in 
the Escherichia coli expression system[16], protein solubility can be calculated. Thus, computer methods 
may be adopted to assist laboratory wet experimental methods. 

In the environment of high-throughput[17] and big data[18], the methods of machine learning or deep 
learning may be used to predict protein solubility[19]. Several machine learning methods are designed to 
predict protein solubility. For example, SOLpro proposed by Magnan et al.[20] in 2009 obtains the k-mer 
features of protein sequences and utilizes the sequential minimal optimization (SMO) to train a SVM 
model to predict protein solubility. PROSO II proposed by Smialowski et al.[21] in 2012 extracts the k-
mer features from protein sequences and makes use of a new classifier to predict protein solubility. 
CCSOL proposed by Agostini et al.[22] in 2014 uses the hydrophobicity and helicity of protein sequences 
as the main features and combines a SVM model to predict protein solubility. PaRSnIP proposed by Rawi 
et al.[23] in 2018 reveals that a high proportion of exposed amino acid residues are positively correlated 
with protein solubility and tripeptide combinations composed of multiple amino acid residues are 
negatively correlated with protein solubility. And then protein solubility may be predicted by using the 
k-mer features and Statistical Features of protein sequences through the gradient boosting machine (GBM) 
model. Most of these methods mentioned above are depended on the SVM, which are unsuitable for big 
data, while deep learning can acquire more nonlinear relationships[24] and its processing ability is more 
powerful. For instance, DeepSOL proposed by Khurana et al.[25] in 2018 adopts the convolutional neural 
network (CNN) for the first time, together with the One-hot Feature Encoding and Statistical Features to 
generate a 25,257-dimensional feature vector to predict protein solubility. While the model with the large 
input dimension may result in the consumption of a great deal of time and numerous computing resources. 
SCNN, DCNN, DTcCNN and DDcCNN proposed by Wang et al.[26] in 2021 apply the convolutional 
neural network (CNN) and combine the G-Gap Structural Features and Statistical Features to predict 
protein solubility. While certain deficiencies exist, first of all, numerous convolutional layers lead to an 
increased number of parameters and some shortages in performance and efficiency. When the amount of 
data is insufficient, overfitting may easily come to pass. Besides that, few convolutional layers create 
inadequate training and performance limitations. Furthermore, several operations in pooling layers cause 
the lack of certain valuable information, and then the relevance between the whole and the parts may be 
attenuated. 

Under given experimental conditions, the EL-FFsol model was designed to correctly predict protein 
solubility, which was founded on multiple feature information and an ensemble learning framework. 
Firstly, the Cluster Database at High Identity with Tolerance (CD-HIT) was utilized to denoise protein 
sequences[27]. And then various features were extracted from protein sequences, including Hydropathy 
Index, Electron-Ion Interaction Potential, Molecular Weight, Residue Molecular Weight, Charge and 
Polarity, Acid-base Features, One-hot Feature Encoding, Amino Acid Composition, Sequence 
Features[20], Structural Features[25,26,28] and Relative Solvent Accessibility[25,26,28]. Additionally, feature 
fusion was constructed on these features and a brand-new feature vector was formed. Finally, protein 
solubility was predicted on the benchmark dataset through the model based on the CatBoost ensemble 
learning framework. 

Briefly, to attain more protein sequence information and enhance the performance and generalization, 
EL-FFsol extracted the Physicochemical Properties, One-hot Feature Encoding, Amino Acid 
Composition and Statistical Features from protein sequences. And then feature fusion was built on these 
features to generate an all-new feature vector. To cope with the huge amount of data and mitigate the 
inadequacy of existing protein solubility prediction methods, EL-FFsol employed the CatBoost algorithm 
to substitute for the convolutional neural network to process the vector after feature fusion. 

2. Method for protein solubility prediction 

This chapter introduces the method used in the protein solubility prediction model. Figure 1 sketches 
the development flow chart of the EL-FFsol model, which contains three parts: (a) dataset preprocessing 
of protein sequences, (b) feature extraction of protein sequences and (c) construction and training of the 
protein solubility prediction model. 
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Figure 1: EL-FFsol development flow chart: (a) dataset preprocessing of protein sequences; (b) feature 
extraction of protein sequences; (c) construction and training of the protein solubility prediction model 

2.1. Dataset preprocessing 

The protein sequence dataset applied comes from the research[23]. The training set consists of 70,954 
soluble proteins and 58,689 insoluble proteins; while the independent test set contains 1,000 soluble 
proteins and 999 insoluble proteins[28]. To ensure the mutual independence of data in the training set, the 
CD-HIT was utilized to denoise protein sequences[27]. The dataset preprocessing process is shown in 
Figure 1(a). 

Sequence identity indicates the percentage that the number of identical residues in two sequences to 
the total length of the sequence[29]. It measures the degree of similarity between protein sequences. Firstly, 
in the training set, the sequence identity was set to 90%. Secondly, all sequences were deleted, which 
have over 30% sequence identity between the training set and independent test set. Eventually, the 
processed dataset was divided into two mutually exclusive subsets of different sizes by using the hold-
out method, which was considered as the training set and validation set. The final training set includes 
26,075 soluble proteins and 36,403 insoluble proteins, a total of 62,478 protein sequences; while the 
validation set comprises 2,921 soluble proteins and 4,020 insoluble proteins, a total of 6,941 protein 
sequences. 

2.2. Feature extraction 

Based on the preprocessed dataset of protein sequences, the Physicochemical Properties, One-hot 
Feature Encoding, Amino Acid Composition and Statistical Features were extracted. And then feature 
fusion was constructed to form a new feature vector. The feature extraction process is depicted in Figure 
1(b). 

2.2.1. Physicochemical Properties of protein sequences 

The Physicochemical Properties used in EL-FFsol contained Hydropathy Index (HI), Electron-Ion 
Interaction Potential (EIIP), Molecular Weight (MW), Residue Molecular Weight (RMW), Charge and 
Polarity (CP) and Acid-base Features (AF). These features describe the physical properties and chemical 
properties of amino acid residues that constitute these proteins. Thus, more protein sequence information 
is provided and the problem that feature information is difficult to be extracted due to the complex 
structure of proteins may be effectively addressed. The above features are expressed as 

( )
1 2( , ,..., ,..., )k

x i La a a a=h , where (1 6)x x≤ ≤  denotes the above six different features, k means the k-
th protein sequence in the dataset, L shows the protein sequence length and (1 )ia i L≤ ≤  represents the 
feature value or binary vector of the Physicochemical Properties corresponding to each amino acid 
residue. The values of the Physicochemical Properties are shown in Table 1. 
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Table 1: Values of the Physicochemical Properties of each amino acid residue 

Amino acid residue HI EIIP MW RMW CP AF 
A 1.8 0.0373 89.09 71.07 [0,0,0,1] [0,0,1] 
C 2.5 0.0829 121.16 103.10 [0,0,1,0] [0,0,1] 
D -3.5 0.1263 133.10 115.08 [0,1,0,0] [0,1,0] 
E -3.5 0.0058 147.13 129.11 [0,1,0,0] [0,1,0] 
F 2.8 0.0946 165.19 147.17 [0,0,0,1] [0,0,1] 
G -0.4 0.005 75.07 57.05 [0,0,1,0] [0,0,1] 
H -3.2 0.0242 155.16 137.14 [0,1,0,0] [1,0,0] 
I 4.5 0 131.17 113.15 [0,0,0,1] [0,0,1] 
K -3.9 0.0371 146.19 128.17 [0,1,0,0] [1,0,0] 
L 3.8 0 131.17 113.15 [0,0,0,1] [0,0,1] 
M 1.9 0.0823 149.21 131.19 [0,0,0,1] [0,0,1] 
N -3.5 0.0036 132.12 114.10 [0,0,1,0] [0,0,1] 
P -1.6 0.0198 115.13 97.11 [0,0,0,1] [0,0,1] 
Q -3.5 0.0761 146.15 128.13 [0,0,1,0] [0,0,1] 
R -4.5 0.0959 174.20 156.18 [0,1,0,0] [1,0,0] 
S -0.8 0.0829 105.09 87.07 [0,0,1,0] [0,0,1] 
T -0.7 0.0941 119.16 101.14 [0,0,1,0] [0,0,1] 
V 4.2 0.0057 117.15 99.13 [0,0,0,1] [0,0,1] 
W -0.9 0.0548 204.22 186.20 [0,0,0,1] [0,0,1] 
Y -1.3 0.0516 181.19 163.17 [0,0,1,0] [0,0,1] 

2.2.2. One-hot Feature Encoding of protein sequences 

Amino acid residues of protein sequences were encoded by One-Hot Encoding, and then a feature 
vector 7h  of length 20L ∗  was obtained, where each amino acid residue is shown by a binary vector 
of length 20 and L denotes the protein sequence length. Since each protein is composed of twenty classes 
of amino acid residues and they have hydrophilic or hydrophobic because of the characteristic difference 
of side chains, amino acid residues have a certain influence on protein solubility. Thus, data information 
about amino acid residues can be detailed by using the One-hot Feature Encoding. 

2.2.3. Amino Acid Composition of protein sequences 

By arranging each protein sequence sequentially according to the initial sequence, the combination 
sequence of every two amino acid residues and the combination sequence of every three amino acid 
residues, the unary combination sequence, binary combination sequence and ternary combination 
sequence were acquired. 

The Amino Acid Composition of the unary combination sequence may be expressed as 
( )

1 1 2 19 20( , ,..., ,..., , )k
ia a a a a=A , where k means the k-th protein sequence in the dataset and 

(1 20)ia i≤ ≤  represents the frequency of amino acid residues. 

The Amino Acid Composition of the binary combination sequence and ternary combination sequence 
may be expressed as ( )

1 2( , ,..., ,..., )k
x i La a a a=A , where 2x =  denotes the binary combination 

sequence, 3x =  represents the ternary combination sequence, k shows the k-th protein sequence in the 
dataset, L means the protein sequence length and (1 )ia i L≤ ≤  indicates the feature value about the 
histogram information of each amino acid residue, which is calculated through the use of the histogram 
function in the NumPy library. 

By combining the Amino Acid Composition of the above three combination sequences, the feature 
vector 8h  was gained. The Amino Acid Composition describes the combination information of amino 
acid residues and these amino acid residues have an impact on protein solubility. Thus, the Amino Acid 
Composition helps predict the solubility of proteins. 

2.2.4. Statistical Features of protein sequences 

The Statistical Features were used as a feature vector 9h , which contained three categories: Sequence 
Features, Structural Features and Relative Solvent Accessibility. The Sequence Features were calculated 
by formulas referred to in the Biopython library and Propy3 library, including Sequence Length, 
Molecular Weight (MW), Fraction Turn-forming Residues (FTR), Aliphatic Indices (AI), Average 
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Hydropathicity (AH) and Absolute Charge (AC), which have a total of 6 dimensions. All these features 
narrate the protein sequence in the aspect of physical properties and chemical properties. 

The Structural Features and Relative Solvent Accessibility were calculated by the SCRATCH[30], a 
bioinformatics tool, which have a total of 51 dimensions, including 3-dimensional Secondary Structural 
Features (the number of categories of amino acid residue combinations was 3), 8-dimensional Secondary 
Structural Features (the quantity of categories of amino acid residue combinations was 8), 20-
dimensional RSA Features (obtained by using the cutoff value of the Relative Solvent Accessibility that 
ranged from 0% to 95% with an interval of 5%) and 20-dimensional RSA-AH Features (acquired by the 
RSA Features multiplying by the Average Hydrophobicity of exposed residues). Although compositions 
and structures of proteins are complex and diverse, the Structure Features not only sketch out the 
arrangement of polypeptide chains in proteins but also provide more feature information about protein 
formations and frameworks; the Relative Solvent Accessibility refers to the surface area of the solvent 
in contact with biomolecules, which can intuitively describe the protein solubility in an aqueous solution. 

After extracting the feature information from protein sequences, feature fusion was implemented to 
form a fresh feature vector. Figure 2 shows the process of feature extraction and fusion. 
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Figure 2: Extraction and fusion of protein sequence features 

2.3. Construction and training of the model 

The CatBoost algorithm was employed to build an ensemble learning model to predict protein 
solubility. Firstly, the best model was trained and selected on the training set and validation set. 
Additionally, the best model was tested on the benchmark to verify the prediction performance. The 
construction and training process of the protein solubility prediction model is pictured in Figure 1(c). 

2.3.1. CatBoost algorithm 

In this paper, as the basic classifier for protein solubility prediction, the CatBoost algorithm was used 
to calculate the vector after feature fusion. In particular, the CatBoost is a novel algorithm that combines 
gradient boosting and categorical knowledge. Same as all other gradient-based[31] methods, it has two 
processes: the first process is to select the structure of the tree; the second process is to assign values to 
the leaf nodes of the fixed tree. Additionally, the CatBoost algorithm has two advantages: firstly, the 
categorical knowledge is directly trained in the model without manual processing; secondly, the CatBoost 
algorithm utilizes the Ordered Boosting method[32] to change the gradient estimate from biased to 
unbiased, which not only slows down the gradient bias but also effectively controls overfitting and 
improves the model generalization. 

2.3.2. Training of the model 

The logarithmic loss function was utilized in EL-FFsol, which can be expressed in formula (1). 

-1 1

1Loss=-logP( | )=- log( )
N M

ij ij
i j

Y X y p
N =
∑∑ (1) 

Where Y denotes the outputs, X denotes the inputs, N denotes the count of input samples, M denotes 
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the count of possible categories, ijy  denotes a binary index whether the category j is the true description 

of the input ix , and ijp  denotes the probabilistic value that the input instance ix  belongs to the 
category j through the classifier. 

To ensure the EL-FFsol model was trained normally, several hyperparameters were applied. The 
hyperparameter values are exhibited in Table 2. 

Table 2: Hyperparameter values 

Hyperparameter Value 
eval_metric accuracy 

learning_rate 0.01 
iterations 70,000 

l2_leaf_reg 49 
depth 9 

early_stopping_rounds 15,000 
border_count 64 

3. Experiment and Analysis 

3.1. Evaluation metrics 

Several evaluation metrics utilized in EL-FFsol included accuracy (ACC), matthews correlation 
coefficient (MCC), sensitivity (SE), specificity (SP) and F1-score. These metrics are expressed in 
formula (2) to formula (6). 

TP+TNACC=
TP+TN+FP+FN

(2) 

TP TN-FP FNMCC=
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

× × (3) 

TPSE=
TP+FN

(4) 

TN=
TN+FP

SP (5) 

2 Precision RecallF1-score=
Precision+Recall
× × (6) 

Where false positive (FP), false negative (FN), true positive (TP) and true negative (TN) can be 
combined to form a confusion matrix. Figure 3 shows the heat map of the confusion matrix. 

 
Figure 3: Heat map of the confusion matrix 
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3.2. Result in analysis 

3.2.1. Feature comparison of protein sequences 

In order to compare the effects of multiple features of protein sequences on the model performance, 
the Physicochemical Properties, One-hot Feature Encoding, Amino Acid Composition and Statistical 
Features of protein sequences were used for ablation studies. The ablation studies of multiple features 
are shown in Table 3. 

Table 3: Ablation studies of multiple features 

Features ACC MCC SE SP F1-score 
Statistical Features 0.6718 0.3679 0.4940 0.8498 0.6010 

Physicochemical Properties 0.6893 0.3909 0.5660 0.8128 0.6458 
One-hot Feature Encoding 0.6698 0.3741 0.4610 0.8789 0.5828 
Amino Acid Composition 0.5718 0.1667 0.3190 0.8248 0.4270 

Statistical Features + Physicochemical Properties 0.7494 0.5134 0.6310 0.8679 0.7158 
Statistical Features + One-hot Feature Encoding 0.7479 0.5124 0.6220 0.8739 0.7117 
Statistical Features + Physicochemical Properties 

+ One-hot Feature Encoding 0.7658 0.5470 0.6490 0.8829 0.7350 

Statistical Features + Physicochemical Properties 
+ One-hot Feature Encoding + Amino Acid 

Composition 
0.7679 0.5480 0.6630 0.8729 0.7408 

As can be seen, directly using the Physicochemical Properties on the EL-FFsol model, the accuracy 
was 0.6893, matthews correlation coefficient was 0.3909, sensitivity was 0.5660 and f1-score was 0.6458. 
Compared with only making use of the Statistical Features, One-hot Feature Encoding and Amino Acid 
Composition, the accuracy was increased by 1.75%, 1.95% and 11.75%, the matthews correlation 
coefficient was increased by 2.30%, 1.68% and 22.42%, the sensitivity was increased by 7.20%, 10.50% 
and 24.70% and the f1-score was increased by 4.48%, 6.30% and 21.88%, respectively. Adopting the 
Statistical Features individually, EL-FFsol achieved the accuracy value of 0.6718, the sensitivity value 
of 0.4940 and the f1-score value of 0.6010. In addition, 0.20% and 10.00% improvements in accuracy, 
3.30% and 17.50% improvements in sensitivity and 1.82% and 17.40% improvements in f1-score were 
acquired while contrasting with solely utilizing the One-hot Feature Encoding and Amino Acid 
Composition. It demonstrates that the Physicochemical Properties supply more protein characteristic 
information from the physical and chemical aspects through different attribute values of each amino acid 
residue, which may significantly increase the feature information in the data. In the Statistical Features, 
the Sequence Features describe the sequence information through the feature values of each protein 
sequence to a small degree. The Structural Features detail the local spatial structure of polypeptide chains 
in proteins. The Relative Solvent Accessibility represents whether the protein is exposed or hidden. 
Although some evaluation metrics obtained by using the Statistical Features were not as good as those 
acquired by applying the Physicochemical Properties, the Statistical Features can help sketch out the 
structural information of protein sequences. Employing the One-hot Feature Encoding or Amino Acid 
Composition merely narrates the basic information of amino acid residues that make up these proteins 
and the offered information is limited to physical structures and relationships between protein sequences. 
Therefore, certain evaluation metrics gained by making use of the One-hot Feature Encoding or Amino 
Acid Composition were worse than those achieved by utilizing the Physicochemical Properties or 
Statistical Features. Nevertheless, adopting the One-hot Feature Encoding can map discrete features to 
Euclidean space. Each amino acid residue is represented by a binary vector of length 20 and stored in a 
vertical space. Thus, relative to using the Amino Acid Composition, several evaluation metrics obtained 
by applying the One-hot Feature Encoding were better. The accuracy, matthews correlation coefficient, 
sensitivity, specificity and f1-score were improved by 9.80%, 20.74%, 14.20%, 5.41% and 15.58%. 

Besides that, adopting the Statistical Features together with the Physicochemical Properties and One-
hot Feature Encoding successively to train and test the EL-FFsol model. The results show that employing 
hybrid features can gain better evaluation metrics than utilizing a single feature. In particular, when the 
mixed features were composed of the Statistical Features and Physicochemical Properties, El-FFsol 
acquired 0.7494, 0.5134, 0.6310 and 0.7158 performances in the accuracy, matthews correlation 
coefficient, sensitivity and f1-score. Contrasted with making use of the Statistical Features and One-hot 
Feature Encoding, the accuracy was increased by 0.15%, the matthews correlation coefficient was 
increased by 0.10%, the sensitivity was increased by 0.90% and the f1-score was increased by 0.41%. It 
indicates that features including the Statistical Features and One-hot Feature Encoding cannot describe 
protein sequences in more detail to a certain degree. The main reason is that the feature information 
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obtained by using the Statistical Features and One-hot Feature Encoding is not detailed in more attribute 
aspects contrasted with utilizing the Statistical Features and Physicochemical Properties. 

Ultimately, based on features including the Statistical Features and Physicochemical Properties, the 
One-hot Feature Encoding and Amino Acid Composition were gradually added to the EL-FFsol model. 
It is noted that when all features are adopted in the model, EL-FFsol outperformed better than making 
use of other feature combinations and achieved 0.7679 in accuracy, 0.5480 in matthews correlation 
coefficient, 0.6630 in sensitivity and 0.7408 in f1-score. At this time, the protein sequence is described 
in the aspect of physical properties, chemical properties, amino acid residue information and structural 
features. The provided information is more abundant and comprehensive. 

3.2.2. Performance comparison of CatBoost and Deep Learning 

For the sake of mitigating several inadequacies of deep learning and enhancing the model 
performance, the CatBoost algorithm was employed to take the place of the convolutional neural network. 
Therefore, it is important to assess the performances between the CatBoost algorithm and deep learning. 
The multiple features of protein sequences used in this paper were first fused to form a brand-new feature 
vector. And then DeepSOL, DDcCNN and the model based on the CatBoost algorithm were utilized to 
predict protein solubility on the independent test set. The performance comparison of CatBoost and Deep 
Learning is expressed in Table 4. 

Table 4: Performance comparison of CatBoost and Deep Learning 

Models and Methods ACC MCC SE SP 
DeepSOL 0.7630 0.5363 0.6540 0.8658 
DDcCNN 0.7634 0.5419 0.6560 0.8488 
CatBoost 0.7679 0.5480 0.6630 0.8729 

It can be seen that the model based on the CatBoost algorithm acquired better metrics and attained an 
accuracy of 0.7679, a matthews correlation coefficient of 0.5480, a sensitivity of 0.6630 and a specificity 
of 0.8729. Relative to the DeepSOL and DDcCNN, the accuracy, matthews correlation coefficient, 
sensitivity and specificity were increased by 0.49% and 0.45%, 1.17% and 0.61%, 0.90% and 0.70% and 
0.71% and 2.41%, respectively. It indicates that the CatBoost algorithm is more suitable than deep 
learning in hybrid feature fusion problems and improves the model performance and generalization. The 
foremost reason is that in the training process when using deep learning, firstly, the model with numerous 
convolutional layers leads to an increased number of parameters and several deficiencies in performance 
and efficiency. And then the model with few convolutional layers brings about inadequate training and 
performance limitations. Additionally, a number of operations in pooling layers produce the loss of 
certain vital information and the connection between the whole and the parts may be weakened. The 
CatBoost algorithm not only avoids these problems but also effectively controls overfitting through the 
Ordered Boosting method. To realize this purpose, in each iteration of gradient boosting, a certain sample 
is deleted from the training set of the current ensemble model to ensure the authenticity of the gradient 
estimate of each sample. Furthermore, the CatBoost algorithm considers the combination with the greedy 
algorithm to improve the accuracy of the current tree when creating split nodes. 

3.2.3. Overall performance comparison of different models and methods 

For the aim of further verifying the overall model performance, the random forest (RF), support vector 
machine (SVM), deep neural network (DNN) and several existing prediction methods were contrasted 
with the EL-FFsol model on the independent test set. The overall performance comparison of different 
models and methods is shown in Table 5. 

Table 5: Overall performance comparison of different models and methods 

Models and Methods ACC MCC SE SP 
RF 0.7019 0.4153 0.5850 0.8188 

SVM 0.7273 0.4709 0.5980 0.8569 
PaRSnIP 0.7411 0.4811 - - 

DNN 0.7464 0.5065 0.6310 0.8619 
SCNN 0.7556 0.5197 0.6410 0.8318 
DCNN 0.7568 0.5211 0.6410 0.8324 

DTcCNN 0.7582 0.5284 0.6430 0.8341 
DeepSOL 0.7625 0.5312 0.6550 0.8658 
DDcCNN 0.7631 0.5401 0.6530 0.8417 
My model 0.7679 0.5480 0.6630 0.8729 
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From Table 5, it follows that EL-FFsol acquired accuracy in 0.7679, matthews correlation coefficient 
in 0.5480, sensitivity in 0.6630 and specificity in 0.8729. Compared with methods founded on the RF 
and SVM, the accuracy was increased by 6.60% and 4.06%, the matthews correlation coefficient was 
increased by 13.27% and 7.71%, the sensitivity was increased by 7.80% and 6.50% and the specificity 
was increased by 5.41% and 1.60%, respectively. And contrasted with the DeepSOL and DDcCNN, EL-
FFsol achieved 0.54% and 0.48% improvements in accuracy, 1.68% and 0.79% improvements in 
matthews correlation coefficient, 0.80% and 1.00% improvements in sensitivity and 0.71% and 3.12% 
improvements in specificity. Additionally, Figure 8 plots the ROC and P-R curves of different models 
and methods. It can be seen that the EL-FFsol model wrapped other models in a wider space, where the 
AUC and AUPR of the EL-FFsol model were 0.8540 and 0.8440, respectively. Meanwhile, the AUC and 
AUPR of EL-FFsol were 1.60% and 1.70% higher than DeepSOL. In addition, the EL-FFsol improved 
the AUC by 2.20% and AUPR by 2.40% compared with the DDcCNN. The experimental results express 
that the overall performance of the model based on the CatBoost ensemble learning framework and 
multiple feature fusion of protein sequences is better than other models. Thus, EL-FFsol can predict the 
solubility of proteins more accurately and reliably. 

(a) (b)  
Figure 4: ROC and P-R curves: (a)ROC curves of different models and methods; (b)P-R curves of 

different models and methods 

4. Conclusions 

EL-FFsol implements feature fusion on multiple features, including the Physicochemical Properties, 
One-hot Feature Encoding, Amino Acid Composition and Statistical Features of protein sequences. The 
Physicochemical Properties represent the physical properties and chemical properties of each amino acid 
residue, which are consisted of Hydropathy Index, Electron-Ion Interaction Potential, Molecular Weight, 
Residue Molecular Weight, Charge and Polarity and Acid-base Features. The Statistical Features detail 
the protein sequence in the aspect of physicochemical and structural attributes, which are composed of 
Sequence Features, Structural Features and Relative Solvent Accessibility. The One-hot Feature 
Encoding and Amino Acid Composition narrate the basic combination information of amino acid 
residues. Therefore, the constructed feature information is more abundant and comprehensive. 
Furthermore, the CatBoost is an algorithm for gradient enhancement of decision trees together with 
gradient boosting and categorical knowledge, which can slow down the gradient bias, effectively control 
overfitting and improve the model generalization by adopting the Ordered Boosting method when 
building the tree for an unbiased gradient estimation in each iteration. Therefore, the CatBoost ensemble 
learning framework is more suitable than deep learning in hybrid feature fusion problems. 

Therefore, in this paper, the EL-FFsol model based on ensemble learning and feature fusion was 
designed for the prediction of protein solubility. Through the CatBoost ensemble learning framework, 
EL-FFsol can better control overfitting and enhance the model performance and generalization. 
Furthermore, the fusion of protein sequence features can help the model acquire more data information 
in the sequence data. The experimental results indicate that several evaluation metrics achieved by EL-
FFsol are better than those gained by the existing protein solubility prediction method. The accuracy, 
matthews correlation coefficient, sensitivity, specificity, area under ROC curve and area under P-R curve 
were 0.7679, 0.5480, 0.6630, 0.8729, 0.8540 and 0.8440, respectively. Contrasted with the DeepSOL and 
DDcCNN, EL-FFsol improved the matthews correlation coefficient by 1.68% and 0.79%, the area under 
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ROC curve by 1.60% and 2.20% and the area under P-R curve by 1.70% and 2.40%, respectively. Thus, 
EL-FFsol can predict protein solubility with high confidence. 

In future research, the model compression technology and knowledge distillation technology may be 
used to reduce the model reasoning time to further improve the efficiency and performance of EL-FFsol. 
Furthermore, the structural information of protein sequences is significant. Thus, exploring the solubility 
of proteins from structural information through deep learning is the next important work. 
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