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Abstract: Solar flare is a type of solar activity that occurs at active regions at the surface of the sun. The 

emission of solar flares has numerous consequences, including the dis- turbances of magnetic fields, 

disruptions from energetic particles, and geomagnetic explosions. All those consequences have 

numerous impacts on human civilization, including the degradation of communication systems, power 

grids, space navigation, and even natural disasters. Thus, those minor or catastrophic consequences are 

al- ways threatening to the normal operation of society and decision-makers of those systems always 

seek a precise and accurate prediction of hazardous solar flares. This paper aims to develop a forecast 

model that can accurately decide whether solar flares would happen in the future. The data is extracted 

from the NOAA (National Oceanic and Atmospheric Administration) GOES-16 X-Ray Sensor that 

monitors solar activity by measuring the flux intensity of X-Ray. The original data is in the form of time 

series. Markov Transition Field is applied to the time series data, transforming the data into the form of 

3-dimensional images. Therefore, the data undergone pre-processing could be applied to computer 

vision models. The aim of these models is to accurately recognize the Markov Transition Field images 

that symbolize there would be solar flare emission one hour later through a binary classification. Deep 

learning architects are the major components to accomplish this forecast task. Convolutional Neural 

Network (CNN) is a common approach in doing clas- sification tasks, which is also frequently used in 

recent studies that aim to predict flare emission through X-Ray images of the active regions. There are 

several classic CNN undergone training and testing, including LeNet-5, AlexNet, VGGNet 16 and 19, 

and ResNet-18, that utilizes the residue block structure. These CNN architects provide fascinating 

reliability and accuracy in this prediction task of solar flares, with multiple structures providing 

accuracy greater than 80%. Furthermore, Vision Transformer, a deep learning architect also used in 

classification based on trans- former structure is applied to the flare task. It is comprised of the core 

structure of multiple-head self-attention, residue blocks, layer normalization, and multilayer perceptron. 

Vision Transformer has shown outstanding accuracy (89.89%) while making predictions of solar flare 

emissions. 
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1. Introduction 

The sun, the only star in our solar system, has a mass of 1.9891×1030 kg. It is constituted of hydrogen, 

which is the majority, and other elements such as helium. The sun is interwound with plasma and 

magnetic fields, forming an ideal spherical celestial body. Hydrogen in the sun undergoes nuclear fusion, 

releasing heat and light to space, and forms helium. 

Solar activities occur on the surface of the sun frequently and ceaselessly. The solar wind is a solar 

activity comprising subatomic particles including protons and electrons moving at high speed. It ejects 

particle flows into space. There are also several types of solar activities triggered by solar magnetic fields. 

Sunspots appear as dark spots on the solar photosphere are the aggregation of magnetic fields. They have 

areas from 500 to 1000 kilometers. They usually have a temperature of around 4000 Celsius degrees, 

which is lower than the average temperature of the surface of the sun, making them have less luminosity 

than the surrounding. The intense aggregation of magnetic fields at the sunspots would facilitate the 

formation of solar flares. 

Solar flares are massive ejections of energy from the solar surface, caused by magnetic reconnection. 

They are frequently observed above sunspot groups. As the assembled magnetic fields are more 

complicated, it the easier could reserve magnetic energy. When magnetic energy at a certain area, such 
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as a sunspot group, is in excess, energy would be released to space. The ejection of energy takes form in 

radiations of a full wave band and it is accompanied by high-energy particle flows (from 103eV to 109eV) 

and impulse waves. The majority of radiations are in short wavelengths, such as X-ray and ultraviolet 

radiations[1-4]. 

Based on different observation approaches, there are mainly two methods of classifi- cation of solar 

flares. The standard classification method, which is used on ground-based optical images, classifies solar 

flares with a numerical value from 0 to 4 and a letter (F, N, or B) with respect to their optical intensity. 

Optical observations usually detect a sudden amplification of the optical waveband, usually having 

wavelengths between 3900 to 7000 angstroms. The classification defined by GOES (Geostationary 

Operational Envi- ronmental Satellite) observations has divided the intensity of Solar flares into 5 

increasing levels, A, B, C, M, and X. This classification is based on the peak flux of X-ray, which a 

wavelength between 0.01 to 100 angstroms is detected by the XRS (X-Ray Sensor). Solar flare emissions, 

especially with an intensity greater than M-level, are usually accompanied by strong proton flows. Since 

Earth’s ionosphere is more sensitive to the variation of the flux of X-ray radiation, it’s the prevalence that 

using X-ray classification standards to define the intensity of solar flares. Therefore, this research focuses 

on determining solar flares based on the X-ray flares scale. Information in this section has consulted 

papers regarding GOES satellites such as [5]. 

Solar flares emissions follow a period of 9 to 14 years (an average of 11 years), forming solar cycles. 

Contemporarily, it is the 25th observed solar cycle, the observation started in 1755, and the 25th cycle 

starts in 2019. 

Generally, normal solar flares between levels A to B have minor influences on either advanced 

technologies and infrastructures. However, more intensified solar flares (X and M flares) could bring 

significant impacts on human civilization. After reaching Earth’s ionosphere (a highly ionized layer), it 

reflects radio signals and prompts the communica- tion system), radiation from solar flares would 

increase the ionization of the ionosphere. Hence, radio signals will be more likely absorbed (and not 

reflected), resulting in a reduc- tion in the reliability of radio communications. If the flux of X-ray reaches 

some extent, it also influences receptors of all communication devices, including civilian and military. A 

strong and rapid disturbance in the magnetic field, caused by the solar flare, could induce an intense 

current within the components of the devices. If the device lacks protection in such circumstances, those 

induced currents would increase the voltage and can result in irreversible damage. A similar mechanism 

damages power grids (if protections could not negate flares’ effects). For long-range high-voltage 

transmissions, the sudden intensifica- tion of electromotive force might overwhelm the load of power 

grids that is usually at full capacity in particular regions. Overload would cause extreme and irreversible 

degradation to the power supply. 

For satellites, the high-energy particles from the solar flare could strip electrons out of the satellite’s 

components. Once the electrons are delocalized, they would cause a short circuit of the electronic 

components. Moreover, the geomagnetic explosion (dra- matic Earth magnetic field disturbance) caused 

by solar activities would influence the torque of operating satellites, resulting in the alteration of their 

position or direction. 

The disturbances on the ionosphere and upper atmosphere also increase the density of the upper 

atmosphere, which increases the resistance of the movement of satellites in their orbits. The effects on 

satellites would lead to the inaccuracy of GPS (Global Po- sition System), resulting in uncertainty of 

even dozens of kilometers. Those impacts on communications especially constitute a danger for civilian 

aviation. Beyond sophisticated instruments and spacecraft, the intense radiation could also pose a threat 

to the safety of astronauts. Some basic devices that rely on the magnetic field, such as compass, would 

largely be distracted by geomagnetic explosions. The geomagnetic explosion caused by solar activities 

also leads to several natural phenomena and disasters, including drought, flood, earthquake, and 

thunderstorms. The high energy particle flows also create aurora by disturbing Earth’s magnetic field. 

As in the 21st century, communication systems and power supply are indispensable for humans. The 

emission of unanticipated solar flares would be catastrophic for those services. Therefore, building an 

accurate prediction model would be necessary for human decision-makers to avoid damage.  

The aim of this paper is to develop a solar flare forecast model using MTF images, based on different 

machine learning models, including LeNet, AlexNet, VGG16, VGG19, ResNet, and Vision Transformer 

(ViT). Then, the effectiveness of each model will be tested. The major components in the designed 

experiment have been expressed in Figure 1. This paper contains the following sections: in section 2, the 

raw data undergoes preprocessing and forms MTF images; in section 3, the accuracies of the models are 

analyzed and results are presented; in section 4, the conclusion is presented with potential future 
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improvements. 

 

Figure 1: Project framework 

2. Data preprocess 

2.1. GOES-R XRS data 

The data used in this paper is based on a database provided by NOAA (National Oceanic and 

Atmospheric Administration). The GOES-R satellites are responsible for monitoring weather conditions, 

including space weather that may cause disturbances to electrical systems on the surface of Earth. This 

database, GOES-R Level 2 Data, is de- veloped as the product of the GOES-R satellites’ space weather 

monitoring. The selected data is provided by the 1-minute averages of XRS (X-Ray Sensor) of the 

measurements of EXIS (Extreme Ultraviolet and X-ray Sensors) of the GOES-16 satellite. 

2.2. XRS time series data 

 

Figure 2: The initial time series data for Jun 3rd, 2022 

All the data employed in this research are downloaded from the database of GOES-R. From the XRS 

1-minute Averages files, a dataset of the continuous measurement of flux intensity is obtained. This 

dataset does not distinguish the occurrence of solar flare emis- sions, while the XRS Flare Summary files 

provide the moment of emission, flare classes, and integrated fluxes. However, while downloading files 

from the database, it is found that there exists massive deletion of data from specific months. Those 
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missing months are not included in the collected dataset. At the time when the data were downloaded, 

there were only 2 months of data from 2020 recorded in the database. Therefore, the data utilized in this 

research includes years from 2017 to 2022, excluding 2020. In Figure 2, the initial time series data for 

Jun 3rd, 2022 has been illustrated. The horizontal axis shows time information and y vertical axis shows 

X-Ray flux[6-9]. 

2.3. Training dataset 

As mentioned in subsection 2.2, the XRS Flare Summary enables the classification of data, 

distinguishing data with the occurrence of flares from those without. Two groups of MTF images used 

as the training data have developed. The first group has divided the dataset into two sets: Normal, where 

no flare is recorded in the 1 hour shown by the MTF; Flare, where flare data is matched to the Summary 

data in the MTF. The second group is divided differently: the MTF images that represent the solar activity 

1 hour before the occurrence of solar flare have been extracted from the aggregated dataset; the rest of 

the data encompass both MTF that shows flare emission and not, while no MTF that records the hour 

before the flare is included. 

According to the generalization ability of deep learning models, prediction can be performed even if 

the training data is not expressing the prior circumstance. However, training the model with flux data 

representing the solar flare simultaneously may render the reliability of the accuracy to be reduced. The 

feature extracted by the models learning the first data group can capture both the features prior to flare 

emission and the features while the flare is emitted; models learning the second data group would mostly 

capture the features prior to flare emission. Thus, both methods of model training could produce 

applicable models, however it is speculated that the second data group could produce more reliable 

models, regardless to the eventual accuracy. 

Since a size of 60×60 is relatively small, the input image to the models has been resized to 224×224. 

The initial dataset contains a total of 81,504 MTF images, of which 60% of the dataset has been 

encompassed by the training set and the other 40% is in the testing set. 

3. Results and analysis 

After all models are fully trained, the loss functions have been plotted and the models are been applied 

to the testing set for obtaining the accuracy value. 

3.1. Training results 

 

Figure 3: Loss function of the trained models with dataset 2 

According to the different architects of models, different epoch numbers are required to fully train 

models. After each model is trained, the corresponding loss function is illustrated in Figure 3. The 

horizontal axis indicates the number of epochs trained and the vertical axis shows the loss. When the loss 

function approaches to stable and the tendency of descending is eliminated, the model is recognized as 
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fully trained. As shown in the graph, LeNet-5 get enough training around 50 epochs; AlexNet shows 

enough training around 150 epochs; VGG-16 gain sufficient training around 40 epochs; VGG-19 get 

enough training at 60 epochs; ResNet-18 gain enough training around 60, and express minor decline 

afterward; loss function of ViT kept descending until around 700 epochs. However, since the data set of 

flare MTF images is self-made, some loss functions did not eliminate fluctuations even if reaching a 

stable tendency. 

The results of models based on data group 1 is shown in Figure 4; however, since this group of models 

is unreliable and has the possibility of misinterpreting the information in MTF, its accuracy is not worthy 

of consideration. Thus, only the accuracies of the second group of models are shown in the next 

subsection. 

 

Figure 4: Loss function of the trained models with dataset 1 

3.2. Accuracy 

 

Figure 5: Accuracy of each trained deep learning model 

The training set takes 60% of the dataset, hence the testing set contains the rest 40% of the data. Each 

model has been applied to the testing set and processed a classification work, eventually using the original 

label of the testing set to calculate the accuracy of the model. Accuracy is the percentage that expresses 

the counts by the classification compared to the labels in the testing set. As shown in the histogram and 

table in Figure 5, LeNet-5, VGG 16, and VGG 19 all have an accuracy greater than 80%; while Vision 

Transformer has the greatest accuracy level of 89.89%[10-11].  

4. Conclusion 

On the classification task of identifying MTF images that represents features of po- tential emission 

of solar flares, Vision Transformer shows outstanding performances and accuracy compared to other 
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convolutional neural networks. Using the MTF translation method suggested in this paper, time series 

data of XRS X-Ray flux could also be utilized in solar flare forecasts with the use of deep learning models. 

Considering the outstand- ing performance of ViT (high accuracy of 89.89%) compared to other CNN 

models, ViT should be prioritized in forecast tasks of solar flare. 

4.1. Advantages of methodology 

Transforming raw data to imagery data is not innovative in the field of computer vision, however, 

converting our time series data to MTF form can retain the time in- formation in the images, which 

guaranteed the model could learn the features regarding time. Moreover, transformer is an architecture 

that was originally applied in the field of NLP, its application in computer vision, ViT, is a recent 

innovation that brought the accuracy of deep learning to a new height. 

4.2. Potential improvements 

There still exists a lot of work to be done in order to perfect this forecast model. Firstly, the major 

task of this paper is a binary classification problem, in which only ”Flare” and ”No flare” have been 

distinguished. To distinguish the solar flares with re- spect to A, B, C, M, and X levels, a multi-

classification task has to be developed. This improved forecast model will have more applicability to 

real-life situations: since the decision-makers can distinguish the level of hazard of the flare to human 

civilization, degradation to instruments or communication systems can be minimized. Secondly, fur- ther 

correlation of the emission of flares of different levels with parameters other than X-Ray flux should be 

investigated. This could examine or even reinforce the reliability of utilizing X-Ray flux as the major 

parameter of this forecast task. Thirdly, only several prevalent CNN models are applied in the part 

involving CNN. Indeed, those networks have shown great accuracy and effectiveness when performing 

classification. However, the majority of applied networks do not encompass a variety of deepness. The 

effec- tiveness of some CNN may be improved through increasing layer numbers, hence further 

experiments could be designed. The structure of CNN could also be modified to adjust to optimize the 

performance in this experiment. Fourthly, similar to CNN architects, ViT could also undergo testing with 

varying structures, such as changing the head number or the convolution kernel. Resemble to the 

successful application of ViT contrasted by CNN, further latest models used in the computer vision field 

could be applied to this ex- periment. Fifthly, the extraction of the dataset could follow a more precise 

pattern. The current models in this paper are trained from the ”flare” labels indicating a solar flare or 

flares will emit in certain moments of the following hour. Therefore, the extracted fea- tures illustrate the 

general features of the time series t minutes before an emission, while t ≤  60. To improve the 

preciseness, the time series data of the exact 60 minutes before an emission could be compiled into an 

MTF image. By repeating this process instead of the prior segregation strategy in this paper, the 

randomness of the features could be further eliminated and the interpretability of the MTF images would 

enhance. Finally, applying the conversion of time series into 3-dimensional imagery information is not 

prevalent in the related field before. The effectiveness of this processing strategy in this certain field 

should be compared with other deep learning models, such as the CNN-LSTM model that distinguish 

active regions on an X-Ray photograph. The effectiveness of this paper’s methods can be examined and 

contrasted with deep learning networks based on other data forms. Furthermore, there exists a wide range 

of similar converting methods other than Markov Transition. Such as Fourier transformation, Recurrence 

Plots, and Gramian Angular Summation/Difference fields [12]. The applicability of those transition 

strategies could be reconsidered. 
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