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Abstract: In order to analyze the influence of different data amounts on the accuracy and stability of 
BDS satellite clock bias prediction model, BDS satellites of different systems were randomly selected in 
this paper, and post-event precision satellite clock bias data released by Wuhan University was used. 
The prediction accuracy and stability of quadratic polynomial model, grey prediction model and 
autoregressive moving average model are compared and analyzed in detail by using different 
modelling schemes. The experimental results show that the prediction accuracy and stability of 
quadratic polynomial model are the highest, followed by the autoregressive moving average model and 
the grey prediction model, and the quadratic polynomial model and the autoregressive moving average 
model are more sensitive to the amount of data involved in modelling. In addition, the autoregressive 
moving average model has the highest prediction accuracy and stability for BDS-2 system satellite 
clock bias, and the grey prediction model has the highest prediction accuracy and stability for BDS-3 
system satellite clock bias. 
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1. Introduction 

With the wide application of the Global Navigation Satellite System (GNSS), especially in the field 
of high-precision positioning, navigation and timing (PNT), the accurate modelling and prediction of 
the satellite clock bias (SCB) has become one of the key factors to enhance the system performance [1]. 
In Precise Point Positioning (PPP) technology, in order to obtain centimeter-level positioning service 
requirements, precision satellite orbits and precision SCB need to be substituted into the equations as 
known values for positioning solution. China's BeiDou Navigation Satellite System (BDS), as one of 
the world's four major satellite navigation systems, has provided high-precision PNT services on a 
global scale. Therefore, high-precision prediction of SCB is particularly important for achieving 
centimeter-level PPP [2-3]. 

In recent years, with the rapid development of BDS, its service scope and application fields are 
expanding, and the requirements for the accuracy of BDS SCB prediction are getting higher and higher. 
Many scholars at home and abroad have carried out extensive and in-depth research on BDS SCB 
prediction, and proposed a series of SCB prediction algorithms, such as Quadratic Polynomial Model 
(QPM), Grey Model (GM (1,1)), Kalman Filter (KF), Auto-Regressive Integrated Moving Average 
(ARIMA) and Spectrum Analysis (SA), and so on [4-18]. Each of these methods has its own 
advantages and disadvantages and is suitable for different prediction situations. 

In order to compare the prediction effect of different algorithms and analyze their accuracy, this 
paper adopts the after-the-fact precision SCB products released by the GNSS Analysis Center of 
Wuhan University as the experimental data, and establishes the QPM, the GM(1,1) and the ARIMA 
model by different modelling methods, and carries out the analysis of a large number of BDS SCB data, 
and sums up the advantages and deficiencies of them, with a view to improving the overall accuracy of 
BDS SCB prediction. We summarize their advantages and shortcomings in order to improve the overall 
accuracy of the BDS SCB prediction, and provide theoretical basis and technical support for the 
research of BDS SCB prediction and the selection of optimal algorithms for practical applications. 
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2. Principle of SCB Prediction Algorithm 

2.1 Quadratic Polynomial Model 

Let a set of SCB time series be 1 2, ,..., ny y y  , whose corresponding time is 1 2, ,..., nt t t  , for 
which the following quadratic polynomial model [4] is built as: 

2
0 1 2i i i iy a a t a t ε= + + +  (1) 

Where, ( )1, 2, ,it i n=   is the time and ( )1, 2, ,i i nε =   is the residual. 

The optimal polynomial coefficients 0 1,a a  and 2a  , i.e., the sum of squares of the residuals S  
is minimized, can be determined by the least square method: 
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By taking the partial derivatives of S  with respect to 0 1,a a  and 2a  making them equal to zero, 
a set of linear equations can be obtained as: 
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Collating the above linear equations gives: 
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Expressing equation (4) as a matrix equation as: 
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 (5) 

Estimates of the coefficients of the equation (1), 0 1,a a  and 2a , can be calculated using the least 

squares method by substituting them into equation (1) to obtain the estimates 0 1ˆ ˆ,a a  and 2â : 
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2
0 1 2ˆ ˆ ˆi i i iy a a t a t ε= + + +  (6) 

The model can be used to predict the SCB at any point in the future. 

2.2 Grey Prediction Model 

A set of SCB time series is given as ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 01 , 2 , ,X x x x n=   , and a new data 

series ( )1X  is generated by one accumulation: 
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A first order differential equation [4,8] is built for the cumulative sequence ( )1X  : 

( )
( )

1
1dX aX u
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+ =  (8) 

Where, a  is the development coefficient and u  is the amount of grey action. The discretization 
of equation (8) leads to: 
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The least squares solution to the matrix equation (9) can be obtained by the least squares method as: 
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−

= =  (10) 

Substituting equation (10) into equation (8) gives: 
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( )
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The solution to the time response function (10) is 
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Since ( )1X  is the sequence formed by the accumulation of ( )0X  , the forecast model of ( )0X  
can be obtained by accumulating equation (12): 
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Where, k  is the number of raw data series involved in the prediction. The model can be used to 
predict the SCB at any time in the future. 

2.3 Auto-Regressive Integrated Moving Average model 

The ARIMA(0,2,q) model [15] is a simplified form of the ARIMA model, which does not contain 
an autoregressive component, but does contain a second-order differencing and q  order moving 
average component, and the Bayesian Information Criterion (BIC) was used to determine the values of 
the parameters of the model's optimal q  [6,14,15]. 

Let there be a set of SCB time series as tX  , and the second-order differencing of this set of SCB 
time series is processed as: 

( ) ( ) ( ) ( )2
1 1 1 2 1 22t t t t t t t t t t tX X X X X X X X X X X− − − − − −∇ = ∇ ∇ = ∇ − = − − − = − +  (14) 

The second order difference sequence of the SCB is obtained as tY : 

2
t tY X= ∇  (15) 

For the second order difference series of SCB tY  ARIMA (0,2, q) model is built as: 
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Where, µ  denotes the mean value of the SCB series, tε  denotes the white noise error term of the 

SCB, and jθ  denotes the moving average coefficient. 

The maximum likelihood estimation is used to estimate the parameter jθ , and the objective 
function is: 
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Finding the maximizing log-likelihood function ( )ln L θ  is equivalent to finding the minimizing 

negative log-likelihood function ( )ln L θ−  , which in turn is equivalent to minimizing 
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Where, t
t k

k

ε ε
θ −

∂
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∂
. 

The parameter estimate kθ  can be found by solving equation (18). 

The optimal order of the model can be determined using the BIC criterion q , the BIC criterion is 
calculated using the following formula: 

( ) ( )sum of squared residuals
ln

ln
q n

BIC
n

= +  (19) 

Where, ( )sum of squared resln iduals  is the negative of the log-likelihood function, q  is the 
required order, and n  is the sample size. 

The estimated parameters are used to make predictions of future values, assuming that the known 
observations { }1 2, , ,t TY Y Y Y=   , for the future observations T̂ hY +  , the predicted values are: 

1

ˆˆ ˆ
q

T h T h j T h j
j

Y µ ε θ ε+ + + −
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= + + ⋅∑  (20) 

Where, ( )sum of squared resln iduals  is the estimated parameter. 

 (21) 

Where, µ̂ , ˆ
jθ  are the estimated parameters and  is the future error term (usually assumed 

to be zero because we cannot observe the future error term). 

Finally, the predicted difference sequence T̂ hY +  is back differentiated back to the original 

sequence tX : 

 (22) 

The model can be used to predict the SCB at any point in the future. 

3. Tests and Analysis 

3.1 Sources of Experimental Data 

In order to fully analyze the prediction accuracy and stability of these prediction models, this study 
uses the precision hindcast SCB data from BDS satellites released by the GNSS Analysis Centre of 
Wuhan University. The data for 11 August 2024 were selected, and the data sampling interval was 5 
minutes. During this time period, more than 40 BDS satellites were in orbit, and their on-board clocks 
mainly included the following five types: the BLOCK GEO-Rb clock, the BLOCK IGSO-Rb clock, the 
BLOCK MEO-Rb clock, the BLOCK MEO-H clock and the BLOCK IGSO-H clock. The clock bias 
data of six satellites with different orbits, clock types, systems and launch ages were randomly selected 
for the prediction test, specifically including BDS-2 GEO-7-Rb PRN03, BDS-2 GEO-4-Rb PRN04, 
BDS-2 IGSO-6-Rb PRN13, BDS-3 MEO-3-Rb PRN21, BDS-3 MEO-16-H PRN35, and BDS-3 
IGSO-H PRN39, and information on the above selected satellites is shown in Table 1: 
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Table 1: Selected satellite related information. 
Satellite 
number Clock type System 

type Launch time Trends in clock bias Linear 
property 

PRN 03 GEO-7-Rb BDS-2 Jun 12, 2016 monotonically increasing positive values high linearity 
PRN 09 IGSO-4-Rb BDS-2 July 27, 2011 monotonically decreasing negative values high linearity 
PRN 13 IGSO-6-Rb BDS-2 30th March 2016 monotonically decreasing positive values poor linearity 
PRN 21 MEO-3-Rb BDS-3 February 12, 2018 monotonically increasing negative values high linearity 

PRN 35 MEO-16-H BDS-3 15th November 
2018 monotonically decreasing positive values high linearity 

PRN 39 IGSO-H BDS-3 25th June 2019 monotonically decreasing negative value poor linearity 
The variation of the time series of SCB for the first 12 hours of the day of 11 August 2024 for these 

six satellites is shown in figure 1. 

  
(a) PRN03 (b) PRN09 

  
(c) PRN13 (d) PRN21 

  
(e) PRN35 (f) PRN39 

Figure 1: Variation of clock bias for satellites PRN03, PRN09, PRN13, PRN21, PRN35 and PRN39 

3.2 Prediction results and analyses 

In order to comprehensively assess the performance of the SCB prediction algorithm in this study, 
the precision hindcast SCB data of the BDS satellite on 11 August 2024 were used to construct the 
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QPM model, the GM (1,1) model and the ARIMA (0,2, q) model, respectively, for the first 6 hours and 
12 hours before the day, and to predict the SCB for the next 6 hours. The prediction results are 
compared with the precise SCB data released by the GNSS Analysis Centre of Wuhan University for 
the same time period, and the prediction errors of each model are calculated. The error of the precision 
SCB data released by the GNSS Analysis Centre of Wuhan University is less than 0.1 ns, so it can be 
regarded as the "true value", and the Root Mean Square Error (RMS) and Range are calculated to 
evaluate and compare the prediction accuracy and stability of each model. The formulae for the 
evaluation indexes are as follows: 

 (23) 

 (24) 

The relevant results are shown in Figure 2-4 and Table 2-3. 

  
(a) PRN03 (b) PRN09 

  
(c) PRN13 (d) PRN21 

  
(e) PRN35 (f) PRN39 

Figure 2: Comparison chart of errors in forecasting 6-hour SCB using 6-hour 
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(a) PRN03 (b) PRN09 

  
(c) PRN13 (d) PRN21 

 

7

 
(e) PRN35 (f) PRN39 

Figure 3: Comparison chart of errors in forecasting 6-hour SCB using 12-hour 

Table 2: Statistical results of 6h forecast 6h SCB (unit: ns) 

Model Evaluation 
indicators PRN 03 PRN 09 PRN 13 PRN 21 PRN 35 PRN 39 Average 

QPM RMS 0.96 0.91 1.24 0.12 1.35 2.39 1.16 
Range 2.18 1.79 1.86 0.19 2.58 3.91 2.09 

GM (1,1) RMS 2.75 4.49 2.64 0.64 0.51 0.52 1.93 
Range 3.79 8.03 3.60 0.96 0.90 0.78 3.01 

AMIRA 
(0,2, q) 

RMS 1.89 2.50 3.09 0.18 3.67 0.71 2.01 
Range 3.85 4.52 5.25 0.49 7.39 0.96 3.74 
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Table 3: Statistical results of 12h forecast 6h SCB (unit: ns) 

Method Evaluation 
indicators PRN 03 PRN 09 PRN 13 PRN 21 PRN 35 PRN 39 Average 

QPM RMS 1.23 1.24 1.89 0.84 0.75 1.09 1.17 
Range 1.68 1.69 3.40 1.44 1.70 1.45 1.89 

GM (1,1) RMS 2.62 7.57 1.33 0.26 0.99 0.33 2.18 
Range 3.56 10.17 1.29 0.32 0.94 0.49 2.80 

AMIRA 
(0,2, q) 

RMS 0.65 1.31 0.45 0.40 1.73 0.14 0.78 
Range 1.22 1.79 0.91 0.73 2.95 0.33 1.32 

 

 
Figure 4: Comparison of average prediction accuracy 

According to Figure 2-4 and Table 2-3: 

(1) When forecasting the future 6-hour clock bias using 6-hour clock bias modelling, the average 
prediction accuracy and stability of the QPM model are 1.04ns and 1.94ns for BDS-2 satellites and 
1.29ns and 2.23ns for BDS-3 satellites, respectively; the average prediction accuracy and stability of 
the GM(1,1) model for BDS-2 satellites are 3.29ns and 5.14ns for BDS-3 satellites, and 0.57ns and 
0.88ns for BDS-3 satellites; the average prediction accuracy and stability of AMIRA(0,2,q) model are 
2.49ns and 4.54ns for BDS-2 satellites, and 1.52ns and 2.95ns. 

(2) When 12-hour clock bias modelling is used to predict the next 6-hour clock bias, the average 
prediction accuracy and stability of the QPM model are 1.45ns and 2.26ns for BDS-2 satellites and 
0.89ns and 1.53ns for BDS-3 satellites. The average prediction accuracy and stability of the GM(1,1) 
model are 3.84ns and 5.01ns for BDS-2 satellites and 0.53ns and 0.58ns for BDS-3 satellites. The 
average prediction accuracy and stability of AMIRA(0,1) model are 0.53ns and 0.58ns for BDS-3 
satellites, respectively. Models are 3.84ns and 5.01ns, and the average prediction accuracy and stability 
for BDS-3 satellites are 0.53ns and 0.58ns, respectively. The average prediction accuracy and stability 
of AMIRA (0,2, q) model for BDS-2 satellites are 0.80ns and 1.31ns, and the average prediction 
accuracy and stability for BDS-3 satellites are 0.76ns and 1.34ns. 

(3) Overall, the highest average prediction accuracy and stability of the QPM model, followed by 
the GM (1,1) model, and then the AMIRA (0,2, q) model, are observed when the 6-hourly clock bias 
are modelled to predict the future 6-hourly clock bias. The highest average prediction accuracy and 
stability of the SCB prediction for the BDS-2 system are from the QPM model, followed by the 
AMIRA (0,2, q) model, and then the GM (1,1) model. The highest average prediction accuracy and 
stability prediction of SCB for the BDS-3 system is the GM (1,1) model, followed by the QPM model 
and again the AMIRA (0,2, q) model. When the amount of modelling data is increased, the AMIRA 
(0,2, q) model has the highest average prediction accuracy and stability, followed by the QPM model, 
and then the GM (1,1) model, when the 12-hourly clock bias is used for modelling the prediction of the 
next 6-hourly clock bias. The highest average prediction accuracy and stability of prediction of SCB for 
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the BDS-2 system were obtained from the AMIRA (0,2, q) model, followed by the QPM model and 
then the GM (1,1) model. The highest average prediction accuracy and stability prediction of SCB for 
the BDS-3 system is the GM (1,1) model, followed by the AMIRA (0,2, q) model, and again by the 
QPM model. 

4. Conclusion 

In order to analyze the effects of different data volumes on the accuracy and stability of the BDS 
SCB prediction algorithm, this paper randomly selects BDS satellites of different systems, and adopts 
different modelling schemes to compare and analyze in detail the prediction accuracy and stability of 
the QPM model, the GM (1,1) model and the AMIRA (0,2, q) model. The results show that the average 
prediction accuracy and stability of the QPM model are almost unchanged when the amount of 
modelled data is increased, which indicates that the model has little effect on the prediction accuracy 
when the amount of modelled data is increased; the average prediction accuracy and stability of the 
GM(1,1) model have slight changes, and its average prediction accuracy improves by 11.40% when 
modelled with 6 h data compared to 12 h data, but it has a higher accuracy than 12 h. The results of the 
GM (1,1) and AMIRA (0,2, q) models are compared and analyzed in detail. 11.40%, but its average 
prediction stability decreases by 6.90%; on the contrary, the AMIRA (0,2, q) model has significantly 
better average prediction accuracy and stability when modelled with 12-hour data than when modelled 
with 6-hour data, with an increase of 61.2% and 64.7% in average prediction accuracy and stability, 
respectively. In addition, the QPM model has the highest mean prediction accuracy and mean 
prediction stability when modelled with 6-hour clock bias, followed by the GM (1,1) model and then 
the AMIRA (0,2, q) model. When the amount of modelling data is increased and modelled with 
12-hourly clock bias, the mean prediction accuracy and stability of the QPM model and GM(1,1) 
model are almost unchanged, which indicates that the model has less impact on the prediction accuracy 
and stability of the model when the amount of modelling data is increased, whereas the mean 
prediction accuracy and stability of the AMIRA(0,2,q) model are significantly improved with the 
increase in the amount of modelling data, which indicates that the model has a greater impact on the 
prediction accuracy of the model when increasing the amount of modelling data. 
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