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Abstract: During the screen-printing process of mobile phone cover glass, factors such as ink 
accumulation, non-uniform squeegee scraping, and environmental vibration can easily induce tiny ink-
protrusion defects along the edge region. These defects are characterized by small size and weak 
grayscale contrast, and are often accompanied by glass specular reflections and screen-printing texture 
interference, posing significant challenges for online inspection. To address this problem, this paper 
proposes a screen-printed ink protrusion defect detection method based on image enhancement and row-
wise scanning statistics. First, bilateral filtering is applied to enhance the screen-printed edges, 
suppressing noise while preserving edge structures and improving the discriminability of low-contrast 
defects. Next, the bottom contour is extracted using Canny edge detection, and a bottom reference line is 
selected via Hough line fitting; this line is then used to partition the inspection region and establish row-
scanning baselines. Finally, leveraging the local grayscale anomaly of protrusions along the row 
direction, a row-wise pixel accumulation and ratio-thresholding strategy is designed: edge feature values 
are computed for each row, abnormal rows whose responses rise above a certain proportion of the row-
wise mean are selected, and a consecutive-row triggering mechanism is introduced to achieve stable 
identification and localization of protrusion defects. Experimental results demonstrate that the proposed 
method can effectively detect screen-printed ink protrusion defects and exhibits good robustness under 
complex conditions involving reflections and texture interference, satisfying the requirements of practical 
production lines for online inspection of screen-printing defects. 
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1. Introduction 

With the rapid development of the smartphone industry [1], product appearance quality has become 
one of the key factors influencing market competitiveness. As a critical component of a smartphone’s 
exterior, the cover glass undergoes multiple cycles of ink printing and curing during the screen-printing 
process to form functional and decorative patterns such as characters, marks, and window coatings [2]. A 
typical screen-printing workflow is shown in Figure. 1. In practical manufacturing, the process is easily 
affected by factors including fluctuations in ink viscosity, unstable squeegee pressure, insufficient surface 
cleanliness of the glass, and equipment vibration. These factors may lead to local ink accumulation, 
scraping residues, or slight ink overflow near the edge region, thereby producing ink-protrusion defects. 
Although such defects are usually small in size, they can significantly degrade appearance uniformity 
and perceived quality. If not detected and removed in time during production, they may reduce yield, 
increase rework costs, and even cause appearance-related customer complaints at the end-use stage. 
Conventional manual inspection mainly relies on visual judgment, and suffers from low efficiency, 
fatigue-related errors, poor stability, and high miss rates, making it difficult to meet the requirements of 
modern production lines for high-precision, high-consistency, and high-throughput online inspection. 
Therefore, developing a stable and reliable machine-vision-based automated inspection method for 
screen-printed defects on mobile phone cover glass is of important engineering value and practical 
significance. 

Considering recent research progress and production-line deployment practices, automated 
inspection technologies for screen-printing defects on mobile phone cover glass can generally be 
categorized into two main paradigms: traditional machine-vision-based methods and deep-learning-
based methods. 



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.9, Issue 1: 13-23, DOI: 10.25236/AJETS.2026.090102 

Published by Francis Academic Press, UK 
-14- 

 
Figure 1: Screen-Printing Process Flow. 

Traditional approaches are typically built upon image preprocessing and geometric alignment. They 
localize defect regions through operations such as image differencing, threshold segmentation, 
morphological processing, and feature extraction, and then perform recognition using classifiers. Liu et 
al.[3] combined a line-intercept thresholding strategy with particle swarm optimization to address 
insufficient detection accuracy in mobile phone screen defect inspection. Zhang Caixia et al. [4] integrated 
Otsu thresholding and K-means clustering under backlight illumination to effectively discriminate 
defects such as watermarks, scratches, and pinholes on glass surfaces. Cai Nian et al.[5] developed a 
feature-engineering scheme for quality inspection of glass-packaged insulating terminals, combining 
shape priors and multi-dimensional image features with a gradient boosting decision tree to achieve finer 
classification and improved performance. Chen Ning et al.[6] targeted curved glass scenarios and 
integrated shape matching, connected-component analysis, and frequency-domain enhancement to 
realize defect identification and dimensional measurement. Although traditional machine-vision methods 
offer advantages such as simplicity, interpretability, and low computational cost, they often rely on 
manually designed features and threshold rules in practice, making them sensitive to illumination 
variations, noise levels, batch-to-batch differences, and complex backgrounds. Moreover, inappropriate 
handling of feature selection, dimensionality reduction, or classifier generalization may lead to increased 
false positives and degraded detection stability. 

With the development of deep learning, representative object detection frameworks such as Faster R-
CNN [7], YOLO [8], and SSD [9] have demonstrated stronger feature representation capabilities and 
robustness across a wide range of industrial vision tasks, accelerating the adoption of CNN-based 
approaches in defect inspection. Yuan et al. [10] developed a defect inspection device for mobile phone 
cover glass based on backlight line-scan imaging. By improving the imaging signal-to-noise ratio and 
incorporating an enhanced segmentation strategy, they achieved defect extraction and measurement, and 
their experimental results indicated that the method could attain high detection accuracy. Lv et al. [11] 
further combined Faster R-CNN with a generative adversarial network to enhance defect feature 
representation and extraction, and experiments likewise verified the effectiveness of the proposed 
approach. Overall, these studies highlight the advantages of deep learning in glass defect inspection. 
However, in real production-line environments, performance is still constrained by multiple uncertainties, 
such as shifts in imaging conditions, changes in data distribution, the high cost of annotating tiny defects, 
and stringent requirements on inference speed and operational stability, all of which can affect model 
generalization and deployability. 

For defects such as raised areas in screen-printed ink—characterized by extremely small dimensions, 
low contrast, and proximity to regular edges (as shown in Figure 2)—automated detection poses 
particularly severe technical challenges. On one hand, such defects occupy an extremely low proportion 
of pixels in images and closely resemble screen printing edge textures in both grayscale distribution and 
local morphology, making them prone to being overwhelmed by strong edge structures during feature 
extraction. On the other hand, subsampling operations—commonly employed to obtain larger receptive 
fields—further weaken fine-grained protrusion features, making them difficult to effectively preserve in 
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feature maps. Due to the combined effects of these factors, both traditional machine vision methods based 
on manually designed features and data-driven deep learning models struggle to achieve stable and 
reliable detection of such defects under actual production conditions. 

 
Figure 2: Ink Protrusion Defect. 

To address the above issues, this paper proposes an ink protrusion defect detection method tailored 
to the screen-printing scenario of mobile phone cover glass, following an overall pipeline of “image 
enhancement–geometric baseline construction–row-wise statistical decision.” First, the original image is 
enhanced (e.g., edge-preserving denoising and contrast enhancement) to improve the separability of low-
contrast protrusion features. Next, the image is segmented based on the stable geometric structure of the 
screen-printed edges, and row-scanning baselines are constructed (three baselines/three baseline types 
can be defined to constrain the scanning start positions and statistical regions). Finally, leveraging the 
grayscale distribution characteristics of the screen-printed edges along image rows, a row-wise scanning 
statistical algorithm is designed to achieve stable identification and localization of protrusion defects 
through edge-response accumulation, abnormal-row selection, and a continuity constraint. The main 
contributions of this work are as follows: 

(1) A unified detection framework integrating enhancement, baseline construction, and row-wise 
scanning statistics is developed, enabling stable highlighting and detection of tiny ink protrusions under 
low-contrast and complex-background conditions. 

(2) A boundary-protrusion decision strategy based on row-wise pixel accumulation and statistical 
thresholding is proposed, together with a continuity constraint to suppress isolated noise interference, 
featuring low computational cost, simple implementation, and easy deployment in industrial 
environments. 

2. Defect Detection Method  

Based on a detailed analysis of the formation mechanisms of screen-printed ink protrusion defects 
and their image-level characteristics, this section develops a defect detection method following the 
overall pipeline of “enhancement–segmentation–row-wise scanning statistics.” First, bilateral filtering is 
applied to the screen-printed edge region for edge-preserving enhancement, which suppresses noise and 
speckle artifacts while improving the separability of low-contrast protrusion defects, thereby providing 
a more reliable basis for subsequent feature extraction. Next, given that protrusion defects are mainly 
distributed along the outer screen-printed edge, a reference edge line is extracted via Hough line fitting 
and used to partition the image into four sub-regions (left, right, upper, and lower) to define the inspection 
areas. Subsequently, a row-wise scanning statistical algorithm tailored to the screen-printed edge is 
designed, in which row-wise pixel accumulation, threshold-based decision making, and a consecutive-
row constraint are jointly employed to achieve stable identification and precise localization of ink 
protrusion defects. Considering the resolution and accuracy requirements of on-line inspection, full 
cover-glass imaging is performed using two industrial cameras that separately capture the upper and 
lower fields of view. As the detection procedure and parameter settings are consistent for both views, this 
study focuses on the lower-half images for method description and experimental validation. The above 
steps constitute the complete detection pipeline of the proposed approach, as illustrated in Figure. 3. 
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Figure 3: Detection Flowchart. 

2.1 Image Enhancement 

In screen-printed mobile phone cover-glass images, ink-protrusion defects are typically characterized 
by extremely small size and low contrast. To enable more stable edge-feature extraction in the subsequent 
row-wise scanning statistical analysis, bilateral filtering is applied to the original images as an 
enhancement pre-processing step. Bilateral filtering suppresses random noise while effectively 
preserving edge structures, thereby providing a more reliable input for downstream feature extraction 
and statistical decision-making. 

Bilateral filtering [12] is a typical nonlinear edge-preserving smoothing technique. Its core idea is to 
perform low-noise, edge-preserving filtering by jointly considering a spatial-distance weight and an 
intensity-similarity (grayscale) weight between pixels. The filtered output can be expressed as: 

 1( ) ( ) ( ) (| ( ) ( ) |)BF
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Where Ω  denotes the neighborhood window centered at pixel p; ( )sf 

 is the spatial-domain 
weighting function (typically a Gaussian kernel); ( )rf 

 is the range (intensity) weighting function (also 
commonly modeled by a Gaussian function); and 

pW  is the normalization factor used to ensure proper 
weighting of the filter response, defined as: 
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The spatial kernel describes that pixels farther away from the current pixel have a weaker influence. 
It is typically modeled by a Gaussian function: 
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where 
sσ controls the spatial smoothing range; a larger 

sσ  leads to a wider spatial neighborhood 
influence. 

The range (intensity) kernel indicates that a larger gray-level difference corresponds to a lower 
similarity. It is also commonly modeled by a Gaussian function: 
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Here, 
rσ  controls the sensitivity to intensity similarity. When a pronounced intensity discontinuity 

occurs at an edge, the gray-level difference between pixels causes the range weight to decay rapidly, 
thereby suppressing smoothing across the edge and preventing edge blurring. 

To verify the effectiveness of bilateral filtering in noise suppression and edge preservation, a 
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comparative experiment was conducted using screen-printed edge samples acquired by an industrial 
camera, and the results are shown in Fig. 4. As can be observed in Fig. 4(a), the original image exhibits 
noticeable noise and intensity fluctuations near the screen-printed edge, where tiny protrusion features 
are mixed with background edge textures and the local contrast is relatively weak. After bilateral-filter 
enhancement (Fig. 4(b)), the background noise is substantially suppressed and the screen-printed edge 
contour becomes more continuous and smoother, while fine edge details are preserved without obvious 
blurring or fragmentation. Moreover, the grayscale contrast in the protrusion region is further enhanced, 
making it more likely to produce stable abnormal responses during the subsequent row-wise scanning 
statistical analysis. 

  
(a) Original image (b) Bilateral-filtered image 

Figure 4: Enhancement Comparison Results. 

2.2 Image Segmentation 

In automated vision inspection of screen-printed cover glass, different defect types exhibit distinct 
spatial distributions in the image. In particular, ink-protrusion defects are mainly generated and 
concentrated along the outer screen-printed edge. Therefore, an outside-to-inside row-scanning strategy 
is adopted to ensure that the scanning starts from the high-incidence edge region and progresses inward. 
To enable consistent scan initialization and stable statistical regions for subsequent row-wise analysis, a 
reliable spatial partition baseline must be established in advance. Given that the bottom edge of the 
screen-printed cover glass is continuous, easy to extract, and geometrically stable, this study uses the 
bottom edge as the geometric reference: based on the extracted edge map, the bottom edge is fitted using 
the Hough line transform [13], and candidate lines are further screened according to geometric parameters 
such as slope and intercept. The reference line that best matches the bottom-edge contour is then selected 
for image segmentation and region constraint. 

2.2.1 Edge Detection 

In industrial vision applications, the quality of edge extraction directly affects the accuracy of 
subsequent line fitting, region segmentation, and geometric measurement. Traditional edge operators 
such as Prewitt and Roberts [14] are computationally efficient due to their simple structures; however, they 
are limited in gradient-direction modeling and are sensitive to noise, which often leads to edge 
fragmentation or localization bias. The Sobel operator [15] improves noise robustness by incorporating 
smoothing weights, but its response to complex textures and weak edges remains limited. Second-order 
operators, including the Laplacian and the Laplacian of Gaussian (LoG), can enhance weak edges; 
nevertheless, second-order derivatives are still noise-sensitive and may introduce spurious edges.  

In contrast, the Canny algorithm [16] employs a multi-stage pipeline—Gaussian smoothing, gradient 
computation, non-maximum suppression, and double-threshold hysteresis linking—to produce edges 
that are more continuous and more accurately localized under texture complexity and noise interference. 
Its gradient estimation integrates multi-directional responses, making it more suitable for curved 
boundaries, weak edges, and low-contrast regions. Moreover, Gaussian filtering reduces noise effects [17], 
while the double-threshold strategy effectively connects broken edges, thereby balancing edge continuity 
and accuracy. Therefore, this study adopts the Canny algorithm to extract pixel-level edges in the screen-
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printing region, and its main steps are as follows: 

(1) A Gaussian filter is applied to smooth the original image in order to suppress noise and reduce 
spurious edges caused by abrupt gray-level variations. The smoothing operation is given in equation : 

 ( ) ( )2 2 2/2

2

1,
2

x yG x y e σ

πσ

− +
=  (5) 

(2) The smoothed image is convolved with derivative kernels to obtain the gradient components in 
the horizontal and vertical directions. The gradient magnitude A is then computed using equation (6), 
and the gradient orientation is calculated using equation (7). 

 2 2A= x yG G+  (6) 

 ( )=arctan /y xG Gθ  (7) 

(3) Non-maximum suppression is applied to eliminate redundant edge responses. By scanning the 
gradient magnitude map, only the pixels corresponding to local maxima along the gradient direction are 
retained. 

(4) A double-threshold scheme is used to classify pixels: those with gradient magnitudes above the 
high threshold are labeled as strong edges, those below the low threshold are regarded as non-edge pixels, 
and those between the two thresholds are treated as weak (candidate) edges. 

(5) Hysteresis edge tracking is performed for the weak (candidate) edge pixels. A weak edge is 
retained as a valid edge if there exists a connected strong edge within its 8-neighborhood; otherwise, it 
is suppressed as noise. 

As shown in Figure 5, Canny edge detection not only delineates the overall outer contour more 
completely but also preserves potential abnormal structural cues near the boundary, thereby providing a 
reliable input for subsequent line fitting and region partitioning. 

 
Figure 5: Canny Edge Detection Results. 

2.2.2 Line Fitting and Region Partitioning 

After extracting the edge contours, line fitting is further performed to establish a geometric reference 
for subsequent region partitioning. In this study, the bottom edge is fitted using the Hough line transform, 
which detects straight lines in a parametric space and yields a globally consistent reference line with 
strong robustness to noise. To improve segmentation efficiency, only one dominant line is fitted in the 
bottom region to achieve an initial global partition of the image. Subsequently, the upper region is evenly 
bisected according to its geometric symmetry to obtain two sub-regions (left and right). This “single 
fitting + simplified partitioning” strategy avoids the computational overhead of repeated fitting while 
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ensuring stable and extensible segmentation, thereby providing a clear and strict spatial constraint 
framework for the subsequent defect detection pipeline. The line-fitting results are shown in Figure 6. 

 
Figure 6: Line Fitting Results. 

After obtaining candidate lines using the Hough transform, it is necessary to further screen them 
according to the placement characteristics of the cover glass on the actual workstation. Since the cover 
glass is positioned on the workbench by suction nozzles, slight rotational deviations may occur, such that 
the bottom edge is not perfectly horizontal but exhibits a small tilt angle. Therefore, the line parameters 
( , )ρ θ  produced by the Hough transform are first converted into an explicit representation in the image 
coordinate system as: 

 y kx b= +  (8) 

The slope k and intercept b can be obtained from the following relationships: 

 cos ,
sin sin

k bθ ρ
θ θ

= − =  (9) 

Based on this representation, the candidate lines can be further screened using joint constraints on 
both orientation and position. Considering that the cover glass may exhibit a slight rotational deviation 
when placed by suction nozzles on the production line, an angular constraint is imposed to ensure that 
the selected line is aligned with the true bottom edge. Specifically, the tilt angle corresponding to the 
slope k is computed as: 

 arctan( )kφ =  (10) 

And filtered by enforcing the following constraint | | 10 ,φ °≤  thereby removing spurious lines with 
excessively large tilt angles that do not correspond to the true bottom edge. 

 
(a) Selected line fitting result after screening           (b) Segmentation result 

Figure 7: Final Results. 

left part right part

lower part
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Among the lines that satisfy the angular constraint, a further selection is performed based on the 
intercept b. Since the bottom screen-printed edge is located in the lower part of the image coordinate 
system, the corresponding intercept b tends to be larger. Therefore, the line with the maximum intercept, 
i.e., max( )ib b= , is chosen as the final segmentation reference. This line provides the best alignment with 
the inner boundary of the bottom screen-printed edge, enabling stable segmentation of the entire image. 
The resulting single selected line is shown in Figure 7(a). 

2.3 Ink Protrusion Defect Detection 

After image segmentation, to achieve stable detection of screen-printed ink protrusion defects, this 
study proposes a protrusion identification method based on row-wise local response integration and 
statistical constraints. The proposed method exploits the local structural continuity of the screen-printed 
edge by constructing a row-level intensity-response model, a ratio-based adaptive threshold, and a 
structural consistency constraint, thereby enabling accurate localization of low-contrast protrusion 
defects. The technical workflow is illustrated in Figure 8. 

Compute the edge feature 
value N row by row in the 

downward direction

N>1.1S

Compute the mean edge 
feature value S (initialize i=0)

i++

i>9

Protrusion detected

i=0

N

Y

Y

N

 
Figure 8: Technical Workflow for Protrusion Detection. 

2.3.1 Row-start edge point detection 

Taking the left region as an example (with a left-to-right scanning direction), a protrusion typically 
appears as dark ink pixels that emerge earlier along the scanning direction. Therefore, the first edge point 
of each row is first determined as follows: 

 min{ ( , ) 255}ix x I x i∗ = ≠∣  (11) 

where ( , )I x i  denotes the grayscale value of the enhanced image. 

This point can be regarded as the earliest response position of the ink structure along the row direction, 
and a protrusion causes 

ix∗ to shift earlier along the scanning direction within a local region. 

2.3.2 Local neighborhood response integration 

To quantify the ink-structure intensity near the row start, a local neighborhood response integration 
model is constructed around the row-start region as follows: 

 ( )
4

0
255 ( , )i i

k
F I x k i∗

=

= − +∑  (12) 

Here, he neighborhood width is set to 5 pixels, according to the typical width of the screen-printed 
ink edge (approximately 3–6 px); e term (255−I) is used to emphasize the contribution of low-intensity 
(dark) ink regions, making protrusion-induced structural disturbances more pronounced. iF represents the 
local response intensity of the edge in the i row. 
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Within the normal screen printing edge area, the distribution of iF  exhibits good consistency 
between rows, while protrusions cause significantly elevated iF  values. 

2.3.3 Ratio-based Adaptive Thresholding Decision Model 

To effectively distinguish normal rows from abnormal rows, a ratio-based adaptive thresholding 
strategy is adopted based on the row-wise mean. First, the mean response of all rows within the region 
is computed as: 

 
1

1 N

i
i

F
N

µ
=

= ∑  (13) 

The i-th row is regarded as a protrusion-candidate row if the following condition is satisfied: 

 ,iF γµ>  (14) 

Here, γ=1.1 is empirically determined from extensive samples to reflect the pronounced upward shift 
of the row-level statistics in protrusion regions. Compared with a fixed threshold, this ratio-based 
threshold can automatically adapt to intensity variations caused by different levels of glass reflection and 
ink density, thereby improving detection robustness. 

Ink protrusions typically manifest as locally continuous structures across adjacent rows, whereas 
isolated intensity noise or dust particles do not exhibit such continuity. Therefore, a structural consistency 
constraint is introduced, and consecutive abnormal rows are used as the criterion for determining a 
protrusion region, as follows: 

 { , 1, , 9} ,i i i+ … + ⊆   (15) 

Let { | }iA i F γµ= > denote the set of abnormal rows. 

The constraint of 10 consecutive rows is motivated by the physical continuity of protrusions (typically 
corresponding to an edge length of about 0.15 mm). This constraint can effectively suppress false 
detections caused by isolated noise and significantly improves the reliability of the detection results. 

3. Experiment and Analysis 

The experimental platform consists of two 20-megapixel industrial cameras and an LED area light 
source, operating in a backlight imaging configuration. The mobile phone cover glass is placed above 
the area light source for image acquisition, as shown in Figure 9. This setup provides uniform and stable 
illumination as well as high-resolution imaging capability, thereby establishing a reliable experimental 
basis for clear visualization and robust detection of tiny protrusion defects along the screen-printed edge. 

 
Figure 9: Experimental Platform. 
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To further validate the effectiveness and engineering applicability of the proposed method in actual 
production line scenarios, this paper compares the proposed algorithm with the factory's existing deep 
learning detection solution. The baseline comparison model selected is the factory's currently deployed 
YOLOv11n object detection model, which was trained by the factory using historical production line 
data and is used for online detection. Experimental data also originates from real production samples: 
200 qualified cover plates were randomly sampled from the production line and mixed with 100 samples 
exhibiting ink protrusion defects to construct a unified test set comprising 300 samples in total. All 
methods underwent offline evaluation on the same test set, with false positives, false negatives, and 
detection accuracy calculated. Overall results are shown in Table 1, while partial detection visualizations 
are presented in Figure 10. 

 
Figure 10: Test results from the methods section of this paper 

Table 1 indicates that the factory's YOLOv11n model produced 3 false positives and 21 false 
negatives on this test set, achieving 92% detection accuracy. In contrast, the proposed method achieved 
zero false positives and two false negatives on the same 300 test samples, yielding a detection accuracy 
of 99.33%. These results indicate that for detecting defects like raised screen printing ink—characterized 
by extremely small scale, weak contrast, and proximity to regular edges—general object detection 
networks are more susceptible to interference from strong edge structures and texture noise, leading to 
higher false negative rates. Our approach, however, employs “edge enhancement + geometric baseline 
constraints + line-scan statistical discrimination” to model defect-prone regions specifically. By 
introducing continuity constraints to suppress isolated noise, it significantly reduces both false negatives 
and false positives, demonstrating superior stability and engineering adaptability. 

Table 1: Test Results 

Method Sample size Number of false 
positives 

Number of missed 
inspections 

Detection 
accuracy rate 

Deep learning 
methods 300 3 21 92.00% 

Methodology of 
This Paper 300 0 2 99.33 % 

4. Conclusion 

This paper proposes an ink-protrusion defect detection method for mobile phone cover-glass screen-
printing scenarios. By integrating image enhancement, Hough line fitting–based image segmentation, 
and a row-scanning statistical detection strategy, the proposed method addresses challenges such as low 
contrast, background interference, and the difficulty of recognizing tiny protrusion structures. 
Experimental results demonstrate that the method achieves high detection accuracy, fast computational 
speed, and strong robustness, making it suitable for online inspection systems in practical production 
lines. 
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