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Abstract: During the screen-printing process of mobile phone cover glass, factors such as ink
accumulation, non-uniform squeegee scraping, and environmental vibration can easily induce tiny ink-
protrusion defects along the edge region. These defects are characterized by small size and weak
grayscale contrast, and are often accompanied by glass specular reflections and screen-printing texture
interference, posing significant challenges for online inspection. To address this problem, this paper
proposes a screen-printed ink protrusion defect detection method based on image enhancement and row-
wise scanning statistics. First, bilateral filtering is applied to enhance the screen-printed edges,
suppressing noise while preserving edge structures and improving the discriminability of low-contrast
defects. Next, the bottom contour is extracted using Canny edge detection, and a bottom reference line is
selected via Hough line fitting, this line is then used to partition the inspection region and establish row-
scanning baselines. Finally, leveraging the local grayscale anomaly of protrusions along the row
direction, a row-wise pixel accumulation and ratio-thresholding strategy is designed: edge feature values
are computed for each row, abnormal rows whose responses rise above a certain proportion of the row-
wise mean are selected, and a consecutive-row triggering mechanism is introduced to achieve stable
identification and localization of protrusion defects. Experimental results demonstrate that the proposed
method can effectively detect screen-printed ink protrusion defects and exhibits good robustness under
complex conditions involving reflections and texture interference, satisfying the requirements of practical
production lines for online inspection of screen-printing defects.
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1. Introduction

With the rapid development of the smartphone industry ], product appearance quality has become
one of the key factors influencing market competitiveness. As a critical component of a smartphone’s
exterior, the cover glass undergoes multiple cycles of ink printing and curing during the screen-printing
process to form functional and decorative patterns such as characters, marks, and window coatings 2. A
typical screen-printing workflow is shown in Figure. 1. In practical manufacturing, the process is easily
affected by factors including fluctuations in ink viscosity, unstable squeegee pressure, insufficient surface
cleanliness of the glass, and equipment vibration. These factors may lead to local ink accumulation,
scraping residues, or slight ink overflow near the edge region, thereby producing ink-protrusion defects.
Although such defects are usually small in size, they can significantly degrade appearance uniformity
and perceived quality. If not detected and removed in time during production, they may reduce yield,
increase rework costs, and even cause appearance-related customer complaints at the end-use stage.
Conventional manual inspection mainly relies on visual judgment, and suffers from low efficiency,
fatigue-related errors, poor stability, and high miss rates, making it difficult to meet the requirements of
modern production lines for high-precision, high-consistency, and high-throughput online inspection.
Therefore, developing a stable and reliable machine-vision-based automated inspection method for
screen-printed defects on mobile phone cover glass is of important engineering value and practical
significance.

Considering recent research progress and production-line deployment practices, automated
inspection technologies for screen-printing defects on mobile phone cover glass can generally be
categorized into two main paradigms: traditional machine-vision-based methods and deep-learning-
based methods.
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Figure 1: Screen-Printing Process Flow.

Traditional approaches are typically built upon image preprocessing and geometric alignment. They
localize defect regions through operations such as image differencing, threshold segmentation,
morphological processing, and feature extraction, and then perform recognition using classifiers. Liu et
al.’] combined a line-intercept thresholding strategy with particle swarm optimization to address
insufficient detection accuracy in mobile phone screen defect inspection. Zhang Caixia et al. ¥ integrated
Otsu thresholding and K-means clustering under backlight illumination to effectively discriminate
defects such as watermarks, scratches, and pinholes on glass surfaces. Cai Nian et al.’! developed a
feature-engineering scheme for quality inspection of glass-packaged insulating terminals, combining
shape priors and multi-dimensional image features with a gradient boosting decision tree to achieve finer
classification and improved performance. Chen Ning et al.l! targeted curved glass scenarios and
integrated shape matching, connected-component analysis, and frequency-domain enhancement to
realize defect identification and dimensional measurement. Although traditional machine-vision methods
offer advantages such as simplicity, interpretability, and low computational cost, they often rely on
manually designed features and threshold rules in practice, making them sensitive to illumination
variations, noise levels, batch-to-batch differences, and complex backgrounds. Moreover, inappropriate
handling of feature selection, dimensionality reduction, or classifier generalization may lead to increased
false positives and degraded detection stability.

With the development of deep learning, representative object detection frameworks such as Faster R-
CNN 1 YOLO B and SSD P! have demonstrated stronger feature representation capabilities and
robustness across a wide range of industrial vision tasks, accelerating the adoption of CNN-based
approaches in defect inspection. Yuan et al. '% developed a defect inspection device for mobile phone
cover glass based on backlight line-scan imaging. By improving the imaging signal-to-noise ratio and
incorporating an enhanced segmentation strategy, they achieved defect extraction and measurement, and
their experimental results indicated that the method could attain high detection accuracy. Lv et al. [']
further combined Faster R-CNN with a generative adversarial network to enhance defect feature
representation and extraction, and experiments likewise verified the effectiveness of the proposed
approach. Overall, these studies highlight the advantages of deep learning in glass defect inspection.
However, in real production-line environments, performance is still constrained by multiple uncertainties,
such as shifts in imaging conditions, changes in data distribution, the high cost of annotating tiny defects,
and stringent requirements on inference speed and operational stability, all of which can affect model
generalization and deployability.

For defects such as raised areas in screen-printed ink—characterized by extremely small dimensions,
low contrast, and proximity to regular edges (as shown in Figure 2)—automated detection poses
particularly severe technical challenges. On one hand, such defects occupy an extremely low proportion
of pixels in images and closely resemble screen printing edge textures in both grayscale distribution and
local morphology, making them prone to being overwhelmed by strong edge structures during feature
extraction. On the other hand, subsampling operations—commonly employed to obtain larger receptive
fields—further weaken fine-grained protrusion features, making them difficult to effectively preserve in
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feature maps. Due to the combined effects of these factors, both traditional machine vision methods based
on manually designed features and data-driven deep learning models struggle to achieve stable and
reliable detection of such defects under actual production conditions.

- e
\— J j

Figure 2: Ink Protrusion Defect.
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To address the above issues, this paper proposes an ink protrusion defect detection method tailored
to the screen-printing scenario of mobile phone cover glass, following an overall pipeline of “image
enhancement—geometric baseline construction—row-wise statistical decision.” First, the original image is
enhanced (e.g., edge-preserving denoising and contrast enhancement) to improve the separability of low-
contrast protrusion features. Next, the image is segmented based on the stable geometric structure of the
screen-printed edges, and row-scanning baselines are constructed (three baselines/three baseline types
can be defined to constrain the scanning start positions and statistical regions). Finally, leveraging the
grayscale distribution characteristics of the screen-printed edges along image rows, a row-wise scanning
statistical algorithm is designed to achieve stable identification and localization of protrusion defects
through edge-response accumulation, abnormal-row selection, and a continuity constraint. The main
contributions of this work are as follows:

(1) A unified detection framework integrating enhancement, baseline construction, and row-wise
scanning statistics is developed, enabling stable highlighting and detection of tiny ink protrusions under
low-contrast and complex-background conditions.

(2) A boundary-protrusion decision strategy based on row-wise pixel accumulation and statistical
thresholding is proposed, together with a continuity constraint to suppress isolated noise interference,
featuring low computational cost, simple implementation, and easy deployment in industrial
environments.

2. Defect Detection Method

Based on a detailed analysis of the formation mechanisms of screen-printed ink protrusion defects
and their image-level characteristics, this section develops a defect detection method following the
overall pipeline of “enhancement—segmentation—row-wise scanning statistics.” First, bilateral filtering is
applied to the screen-printed edge region for edge-preserving enhancement, which suppresses noise and
speckle artifacts while improving the separability of low-contrast protrusion defects, thereby providing
a more reliable basis for subsequent feature extraction. Next, given that protrusion defects are mainly
distributed along the outer screen-printed edge, a reference edge line is extracted via Hough line fitting
and used to partition the image into four sub-regions (left, right, upper, and lower) to define the inspection
areas. Subsequently, a row-wise scanning statistical algorithm tailored to the screen-printed edge is
designed, in which row-wise pixel accumulation, threshold-based decision making, and a consecutive-
row constraint are jointly employed to achieve stable identification and precise localization of ink
protrusion defects. Considering the resolution and accuracy requirements of on-line inspection, full
cover-glass imaging is performed using two industrial cameras that separately capture the upper and
lower fields of view. As the detection procedure and parameter settings are consistent for both views, this
study focuses on the lower-half images for method description and experimental validation. The above
steps constitute the complete detection pipeline of the proposed approach, as illustrated in Figure. 3.
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Figure 3: Detection Flowchart.
2.1 Image Enhancement

In screen-printed mobile phone cover-glass images, ink-protrusion defects are typically characterized
by extremely small size and low contrast. To enable more stable edge-feature extraction in the subsequent
row-wise scanning statistical analysis, bilateral filtering is applied to the original images as an
enhancement pre-processing step. Bilateral filtering suppresses random noise while effectively
preserving edge structures, thereby providing a more reliable input for downstream feature extraction
and statistical decision-making.

Bilateral filtering ['?! is a typical nonlinear edge-preserving smoothing technique. Its core idea is to
perform low-noise, edge-preserving filtering by jointly considering a spatial-distance weight and an
intensity-similarity (grayscale) weight between pixels. The filtered output can be expressed as:

1" (p) === 3 1@ £l p~a) £, 1(p)~ @) ) ()
W, i<
Where Q denotes the neighborhood window centered at pixel p; s is the spatial-domain
weighting function (typically a Gaussian kernel); r (. is the range (intensity) weighting function (also
commonly modeled by a Gaussian function); and , is the normalization factor used to ensure proper
weighting of the filter response, defined as:

w,=> f.llp—dhf.(1(p)-1(q)]) ()

qeQ)

The spatial kernel describes that pixels farther away from the current pixel have a weaker influence.
It is typically modeled by a Gaussian function:

L p—gl’
fillp q)—exp[ BTy ] (3)

s

where o controls the spatial smoothing range; a larger . leads to a wider spatial neighborhood
influence.

The range (intensity) kernel indicates that a larger gray-level difference corresponds to a lower
similarity. It is also commonly modeled by a Gaussian function:

_(1(p)—1(q))2]
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Here, - controls the sensitivity to intensity similarity. When a pronounced intensity discontinuity
occurs at an edge, the gray-level difference between pixels causes the range weight to decay rapidly,
thereby suppressing smoothing across the edge and preventing edge blurring.

To verify the effectiveness of bilateral filtering in noise suppression and edge preservation, a
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comparative experiment was conducted using screen-printed edge samples acquired by an industrial
camera, and the results are shown in Fig. 4. As can be observed in Fig. 4(a), the original image exhibits
noticeable noise and intensity fluctuations near the screen-printed edge, where tiny protrusion features
are mixed with background edge textures and the local contrast is relatively weak. After bilateral-filter
enhancement (Fig. 4(b)), the background noise is substantially suppressed and the screen-printed edge
contour becomes more continuous and smoother, while fine edge details are preserved without obvious
blurring or fragmentation. Moreover, the grayscale contrast in the protrusion region is further enhanced,
making it more likely to produce stable abnormal responses during the subsequent row-wise scanning
statistical analysis.

(a) Original image (b) Bilateral-filtered image
Figure 4: Enhancement Comparison Results.
2.2 Image Segmentation

In automated vision inspection of screen-printed cover glass, different defect types exhibit distinct
spatial distributions in the image. In particular, ink-protrusion defects are mainly generated and
concentrated along the outer screen-printed edge. Therefore, an outside-to-inside row-scanning strategy
is adopted to ensure that the scanning starts from the high-incidence edge region and progresses inward.
To enable consistent scan initialization and stable statistical regions for subsequent row-wise analysis, a
reliable spatial partition baseline must be established in advance. Given that the bottom edge of the
screen-printed cover glass is continuous, easy to extract, and geometrically stable, this study uses the
bottom edge as the geometric reference: based on the extracted edge map, the bottom edge is fitted using
the Hough line transform ['*], and candidate lines are further screened according to geometric parameters
such as slope and intercept. The reference line that best matches the bottom-edge contour is then selected
for image segmentation and region constraint.

2.2.1 Edge Detection

In industrial vision applications, the quality of edge extraction directly affects the accuracy of
subsequent line fitting, region segmentation, and geometric measurement. Traditional edge operators
such as Prewitt and Roberts ['4! are computationally efficient due to their simple structures; however, they
are limited in gradient-direction modeling and are sensitive to noise, which often leads to edge
fragmentation or localization bias. The Sobel operator [ improves noise robustness by incorporating
smoothing weights, but its response to complex textures and weak edges remains limited. Second-order
operators, including the Laplacian and the Laplacian of Gaussian (LoG), can enhance weak edges;
nevertheless, second-order derivatives are still noise-sensitive and may introduce spurious edges.

In contrast, the Canny algorithm ¢! employs a multi-stage pipeline—Gaussian smoothing, gradient
computation, non-maximum suppression, and double-threshold hysteresis linking—to produce edges
that are more continuous and more accurately localized under texture complexity and noise interference.
Its gradient estimation integrates multi-directional responses, making it more suitable for curved
boundaries, weak edges, and low-contrast regions. Moreover, Gaussian filtering reduces noise effects 7],
while the double-threshold strategy effectively connects broken edges, thereby balancing edge continuity
and accuracy. Therefore, this study adopts the Canny algorithm to extract pixel-level edges in the screen-
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printing region, and its main steps are as follows:

(1) A Gaussian filter is applied to smooth the original image in order to suppress noise and reduce
spurious edges caused by abrupt gray-level variations. The smoothing operation is given in equation :

1 —(xz +y? )/202

€ %

G(x,y) ) 270

(2) The smoothed image is convolved with derivative kernels to obtain the gradient components in
the horizontal and vertical directions. The gradient magnitude A is then computed using equation (6),
and the gradient orientation is calculated using equation (7).

A=JG? + G’ (6)
O=arctan (Gy /G, ) (7)

(3) Non-maximum suppression is applied to eliminate redundant edge responses. By scanning the
gradient magnitude map, only the pixels corresponding to local maxima along the gradient direction are
retained.

(4) A double-threshold scheme is used to classify pixels: those with gradient magnitudes above the
high threshold are labeled as strong edges, those below the low threshold are regarded as non-edge pixels,
and those between the two thresholds are treated as weak (candidate) edges.

(5) Hysteresis edge tracking is performed for the weak (candidate) edge pixels. A weak edge is
retained as a valid edge if there exists a connected strong edge within its 8-neighborhood; otherwise, it
is suppressed as noise.

As shown in Figure 5, Canny edge detection not only delineates the overall outer contour more
completely but also preserves potential abnormal structural cues near the boundary, thereby providing a
reliable input for subsequent line fitting and region partitioning.

Figure 5: Canny Edge Detection Results.

2.2.2 Line Fitting and Region Partitioning

After extracting the edge contours, line fitting is further performed to establish a geometric reference
for subsequent region partitioning. In this study, the bottom edge is fitted using the Hough line transform,
which detects straight lines in a parametric space and yields a globally consistent reference line with
strong robustness to noise. To improve segmentation efficiency, only one dominant line is fitted in the
bottom region to achieve an initial global partition of the image. Subsequently, the upper region is evenly
bisected according to its geometric symmetry to obtain two sub-regions (left and right). This “single
fitting + simplified partitioning” strategy avoids the computational overhead of repeated fitting while
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ensuring stable and extensible segmentation, thereby providing a clear and strict spatial constraint
framework for the subsequent defect detection pipeline. The line-fitting results are shown in Figure 6.

N\ .

Figure 6: Line Fitting Results.

After obtaining candidate lines using the Hough transform, it is necessary to further screen them
according to the placement characteristics of the cover glass on the actual workstation. Since the cover
glass is positioned on the workbench by suction nozzles, slight rotational deviations may occur, such that
the bottom edge is not perfectly horizontal but exhibits a small tilt angle. Therefore, the line parameters
(p,0) produced by the Hough transform are first converted into an explicit representation in the image
coordinate system as:

y=hc+b ®

The slope k and intercept b can be obtained from the following relationships:

cosd po P

k=- ©)

sin@’ siné

Based on this representation, the candidate lines can be further screened using joint constraints on
both orientation and position. Considering that the cover glass may exhibit a slight rotational deviation
when placed by suction nozzles on the production line, an angular constraint is imposed to ensure that
the selected line is aligned with the true bottom edge. Specifically, the tilt angle corresponding to the
slope k is computed as:

¢ = arctan(k) (10)

And filtered by enforcing the following constraint | 4|<10°, thereby removing spurious lines with
excessively large tilt angles that do not correspond to the true bottom edge.

left part right part

g ) )

(a) Selected line fitting result after screening (b) Segmentation result

Figure 7: Final Results.
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Among the lines that satisfy the angular constraint, a further selection is performed based on the
intercept b. Since the bottom screen-printed edge is located in the lower part of the image coordinate
system, the corresponding intercept b tends to be larger. Therefore, the line with the maximum intercept,
i.e., »=max(b,), is chosen as the final segmentation reference. This line provides the best alignment with
the inner boundary of the bottom screen-printed edge, enabling stable segmentation of the entire image.
The resulting single selected line is shown in Figure 7(a).

2.3 Ink Protrusion Defect Detection

After image segmentation, to achieve stable detection of screen-printed ink protrusion defects, this
study proposes a protrusion identification method based on row-wise local response integration and
statistical constraints. The proposed method exploits the local structural continuity of the screen-printed
edge by constructing a row-level intensity-response model, a ratio-based adaptive threshold, and a
structural consistency constraint, thereby enabling accurate localization of low-contrast protrusion
defects. The technical workflow is illustrated in Figure 8.

Compute the mean edge
feature value S (initialize i=0)

Compute the edge feature
value N row by row in the <
downward direction

v

Protrusion detected

Figure 8: Technical Workflow for Protrusion Detection.
2.3.1 Row-start edge point detection

Taking the left region as an example (with a left-to-right scanning direction), a protrusion typically
appears as dark ink pixels that emerge earlier along the scanning direction. Therefore, the first edge point
of each row is first determined as follows:

x =min{x| I(x,i)# 255} (11)
where/s(x,i) denotes the grayscale value of the enhanced image.

This point can be regarded as the earliest response position of the ink structure along the row direction,
and a protrusion causes .- to shift earlier along the scanning direction within a local region.

2.3.2 Local neighborhood response integration
To quantify the ink-structure intensity near the row start, a local neighborhood response integration

model is constructed around the row-start region as follows:

F = 24:(255 —I1(x] +k.i)) (12)

=0

Here, he neighborhood width is set to 5 pixels, according to the typical width of the screen-printed
ink edge (approximately 3—6 px); e term (255-1I) is used to emphasize the contribution of low-intensity
(dark) ink regions, making protrusion-induced structural disturbances more pronounced. rrepresents the
local response intensity of the edge in the i row.
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Within the normal screen printing edge area, the distribution of  exhibits good consistency
between rows, while protrusions cause significantly elevated z values.

2.3.3 Ratio-based Adaptive Thresholding Decision Model

To effectively distinguish normal rows from abnormal rows, a ratio-based adaptive thresholding
strategy is adopted based on the row-wise mean. First, the mean response of all rows within the region
is computed as:

N

1
=—>MF 13
u v &t (13)

The i-th row is regarded as a protrusion-candidate row if the following condition is satisfied:
F, > yu, (14)

Here, y=1.1 is empirically determined from extensive samples to reflect the pronounced upward shift
of the row-level statistics in protrusion regions. Compared with a fixed threshold, this ratio-based
threshold can automatically adapt to intensity variations caused by different levels of glass reflection and
ink density, thereby improving detection robustness.

Ink protrusions typically manifest as locally continuous structures across adjacent rows, whereas
isolated intensity noise or dust particles do not exhibit such continuity. Therefore, a structural consistency
constraint is introduced, and consecutive abnormal rows are used as the criterion for determining a
protrusion region, as follows:

{i,i+1,...,i+9} c A, (15)
Let 4 ={i| F, > yu} denote the set of abnormal rows.

The constraint of 10 consecutive rows is motivated by the physical continuity of protrusions (typically
corresponding to an edge length of about 0.15 mm). This constraint can effectively suppress false
detections caused by isolated noise and significantly improves the reliability of the detection results.

3. Experiment and Analysis

The experimental platform consists of two 20-megapixel industrial cameras and an LED area light
source, operating in a backlight imaging configuration. The mobile phone cover glass is placed above
the area light source for image acquisition, as shown in Figure 9. This setup provides uniform and stable
illumination as well as high-resolution imaging capability, thereby establishing a reliable experimental
basis for clear visualization and robust detection of tiny protrusion defects along the screen-printed edge.

industrial
camera

phone cover

area array
light source

Figure 9: Experimental Platform.
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To further validate the effectiveness and engineering applicability of the proposed method in actual
production line scenarios, this paper compares the proposed algorithm with the factory's existing deep
learning detection solution. The baseline comparison model selected is the factory's currently deployed
YOLOVI11n object detection model, which was trained by the factory using historical production line
data and is used for online detection. Experimental data also originates from real production samples:
200 qualified cover plates were randomly sampled from the production line and mixed with 100 samples
exhibiting ink protrusion defects to construct a unified test set comprising 300 samples in total. All
methods underwent offline evaluation on the same test set, with false positives, false negatives, and
detection accuracy calculated. Overall results are shown in Table 1, while partial detection visualizations
are presented in Figure 10.

e — -

¢ ¢

S

Figure 10: Test results from the methods section of this paper

Table 1 indicates that the factory's YOLOv1ln model produced 3 false positives and 21 false
negatives on this test set, achieving 92% detection accuracy. In contrast, the proposed method achieved
zero false positives and two false negatives on the same 300 test samples, yielding a detection accuracy
0f 99.33%. These results indicate that for detecting defects like raised screen printing ink—characterized
by extremely small scale, weak contrast, and proximity to regular edges—general object detection
networks are more susceptible to interference from strong edge structures and texture noise, leading to
higher false negative rates. Our approach, however, employs “edge enhancement + geometric baseline
constraints + line-scan statistical discrimination” to model defect-prone regions specifically. By
introducing continuity constraints to suppress isolated noise, it significantly reduces both false negatives
and false positives, demonstrating superior stability and engineering adaptability.

Table 1: Test Results

. Number of false Number of missed Detection
Method Sample size o . .
positives inspections accuracy rate
Deep learning 300 3 21 92.00%
methods
Methodology of 300 0 2 99.33 %
This Paper

4. Conclusion

This paper proposes an ink-protrusion defect detection method for mobile phone cover-glass screen-
printing scenarios. By integrating image enhancement, Hough line fitting—based image segmentation,
and a row-scanning statistical detection strategy, the proposed method addresses challenges such as low
contrast, background interference, and the difficulty of recognizing tiny protrusion structures.
Experimental results demonstrate that the method achieves high detection accuracy, fast computational
speed, and strong robustness, making it suitable for online inspection systems in practical production
lines.
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