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Abstract: To address artifacts and shape deviations in cone-beam CT (CBCT) caused by geometric 
misalignments, this study proposes a phantom-free two-stage calibration scheme. Detector pre-
correction is first performed to lay a foundation for subsequent rotation-axis optimization, with the latter 
leveraging a Sharpness-Maximized Matching (SMM) strategy as the core. Specifically, detector pre-
correction is achieved via symmetry-aware SIFT matching, adaptive sampling, and doubly-weighted 
optimization to estimate the detector’s horizontal offset. For rotation-axis optimization, an improved 
evaluation function is introduced under the SMM framework, and the optimal horizontal offset of the 
rotation axis is determined through iterative reconstruction within a predefined search range. 
Experiments on a set of industrial workpiece projection data demonstrate that the proposed two-stage 
scheme effectively eliminates artifacts, outperforms SAM and WAC in both image sharpness and 
measurement accuracy, and enables high-precision non-destructive testing without relying on dedicated 
phantoms. 
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1. Introduction 

Industrial Computed Tomography (ICT)[1] has emerged as a crucial non-destructive testing (NDT)[2] 
technology in modern manufacturing. It enables volumetric inspection of complex parts, providing 
detailed internal structural information. By utilizing X-ray penetration and digital reconstruction[3] 
algorithms, ICT can generate three-dimensional visualizations of the internal microstructures of 
workpieces. This technology has become an essential tool for quality control in industries such as 
aerospace, automotive, and electronics. Industrial CT (ICT) can perform volume inspection on complex 
components, but subtle geometric deviations, especially the lateral offset of the rotation axis, can cause 
circular/arc-shaped artifacts[4] and shape deviations[5], thereby reducing image quality and dimensional 
accuracy. In CBCT systems, the coupling effect of detector offset[6] and rotation axis offset[7-8] can 
exacerbate this problem at high magnification, so robust calibration is particularly important in 
production environments. 

The existing technical solutions are mainly divided into three categories: (i) symmetry center 
estimation algorithms[9] (such as sine wave center method, relative angle method, curve fitting method); 
(ii) Correlation/optimization algorithms (such as SAM[10], WAC[11]); (iii) Geometric/phantom calibration 
techniques[12] (using precision spheres or plates). The symmetry-based methods are sensitive to noise and 
auxiliary structures (e.g., workbenches and fixtures); correlation-based methods may fail when 
processing periodic textures; phantom-based calibration not only incurs high costs but also suffers from 
inherent tolerance errors of the calibration phantom. 

This study presents an innovative two-stage calibration scheme. The first stage focuses on estimating 
and pre-correcting the detector lateral shift. By leveraging the symmetry of projections, we employ a 
combination of the Scale-Invariant Feature Transform (SIFT[13]), adaptive sampling, and doubly-
weighted optimization. This approach allows for a more accurate determination of the detector shift, 
effectively decoupling it from the rotation-axis offset. In the second stage, we optimize the rotation-axis 
offset by maximizing the sharpness of the reconstructed slices. We use a Scharr-based center-Region of 
Interest (ROI) score to precisely lock the remaining axis offset. This two-stage approach not only 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 9, Issue 1: 56-62, DOI: 10.25236/AJCIS.2026.090107 

Published by Francis Academic Press, UK 
-57- 

decouples the detector horizontal offset from the rotation-axis horizontal offset (the two primary 
geometric error sources) but also significantly improves the robustness of the calibration process. 
Additionally, it eliminates the need for dedicated calibration phantoms, making it more cost-effective 
and adaptable to various industrial applications.  

The remaining structure of this article is arranged as follows: Section 2 introduces the proposed 
method and elaborates on the detector pre correction method and the rotation axis offset correction 
method in detail. Section 3 presents the complete process and results of the experiment, including 
quantitative and qualitative evaluations. Finally, Section 4 summarizes the contributions and findings of 
this article. 

2. Methodology 

In this section, we first introduce the overall architecture of the proposed method. Subsequently, we 
provided detailed descriptions of detector pre calibration and rotation axis calibration. 

2.1 Overview architecture 

The proposed calibration method consists of two main stages. In the first stage, we focus on the pre-
correction of the detector. We take advantage of the 180° rotation symmetry of projections in cone-beam 
CT full-circle scans. By using the Scale-Invariant Feature Transform (SIFT) algorithm, we extract stable 
feature points from the projection images. Then, an adaptive sampling strategy is applied to optimize the 
spatial distribution of these feature points. After that, a doubly-weighted optimization based on feature-
point response values and direction consistency is carried out to accurately calculate the detector lateral 
shift. This pre-correction of the detector helps to decouple the influence of detector shift from the 
rotation-axis offset, providing a more accurate foundation for the subsequent rotation-axis optimization. 

In the second stage, we turn to the optimization of the rotation-axis parameters. The sharpness-
maximization principle adopted herein is derived from the autofocus mechanism widely used in camera 
systems—one that has been successfully adapted for X-ray CT geometric calibration[14-15]. This principle 
is grounded in a straightforward physical observation: when the rotation axis deviates from its ideal 
position, the projection data fails to align with the geometric constraints of the reconstruction algorithm, 
leading to blurred edge structures and reduced definition in the reconstructed slices. Conversely, when 
the rotation axis is accurately calibrated, the edge features of the object are optimally focused in the 
reconstructed slices, resulting in the highest possible sharpness. To quantify this sharpness, we evaluate 
the gray value gradients of the reconstructed images—edge regions exhibit steeper gradient changes, 
which directly translate to a higher sharpness score. We use a Scharr-based center-Region of Interest 
(ROI) score to evaluate the sharpness of the reconstructed slices. By generating a sequence of candidate 
offset values within a preset search range and performing iterative reconstruction-evaluation iterations, 
the optimal rotation-axis offset that maximizes the sharpness of the reconstructed slices can be precisely 
determined. This two-stage scheme effectively addresses the geometric misalignment issues in CBCT, 
improving the quality of the reconstructed images. 

2.2 Detector Pre-Correction via Symmetry Matching 

In cone-beam CT full-circle scans, projections exhibit an inherent 180° rotational symmetry: the 
projection at angle β is symmetric to that at β+π about the rotation axis center. Any deviation from this 
symmetry indicates a detector shift, forming the theoretical basis for horizontal shift correction. As shown 
in Figure 1, the correction workflow consists of SIFT feature extraction and shift calculation/optimization. 
By analysing the discrepancy between ideal symmetric and actual projection positions, the detector shift 
is estimated and corrected, laying a foundation for accurate subsequent rotation-axis calibration. 

 
Figure 1: Flowchart of detector shift correction. 

The SIFT algorithm is fundamental for extracting stable feature points from projection images to 
calculate detector shift, with a sequential process ensuring rotation invariance and scale robustness. First, 
multi-scale space is constructed by convolving the projection image I(x,y) with 2D Gaussian kernels 
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G(x,y,σ), generating the scale-space image: 

L(x,y,σ) = 𝐺𝐺(x,y,σ) ∗ 𝐼𝐼(x,y) (1) 

This creates a series of blurred images that enable the detection of features stable across different 
scales. 

Subsequently, using Difference of Gaussian (DoG) operator to detect extremum points (Eq. (2)), 
which correspond to stable edge/corner structures in projections: 

D(x,y,σ)=[G(x,y,kσ)-G(x,y,σ)]*I(x,y) (2) 

To achieve rotational invariance, the gradient direction of pixels around each feature point is 
calculated (Eq. (3)), and a gradient direction histogram determines the main feature direction, eliminating 
projection rotation errors in matching: 

𝜃𝜃(𝑥𝑥,𝑦𝑦) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2�𝐿𝐿(𝑥𝑥,𝑦𝑦 + 1) − 𝐿𝐿(𝑥𝑥,𝑦𝑦 − 1), 𝐿𝐿(𝑥𝑥 + 1,𝑦𝑦) − 𝐿𝐿(𝑥𝑥 − 1,𝑦𝑦)� (3) 

A rotation-invariant feature vector 𝐹𝐹 = �ℎ1
(1,1), . . . ,ℎ8

(4,4)�
𝑇𝑇

 is then generated, enabling precise 
matching of homologous feature points across projections for shift calculation. 

To enhance shift calculation accuracy, an integrated strategy of adaptive sampling and doubly-
weighted optimization is adopted. In adaptive sampling, the image is divided into a 3×3 grid (ensuring 
at least one feature point per grid), and a mixed-scoring system weights feature response values and 
coordinate ratios to filter redundant points while preserving key edge features. 

For doubly-weighted optimization, a weighted mechanism is applied to matching feature point pairs 
�𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑗𝑗� to avoid equal treatment of feature points in traditional methods. The weight 𝑤𝑤𝑖𝑖𝑖𝑖 is calculated 
as Eq. (4): 

𝑤𝑤𝑖𝑖𝑖𝑖 =
𝑒𝑒𝑒𝑒𝑒𝑒 �𝛼𝛼 ⋅ 𝑅𝑅𝑖𝑖 + 𝛽𝛽 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑗𝑗��

∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑁𝑁
𝑘𝑘=1 �𝛼𝛼 ⋅ 𝑅𝑅𝑗𝑗 + 𝛽𝛽 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑗𝑗 − 𝜃𝜃𝑗𝑗′��

(4) 

Where 𝑅𝑅  is the feature response value, 𝜃𝜃  is the feature direction, and (𝛼𝛼 , 𝛽𝛽 ) are adjustable 
parameters. Pairs with higher responses and consistent directions receive greater weights. 

Subsequently, to ensure that these weighted feature pairs contribute proportionally to the 
displacement estimate, the weights 𝑤𝑤𝑖𝑖𝑖𝑖  from Eq.(4) are used to construct a weighted least-squares 
objective function 𝐽𝐽(𝛥𝛥𝛥𝛥). This function is minimized via gradient descent to obtain the optimal detector 
shift 𝛥𝛥𝑥𝑥∗. In this context, 𝑤𝑤𝑖𝑖  denotes the weight 𝑤𝑤𝑖𝑖𝑖𝑖  corresponding to the i-th matched point pair 
�𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑗𝑗� 

𝐽𝐽(𝛥𝛥𝛥𝛥) = �𝑤𝑤𝑖𝑖

𝑁𝑁

𝑖𝑖=1

⋅ ��𝑥𝑥1
(𝑖𝑖) − 𝑥𝑥2

(𝑖𝑖)� − 𝛥𝛥𝛥𝛥�
2

(5) 

Where 𝑥𝑥1
(𝑖𝑖) and 𝑥𝑥2

(𝑖𝑖) are horizontal coordinates of matching point pairs. 

2.3 Rotation-Axis Optimization Method Based on Sharpness Maximization 

The rotation-axis optimization method based on sharpness maximization is fundamentally grounded 
in the physical correlation between geometric alignment accuracy and image fidelity. Conceptually 
analogous to the passive autofocus mechanism in optical systems, this principle has been customized and 
enhanced to suit the volumetric imaging characteristics of CT. Unlike traditional methods that rely on 
projection symmetry or dedicated phantoms, the sharpness maximization approach enables phantom-free 
calibration by leveraging the intrinsic structural information of the measured object itself. 

To achieve robust quantification of slice sharpness, this study proposes an improved sharpness 
evaluation function, addressing the limitations of gradient-based metrics (e.g., summation methods using 
the Sobel operator) in noise suppression and edge sensitivity. This function integrates three core modules: 
Scharr gradient calculation for high-precision edge detection, bilateral filtering for noise reduction, and 
adaptive spatial weighting to emphasize the Region of Interest (ROI). The mathematical expression of 
the improved sharpness score is defined as: 
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𝑆𝑆enhanced(𝐼𝐼) = � ∥
𝑥𝑥,𝑦𝑦∈𝛺𝛺

∇𝐼𝐼Scharr(𝑥𝑥,𝑦𝑦) ∥22⋅ 𝑊𝑊adaptive(𝑥𝑥,𝑦𝑦) ⋅ 𝑊𝑊bilateral(𝑥𝑥,𝑦𝑦) (6) 

Where: 𝛺𝛺  denotes the entire slice domain; ∇𝐼𝐼Scharr(𝑥𝑥,𝑦𝑦) = �∇𝑥𝑥𝐼𝐼Scharr(𝑥𝑥,𝑦𝑦),∇𝑦𝑦𝐼𝐼Scharr(𝑥𝑥,𝑦𝑦)�𝑇𝑇 
represents the gradient vector computed using the 3×3 Scharr operator. Compared with the Sobel 
operator, this operator exhibits superior frequency response characteristics and noise resilience; 
𝑊𝑊adaptive(𝑥𝑥,𝑦𝑦) is an adaptive spatial weight mask that assigns higher weights to the central ROI (with 
a size of 𝐿𝐿 × 𝐿𝐿), where 𝐿𝐿 = 𝑚𝑚 ⋅ 𝑤𝑤/√2, 𝑤𝑤 is the slice width, and m is the margin factor to mitigate the 
interference of edge noise; 𝑊𝑊bilateral  accounts for the edge-preserving denoising effect of bilateral 
filtering, with parameters set to 𝑑𝑑 =9, 𝜎𝜎color =0.2, 𝜎𝜎space =15, achieving a balance between noise 
suppression and edge preservation. The asymmetric kernel design of the Scharr operator enhances 
sensitivity to subtle edge variations, which constitutes a critical technical foundation for subsequent 
rotation-axis optimization: this enhanced sensitivity enables reliable detection of small rotation-axis 
offsets (sub-pixel to millimetre scale) in high-magnification scans, a capability that traditional gradient-
based metrics struggle to achieve. 

To validate the effectiveness of the proposed improved sharpness evaluation function, during the 
rotation-axis offset calculation process, we compared and analysed the sharpness score curve output by 
this function with that output by the traditional gradient-based metric (i.e., the Sobel operator-based 
summation method). The projection data parameters are specified as follows: image dimensions of 
700×1000 pixels, source-to-rotation-center distance of 900 mm, rotation-center-to-detector distance of 
280 mm, and detector resolution of 0.12 mm × 0.12 mm. Figure 2 presents the sharpness score curves of 
two evaluation functions (horizontal axis: candidate intervals of the rotation-axis horizontal offset, unit: 
mm; vertical axes: normalized sharpness scores of the reconstructed slice, with the left axis 
corresponding to the red curve and the right axis to the blue curve): the blue curve denotes the original 
Sobel-based metric (traditional gradient-based method), while the red curve represents the improved 
Scharr-ROI (enhanced) function. Across the offset interval, the enhanced function exhibits a score span 
of 2.3 (from ~2.5 to ~4.8, relative change rate: 92%), whereas the original metric only has a narrow span 
of 0.0002 (from ~0.00030 to ~0.00050, relative change rate: 67%). This 37% improvement in the 
enhanced function’s relative change rate makes its score distribution more discriminative, thus enabling 
precise identification of small rotation-axis offsets. 

 

Figure 2: Comparison of sharpness score curves between the pre-improvement (traditional Sobel-
based) and post-improvement (Scharr-ROI) evaluation functions 

3. Experiments 

In this section, we detail the experimental setup and present the results to evaluate the performance 
of the proposed method. First, we outline the experimental configurations (including hardware and 
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software) and key implementation details. Next, we provide specifications of the projection data utilized 
in the experiments. We then introduce the performance metrics adopted for quantitative evaluation, and 
finally present and analyse the experimental results in depth. 

3.1 Hardware environment and software configuration 

All experiments were conducted on a computing platform equipped with an AMD Ryzen 7 9800X3D 
8-Core Processor and an NVIDIA GeForce RTX 5070 Ti GPU. The algorithm was developed under the 
Windows operating system and Python 3.13.9 environment. Projection data reconstruction was 
performed using Astra Toolbox 2.4.0[16], with GPU acceleration enabled via CUDA 12.4. 

3.2 Projection Data 

This experiment was conducted using an industrial CT imaging system, where the proposed method 
was applied to correct a set of industrial workpiece projection data, aiming to verify the effectiveness of 
the method. The acquisition and reconstruction parameters of this projection data are as follows: 
projection image size of 1024×1024 pixels, distance from the X-ray source to the rotation center of 1350 
mm, distance from the rotation center to the detector of 350 mm, 1000 projections, detector pixel size of 
0.2 mm, and 720 reconstructed slices. The operating parameters of the X-ray source are: voltage of 180 
kV, current of 1.5 mA, and frame rate of 2 fps. 

3.3 Experimental results and analysis 

To objectively quantify the quality of reconstructed images and verify the effectiveness of the 
algorithm, three widely used image statistical metrics were selected in this study: mean value, standard 
deviation, and average gradient. These metrics comprehensively evaluate images from three dimensions: 
global brightness, noise fluctuation, and edge details. In addition, to verify the feasibility and 
effectiveness of the proposed algorithm, comparative experiments were conducted between the proposed 
algorithm and two existing methods. The comparative methods include the SAM method based on 
statistical average and the WAC method based on weighted average, and the proposed method is denoted 
as SMM. Table 1 presents the detector horizontal offset measured by SMM’s pre-correction module on 
the selected projection data, along with the quantitative evaluation results of the three calibration methods 
(SAM, WAC, SMM), including the rotation axis horizontal offset, and the mean value, standard deviation, 
and average gradient of each image in the reconstructed result comparison diagram. 

Table 1: Quantitative evaluation of reconstruction quality for CBCT geometric calibration methods 

Detector 
Horizontal Offset 

Rotation Axis Horizontal Offset 
Correction Image Quality 

Correction 
Method 

Measured 
Result 

Mean 
Value 

Standard 
Deviation 

Average 
Gradient 

7.396 mm 
SAM -0.893 mm 113.077 102.695 52.817 
WAC -1.335 mm 110.347 103.894 50.065 
SMM -0.527 mm 105.551 104.057 52.936 

Figure 3 shows the three-dimensional visualization of the projection data reconstruction results. The 
workpiece is cylindrical overall with symmetrically distributed hole structures inside, allowing for an 
intuitive observation of the overall shape of the workpiece and the spatial distribution characteristics of 
the internal hole structures. Figure 4 shows the results of applying different correction methods to the 
686th reconstructed slice. In this experiment, the priority of the correction process is "detector horizontal 
offset correction → rotation axis horizontal offset correction". This is because detector offset directly 
leads to overall positional deviation of projection data; if this deviation is not corrected first, subsequent 
rotation axis offset correction will introduce additional errors. Therefore, all rotation axis correction 
algorithms are based on projection data after detector correction to ensure a consistent comparison 
benchmark for different correction methods. 

Specifically, the first row of Figure 4 sequentially presents the reconstruction results without any 
correction, with detector horizontal offset correction (this correction method is used to correct the 
positional deviation of the detector in the horizontal direction and can reduce reconstruction artifacts 
caused by detector misalignment), and with rotation axis horizontal offset correction using the SAM 
algorithm, WAC algorithm, and SMM algorithm (i.e., the rotation axis horizontal offset correction 
method proposed in this study, which is mainly used to correct the horizontal positional deviation of the 
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rotation axis during projection data acquisition, and this deviation is one of the core factors leading to 
blurred contours and artifacts in reconstructed images) on the basis of detector horizontal offset 
correction. Correspondingly, the second row of Figure 4 shows the magnified images of the Region of 
Interest (ROI) of each reconstructed image in the first row. The ROI in this study is specifically selected 
as the contour edge region of the internal structures of the workpiece, as this region is most sensitive to 
changes in artifacts and structural sharpness and serves as a key region for evaluating correction effects. 

A detailed analysis of each correction method’s performance is as follows: Figure 4(a) illustrates the 
uncorrected original reconstruction, which exhibits substantial geometric structural distortion. Focusing 
on the structural region in the bottom-right corner, prominent edge blurring and morphological 
deformation are observed—these artifacts critically impair the accurate characterization of the 
workpiece’s internal architecture. Figure 4(b) presents the reconstruction result after detector horizontal 
offset correction alone. This result shows that edge blurring and morphological distortion are markedly 
mitigated; however, closer inspection of the magnified ROI (centered on the inner region of the annular 
structure within the ROI) reveals residual artifacts near the contours, indicating incomplete restoration 
of structural integrity. Figures 4(c) and (d) depict the results of rotation-axis horizontal offset correction 
(applied to detector-precorrected data) using the SAM and WAC algorithms, respectively. While these 
algorithms yield moderate improvements in image quality, residual artifacts persist in the magnified ROI, 
and the sharpness of structural contours remains suboptimal. Finally, Figure 4(e) shows the 
reconstruction result obtained by applying the proposed SMM algorithm to detector-precorrected data. 
Compared with Figures 4(c)–(d), the SMM-corrected image demonstrates significant artifact reduction 
in both the global view and the targeted ROI: the contours of holes and internal annular structures are 
sharper, edge details are more distinct, which can more accurately reflect the true structural morphology 
of the workpiece’s interior. 

 

Figure 3: 3D visualization of projection data reconstruction results for the cylindrical workpiece with 
symmetric internal holes 

     

 
(a) Original 

 
(b) Detector 

Corr 
 

(c) SAM 
 

(d) WAC 
 

(e) SMM 

Figure 4: Reconstruction results of the 686th slice under different correction methods 

4. Conclusion 

To address geometric misalignment-induced artifacts and shape deviations in cone-beam CT (CBCT), 
this paper proposes a phantom-free two-stage calibration method (SMM): detector pre-correction 
leverages symmetry-aware SIFT matching, adaptive sampling, and doubly-weighted optimization to 
accurately estimate horizontal detector offsets, laying a robust foundation for subsequent calibration, 
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while rotation-axis optimization uses a sharpness-maximization criterion—integrating Scharr edge 
detection, bilateral filtering, and adaptive ROI weighting—to iteratively determine optimal rotation-axis 
offsets, outperforming traditional metrics in sensitivity and noise resilience. Experimental results on 
industrial workpiece data show that for the industrial workpiece projection data, the SMM method 
calculates the rotation-axis horizontal offset as -0.527 mm; meanwhile, the image quality metrics (mean: 
105.551, average gradient: 52.936) of the reconstructed images after calibration using SMM outperform 
those of the SAM and WAC methods. Specifically, the average gradient of the images processed by 
SMM is 0.119 and 2.871 higher than that of the images processed by SAM and WAC, respectively. It 
effectively eliminates artifacts, yields clearer structural contours, and avoids phantom-related costs or 
tolerances. Limitations include a focus on 2D offsets, so future work will extend to 3D geometric errors 
and accelerate optimization for real-time industrial inspection. This method enhances CBCT accuracy 
and cost-effectiveness, supporting high-precision non-destructive testing in manufacturing. 
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