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Abstract: The inner probabilistic properties of the big data have a great impact on the performance of 
pattern recognition systems. Jaccard similarity (JS) is a most popular statistic metric used for calculat-
ing the similarity of objects in feature extraction process. The paper combines JS with probabilistic 
distribution model to explore the effect of the inner properties of big data. It deduced the generalized 
form of JS for probabilistic model and determined the calculation method of JS for power-law and 
exponential distribution. Experiment observations showed that power-law distribution has higher JS 
than the correspondent exponential distribution, which denotes that power-law probabilistic structure 
is a more efficient probability structure. The original normalized data in MNIST database exhibited a 
more power-law-like distribution and the randomly translated data exhibited a more exponential-like 
distribution. The MNIST data with power-law-like property has higher JS and are more efficient com-
paring to the translated data. Thus, these observations provide possible guidelines for efficient infor-
mation coding and processing methods. 
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1. Introduction 

Deep learning and big data have become more and more attractive in both basic sciences and prac-
tical applications. Most of the studies target to improve the training and validation accuracy of machine 
learning to actual problems such as image recognition[1–3] and natural language processing (NLP)[4–
6]. There are also many types of research which target to understand the intrinsic mechanisms of these 
machine learning systems which are able to solve very complex problems but are difficult to under-
stand[7–9]. In addition, similarity search based on big data is also an important problem in many mul-
timedia applications[10–12]. Furthermore, extracting essential features of original data is also a hot 
technique in data mining area[13,14]. However, though the big data is the foundation of these pattern 
recognition studies, the inner probabilistic properties of the data are lack of attention. For example, 
which kind of probabilistic properties do the original data have will have a higher accuracy in machine 
learning process? Which kind of probability structure that the extracted feature have can achieve classi-
fication better? 

Jaccard similarity (JS) is a useful metric in evaluating the similarity of two sets and is widely used 
in many areas, such as NLP[15] and locality-sensitive hashing (LSH)[11]. Though JS has a strong 
mathematical basis, it’s indirect for researchers to evaluate a whole system which consists of many 
objects[16–18]. A possible approach is to calculate the JS of all possible object pairs in the system. The 
limitation of this approach lies in the abandon of statistical and probabilistic feature in the original data. 
The most widely used statistical and probabilistic method in machine learning is Bayesian learning 
technique which is based on Bayes’ theorem[19–22]. Nevertheless, most of the Bayes-related studies 
focus on updating the probability about inference and neglect the probability structure of the original 
data by assuming the distribution in advance[19,20]. In literature and applications, exponential distribu-
tion is a very popular function when modeling probabilistic systems[23–25]. However, exponential 
distribution cannot properly model inhomogeneous systems in which there are usually several hot spots 
which are connected to most of the other nodes in system and these few hubs dominate the function of 
the whole system. Inhomogeneous systems are widespread phenomenon and can be perfectly modeled 
by power-law distribution[26–30]. Power-law distribution is similar to exponential distribution in line-
ar-linear systems and it’s necessary to distinguish them when modeling probabilistic systems. 

We combine JS with probabilistic distribution model in this study with the goal to explore the effect 
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of the inner properties of big data on pattern recognition systems. 

The rest of this study is organized as follows: Section 2 introduces the definition of JS and its gen-
eralization to probabilistic distribution model. Section 3 cross-validates the generalization of JS by 
analytical and numerical approach. Section 4 describes a practical application to MNIST database. 
Conclusions are presented in Section 5. 

2. Jaccard similarity 

2.1. Classical Jaccard similarity 

Jaccard similarity (JS) is a most popular statistic metric used for calculating the similarity and dis-
similarity of sample sets. The JS of two sets A and B is defined as 

𝐽𝐽(𝐴𝐴,𝐵𝐵) =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵|

 

In practical applications, JS is a useful indices for objects with n binary attributes. For two objects A 
and B, and denote the count of attributes when both two objects have the value of 1 and 0, respectively. 
The attributes when both two objects have the value of 1 and 0 are called as positive matching attrib-
utes and negative matching attributes, respectively. Denotes the number of attributes when A is 1 and B 
is 0. Denotes the number of attributes when A is 0 and B is 1. According to the properties of set theory, 
we have 

|𝐴𝐴 ∩ 𝐵𝐵| = 𝑀𝑀11 

|𝐴𝐴 ∪ 𝐵𝐵| = 𝑀𝑀11 + 𝑀𝑀10 + 𝑀𝑀01 

Then 

𝐽𝐽(𝐴𝐴,𝐵𝐵) =
𝑀𝑀11

𝑀𝑀11 + 𝑀𝑀10 + 𝑀𝑀01
 

A most critical property of JS is that it does not take into account of negative matching attributes 
comparing to the simple matching coefficient method. For some applications, positive and negative 
matching attributes have asymmetric information. In the Market Basket Analysis example, two cus-
tomers may have bought several same products in a supermarket, but there are also more products they 
do not buy. In brain neuroscience example, there are several neurons which respond to two external 
stimuli, but there are more neurons which keep silence to both stimuli. In NLP systems, two sentences 
may consist of several same words, but there are more words which do not occur in both sentences. In 
these cases, the negative matching attributes have no meaningful contribution to the measurement of 
similarity or diversity. 

In literature, there is also a kind of synonyms for JS in which the similarity is given over Boolean 
algebra operations. 𝐴𝐴 = (𝐴𝐴1,𝐴𝐴2,⋯ ,𝐴𝐴𝑛𝑛), 𝐵𝐵 = (𝐵𝐵1,𝐵𝐵2,⋯ ,𝐵𝐵𝑛𝑛), where 𝐴𝐴𝑘𝑘 = {0,1}, 𝐵𝐵𝑘𝑘 = {0,1}. 

The JS of A and B is defined as 

𝐽𝐽(𝐴𝐴,𝐵𝐵) =
∑ 𝐴𝐴𝑘𝑘⋀𝐵𝐵𝑘𝑘𝑛𝑛
𝑘𝑘=1

∑ 𝐴𝐴𝑘𝑘⋁𝐵𝐵𝑘𝑘𝑛𝑛
𝑘𝑘=1

 

2.2. Generalized Jaccard similarity 

In mathematical logic, the values of the variables in Boolean algebra are the truth values true and 
false, usually denoted as 1 and 0 respectively. Though Boolean algebra is the foundation of digital 
electronics and computers, as two-valued logic, it is difficult to describe complex actual systems in 
applications by Boolean algebra. When describing practical systems, there are usually multiple possible 
values for an attribute. For example, a word may occur several times in a sentence or a paragraph in the 
NLP systems and multi-valued logic would be more proper to this scenario. 

As a result, the calculation of JS also needs to be extended to adapt to actual applications basing on 
multi-valued logic. Usually, there is a naturally existing or user-defined threshold for the value range of 
each attribute. Such as the value of each pixel in an 8-bit image would not exceed 256 or the occur-
rence times of a sentence would not exceed the total words of this sentence. The threshold vector of n 
attributes is denoted as 
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𝑇𝑇 = (𝑡𝑡1, 𝑡𝑡2,⋯ , 𝑡𝑡𝑛𝑛) 

Two objects A and B are denoted as 

𝐴𝐴 = (𝐴𝐴1,𝐴𝐴2,⋯ ,𝐴𝐴𝑛𝑛) 

𝐵𝐵 = (𝐵𝐵1,𝐵𝐵2,⋯ ,𝐵𝐵𝑛𝑛) 

Where 0 ≤ 𝐴𝐴𝑘𝑘,𝐵𝐵𝑘𝑘 ≤ 𝑡𝑡𝑘𝑘. The objects A and B after normalization by threshold vector T are denoted 
as a and b, respectively. And it would be seen as the occurrence probability or intensity ration of the k-
th attribute. 

𝑎𝑎 = (𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎𝑛𝑛) 

𝑏𝑏 = (𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑛𝑛) 

𝑎𝑎𝑘𝑘 =
𝐴𝐴𝑘𝑘
𝑡𝑡𝑘𝑘

 

𝑏𝑏𝑘𝑘 =
𝐵𝐵𝑘𝑘
𝑡𝑡𝑘𝑘

 

𝐽𝐽(𝐴𝐴,𝐵𝐵) = 𝐽𝐽(𝑎𝑎, 𝑏𝑏) =
∑ 𝑎𝑎𝑘𝑘⋀𝑏𝑏𝑘𝑘𝑛𝑛
𝑘𝑘=1

∑ 𝑎𝑎𝑘𝑘⋁𝑏𝑏𝑘𝑘𝑛𝑛
𝑘𝑘=1

 

Where 0 ≤ 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘 ≤ 1. According to probability theory, we have 

𝑎𝑎𝑘𝑘⋀𝑏𝑏𝑘𝑘 = 𝑎𝑎𝑘𝑘 ⋅ 𝑏𝑏𝑘𝑘 

𝑎𝑎𝑘𝑘⋁𝑏𝑏𝑘𝑘 = 1 − (1 − 𝑎𝑎𝑘𝑘) ∙ (1 − 𝑏𝑏𝑘𝑘) = 𝑎𝑎𝑘𝑘 + 𝑏𝑏𝑘𝑘 − 𝑎𝑎𝑘𝑘 ⋅ 𝑏𝑏𝑘𝑘 

𝐽𝐽(𝐴𝐴,𝐵𝐵) =
∑ 𝑎𝑎𝑘𝑘 ⋅ 𝑏𝑏𝑘𝑘𝑛𝑛
𝑘𝑘=1

∑ 𝑎𝑎𝑘𝑘 + 𝑏𝑏𝑘𝑘 − 𝑎𝑎𝑘𝑘 ⋅ 𝑏𝑏𝑘𝑘𝑛𝑛
𝑘𝑘=1

 

2.3. Jaccard similarity of probabilistic vector 

There are many applications in which JS is used to calculate the similarity of two objects such as 
semantic understanding and locality sensitive hashing. In addition, the probabilistic basis and the tables 
of significant values of JS are also proposed. However, there are few works which explore JS of proba-
bilistic models. For example, uncertainty is a primary property of brain neural circuit and one external 
stimulus would evoke several different neural responses. As a result, the neural responses to an external 
stimulus is a probabilistic model[31]. We can calculate the JS of stimulus-evoked neural responses, but 
how can the relationship between stimulus and the response of neural circuit be evaluated? 

For a probability vector 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = (𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑛𝑛) 

Two object vectors and are generated according to the probability vector Prob, where P(𝑥𝑥𝑘𝑘 = 1) =
𝑝𝑝𝑘𝑘, P(𝑦𝑦𝑘𝑘 = 1) = 𝑝𝑝𝑘𝑘. These settings can be seen as the k-th neuron would respond to the given stimulus 
with the probability of in a monitored brain neural circuit, or the k-th word would have the occurrence 
intensity of in a given class of natural context. 

𝐽𝐽(𝑥𝑥,𝑦𝑦) =
∑ 𝑝𝑝𝑘𝑘 ∙ 𝑝𝑝𝑘𝑘𝑛𝑛
𝑘𝑘=1

∑ 𝑝𝑝𝑘𝑘 + 𝑝𝑝𝑘𝑘 − 𝑝𝑝𝑘𝑘 ∙ 𝑝𝑝𝑘𝑘𝑛𝑛
𝑘𝑘=1

 

𝐽𝐽(𝑥𝑥,𝑦𝑦) =
∑ 𝑝𝑝𝑘𝑘2𝑛𝑛
𝑘𝑘=1

∑ 2𝑝𝑝𝑘𝑘 − 𝑝𝑝𝑘𝑘2𝑛𝑛
𝑘𝑘=1

 

Actually, objects x and y are both generated according to probability vector Prob. is a function of 
Prob. As a result, we can define the JS of probabilistic vector Prob as 

𝐽𝐽(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) =
∑ 𝑝𝑝𝑘𝑘2𝑛𝑛
𝑘𝑘=1

∑ 2𝑝𝑝𝑘𝑘 − 𝑝𝑝𝑘𝑘2𝑛𝑛
𝑘𝑘=1

 

JS of probabilistic vector would provide insights into information encoding process, such as in neu-
ral encoding process and locality sensitive hashing function. Probability vector Prob can be seen as the 
statistical property of many codes which correspond to the same tag, such as the same external stimulus 
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or the same type of context. We expect more similar object vectors because these codes have the same 
tag. As a result, a higher value of denotes a more efficient information processing mechanism which 
can preserve the similarity information better. 

2.4. Jaccard similarity of probabilistic distribution model 

Assume the probability vector follows a distribution of 𝑓𝑓(𝑝𝑝). We have 

� 𝑝𝑝𝑘𝑘 =
𝑛𝑛

𝑘𝑘=1
� 𝑝𝑝
1

𝜀𝜀
𝑓𝑓(𝑝𝑝)𝑑𝑑𝑑𝑑 

� 𝑝𝑝𝑘𝑘2 =
𝑛𝑛

𝑘𝑘=1
� 𝑝𝑝2
1

𝜀𝜀
𝑓𝑓(𝑝𝑝)𝑑𝑑𝑑𝑑 

Where ε → 0. Then 

𝐽𝐽(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) =
∫ 𝑝𝑝21
𝜀𝜀 𝑓𝑓(𝑝𝑝)𝑑𝑑𝑑𝑑

2∫ 𝑝𝑝1𝜀𝜀 𝑓𝑓(𝑝𝑝)𝑑𝑑𝑑𝑑 − ∫ 𝑝𝑝21
𝜀𝜀 𝑓𝑓(𝑝𝑝)𝑑𝑑𝑑𝑑

 

Here we have generalized the calculation of JS to the continuous probabilistic distribution model. In 
literature and many applications, Power-law and exponential distributions are two most widely used 
probabilistic distributions which are used to model the practical systems. In the following context, we 
focus on the analysis of JS of Power-law and exponential distributions. 

2.4.1. Power-law distribution 

Power-law distribution is also known as Pareto distribution. Pareto principle denotes that 80% of 
social wealth is held by 20% of the population, calling ’80-20 rule’[32]. Though power-law distribution 
is originally observed in economics, it’s a general rule in many areas, such as the world-wide-web, the 
social relationship, the collaboration between scientists, the airline networks, and the brain neural net-
works. A key property of power-law network lies in high random error tolerance[26,33]. It’s reported 
that brain neural network exhibits power-law properties when the subject implements tasks. In addition, 
the cultured neural networks in vitro show a similar phenomenon. In other words, neural circuit tends 
to encode information into the codes which have power-law property. Neural circuits are natural locali-
ty sensitive hashing function which assigns similar response to similar stimulus when animal perceive 
the environment. Here we check the JS properties of the power-law distribution. 

Consider the scenario that the probability vector follows the Power-law distribution function 

𝑓𝑓(𝑥𝑥) = c ∙ 𝑥𝑥−𝑟𝑟 

Where x ∈ (ε, 1]. Then 

𝐽𝐽(𝑃𝑃𝑃𝑃𝑃𝑃) =
∫ x2 ∙ c ∙ x−rdx1
ε

2∫ x ∙ c ∙ x−r1
ε dx − ∫ x2 ∙ c ∙ x−rdx1

ε

 

𝐽𝐽(𝑃𝑃𝑃𝑃𝑤𝑤) =
∫ x2 ∙ x−r1
ε dx

2∫ x ∙ x−r1
ε dx − ∫ x2 ∙ x−rdx1

ε

 

𝐽𝐽(𝑃𝑃𝑃𝑃𝑃𝑃) =
1

2∫ x ∙ x−rdx1
ε

∫ x2 ∙ x−r1
ε dx

− 1

 

Power-law distribution is a straight line in double logarithmic (log-log) coordinate systems and the 
decay slope in log-log systems is denoted as 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃). For two different variables 𝑥𝑥1, 𝑥𝑥2 ∈ (ε, 1], 
𝑥𝑥1 ≠ 𝑥𝑥2, 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃) = −
log�𝑓𝑓(𝑥𝑥)� − log �𝑓𝑓(𝑥𝑥)�

log(𝑥𝑥2) − log (𝑥𝑥1)  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃) = −
log(c ∙ 𝑥𝑥2−𝑟𝑟) − log (c ∙ 𝑥𝑥1−𝑟𝑟)

log(𝑥𝑥2) − log (𝑥𝑥1)  
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑟𝑟 

2.4.2. Exponential distribution 

Exponential distribution is a universal probabilistic model. Consider the scenario that the probabil-
ity vector follows the exponential distribution function 

g(x) = a ∙ e−b∙x 

Where x ∈ (ε 1]. Then 

𝐽𝐽(𝐸𝐸𝐸𝐸𝐸𝐸) =
∫ x2 ∙ a ∙ e−b∙x1
ε dx

2∫ x ∙ a ∙ e−b∙xdx1
ε − ∫ x2 ∙ a ∙ e−b∙xdx1

ε

 

𝐽𝐽(𝐸𝐸𝐸𝐸𝐸𝐸) =
∫ x2 ∙ e−b∙xdx1
ε

2∫ x ∙ e−b∙xdx1
ε − ∫ x2 ∙ e−b∙xdx1

ε

 

𝐽𝐽(𝐸𝐸𝐸𝐸𝐸𝐸) =
1

2∫ x ∙ e−b∙xdx1
ε

∫ x2 ∙ e−b∙x1
ε dx

− 1

 

Exponential distribution takes the form of curve line in log-log coordinate systems and it has a larg-
er slope magnitude when the abscissa gets bigger. However, there is a relatively linear range in log-log 
systems when abscissa is small and the decay slope in log-log systems is denoted as 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐸𝐸𝐸𝐸𝐸𝐸). This 
linear range was denoted as in linear-linear systems. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐸𝐸𝐸𝐸𝐸𝐸) = −
log�𝑔𝑔(𝑥𝑥2)� − log �𝑔𝑔(𝑥𝑥1)�

log(𝑥𝑥2) − log (𝑥𝑥1)  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐸𝐸𝐸𝐸𝐸𝐸) = −
log(𝑎𝑎 ∙ e−𝑏𝑏∙𝑥𝑥2) − log �a ∙ e−b∙𝑥𝑥1�

log(𝑥𝑥2) − log (𝑥𝑥1)  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐸𝐸𝐸𝐸𝐸𝐸) =
𝑏𝑏(𝑥𝑥2 − 𝑥𝑥1) ∙ log 𝑒𝑒

log�𝑥𝑥2 𝑥𝑥1� �
 

2.5. Comparison of Jaccard similarity 

Both Power-law and exponential distributions decay very fast when the x-coordinate is small and it 
slows down when the x-coordinate gets bigger in linear-linear systems. Most of the features of this two 
distributions in linear-linear systems can be characterized by the decay slope in log-log systems. Before 
comparing the JS of this two distributions, we set 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐸𝐸𝐸𝐸𝐸𝐸) 

b(𝑥𝑥2 − 𝑥𝑥1) ∙ log 𝑒𝑒
log�𝑥𝑥2 𝑥𝑥1� �

= 𝑟𝑟 

𝑏𝑏 =
𝑟𝑟 ∙ log�𝑥𝑥2 𝑥𝑥1� �

(𝑥𝑥2 − 𝑥𝑥1) ∙ log 𝑒𝑒
 

In addition, we set the integrations of Power-law and exponential distributions in range to be equal 
which denote a foundation that the total number or intensity of positive attributes are equal in two dis-
tributions. 

� 𝑥𝑥 ∙ 𝑓𝑓(𝑥𝑥)
1

ε
dx = � 𝑥𝑥 ∙ 𝑔𝑔(𝑥𝑥)

1

ε
dx 

� 𝑥𝑥 ∙ c ∙ x−r
1

ε
dx = � 𝑥𝑥 ∙ a ∙ e−b∙x

1

ε
dx 

Then the parameter b in exponential distribution is a function of r in Power-law distribution. As a 
result, both JS of Power-law and exponential distribution are the functions of parameter r. In addition, 
once the value of parameter c is determined, the value of a can also be calculated. Till now, we have 
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bring the JS of Power-law and exponential distribution into a comparable system. 

3. Validation analysis of Jaccard similarity in probabilistic distribution model 

3.1. Experiment settings 

Firstly, we chose the lower limit when calculating the JS of Power-law and exponential distribution. 
We set which indicates for the consideration that 0.05 is a significant value in the significant test. In 
actual applications, this setting is reasonable and necessary. For example, after translating a large con-
text into a vector of word occurrences, there would be many words which occur very few times and 
these words are likely to provide a very limited contribution to context classification in NLP systems. 
In another brain neuroscience example, there are many neurons which respond to multiply repeated 
stimuli with a very low probability. These cells are very likely to be uncorrelated to the given stimulus 
and their activity may be spontaneous or other stimulus correlated. As a result, setting a lower limit 
would have several advantages in practical analysis: 1) reducing the noise or target-uncorrelated factors, 
2) decreasing the number of attributes and decreasing the computational complexity. Here we set 𝑥𝑥1 =
ε = 0.05, 𝑥𝑥2 = 0.2. Decay slope in log-log systems with a step size of 0.1 in efficiency analysis of JS. 
All experiments were conducted in Matlab 2018a software. 

3.2. Efficiency analysis of Jaccard similarity 

 
Figure 1: Efficiency analysis of Jaccard similarity. (Red and blue line denote JS of Power-law and 

exponential distribution, respectively.) 

When 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐸𝐸𝐸𝐸𝐸𝐸) = 0, both Power-law and exponential distributions degenerate to 
a horizontal line which indicate that a system have equal number of attributes across all positive proba-
bility or intensity in the range of (ε 1]. The JS of Power-law and exponential distributions is 0.5 
(𝐽𝐽(𝑃𝑃𝑃𝑃𝑃𝑃) = 𝐽𝐽(𝐸𝐸𝐸𝐸𝐸𝐸) = 0.5) under this circumstance. In addition, this horizontal line distribution should 
be distinguished with the degenerated distribution of a point which indicates that all attributes have the 
same positive probability or intensity. The JS of both distributions is a decrease function of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 
However, the JS of Power-law distribution decrease more slowly than the JS of exponential distribution 
(Figure 1). 

We calculated the ratio of JS for both two distributions in the same value of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐽𝐽(𝑃𝑃𝑃𝑃𝑃𝑃)
𝐽𝐽(𝐸𝐸𝐸𝐸𝐸𝐸)  
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Figure 2: Jaccard similarity ratio. (The ratio is calculated as 𝐽𝐽(𝑃𝑃𝑃𝑃𝑃𝑃)/𝐽𝐽(𝐸𝐸𝐸𝐸𝐸𝐸). Green solid line denotes 

the ratio of JS. Black dotted line denotes the threshold of 1.0 which means 𝐽𝐽(𝑃𝑃𝑃𝑃𝑃𝑃) = 𝐽𝐽(𝐸𝐸𝐸𝐸𝐸𝐸).) 

The value of exhibited as a bell-shaped curve. When 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 2.60, it is bigger than that when 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∈ (0 2.60). Furthermore, it reaches the maximum of 2.99 (Figure 2). In addition, two example 
distributions with and are illustrated in Figure 3. JS is the function of decay parameter r and b, and is 
uncorrelated to the linear parameter c and a for Power-law and exponential distributions, respectively. 
We chose the linear parameter value to ensure which will make it more convenient to compare the 
properties of two probabilistic distribution models. (Figure 2). 

3.3. Numerical validation of efficiency analysis 

Here we validated the phenomenon about JS of probabilistic distribution model by a numerical 
method that JS of Power-law distribution is bigger than exponential distribution when 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∈ (0 2.60). 
(Figure 3) We generated probability vectors with 10,000 attributes which follows Power-law and expo-
nential distributions. It was set as 1.50 and 2.00 (Figure 4). Then object vectors z with 10,000 attributes 
were generated according to the determined probability vectors. According to the definition of classical 
JS, the value of these attributes are chosen from {0,1}. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = (𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝10000) 

𝑧𝑧 = (𝑧𝑧1, 𝑧𝑧2,⋯ , 𝑧𝑧10000) 

Where 𝑧𝑧k ∈ {0,1}. 

 
Figure 3: Example distributions in linear-linear and log-log systems. (Upper panels, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1.50. 

Bottom panels, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 2.00.) 
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Figure 4: Distribution of generated probability vectors according to Power-law and exponential distri-

bution. 

When determining the value of 𝑧𝑧k, we generated a random parameter which are evenly chosen from 
[0 1]. 

𝑧𝑧k = �1 if 𝑞𝑞k ≤ 𝑝𝑝k
0 else     

 

1,000 object vectors are generated independently for both two distributions. We calculated the 
pairwise JS of all 1,000 object vectors. When 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1.50, The numerical results of JS for Power-law 
distribution and exponential distribution are 𝐽𝐽(𝑃𝑃𝑃𝑃𝑃𝑃): and 𝐽𝐽(𝐸𝐸𝐸𝐸𝐸𝐸): 0.090 ± 0.006, respectively. Ratio 
of JS: 2.975 ± 0.213. When 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 2.00, The numerical results of JS for Power-law distribution and 
exponential distribution are 𝐽𝐽(𝑃𝑃𝑃𝑃𝑃𝑃): and 𝐽𝐽(𝐸𝐸𝐸𝐸𝐸𝐸): 0.070 ± 0.006, respectively. Ratio of JS: 2.046 ±
0.198. Cross validation results show there are no significant difference between analytical and numeri-
cal results about the ratio of JS (Figure 5). 

 
Figure 5: Cross validation of analytical and numerical results about the ratio of JS. 

4. Practical application to MNIST database 

The MNIST database of handwritten digits is a widely used benchmark for machine learning and 
pattern recognition techniques[34]. All the digits are size-normalized and centered in a 28×28 image. 
There are many studies which investigate classification methods and locality sensitive hashing methods 
basing MNIST database. However, the inner data structure and the global probabilistic distribution 
model underling the database was still unclear. For example, what distribution can properly model the 
size-normalized and centered images of digits and how random translation operations have effects on 
the similarity of image pairs?  

Firstly, we implemented random translations to all 60,000 training examples. The translation range 
of both dimension was and the maximum translation step was 25% (7/28) of the image size (Figure 6). 
Secondly, we analyzed the probabilistic distribution models of both original and translated images 
according to labels. We changed the gray images into binary images by setting the threshold of 0 and 
got an averaged image by calculating the mean value of pixels over the binary images which have the 
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same label. We got 10 averaged 28×28 images which denote the positive probability of each pixel 
corresponding to 10 labels. All the pixels can be seen as 784 (28×28) attributes. Then the distribution 
of all these positive probability was analyzed.  

 
Figure 6: Examples of original and randomly translated handwritten digits data in MNIST database. 

The percentage of attributes for both original and translated images decreases with the increase of 
positive probability. However, the original data exhibited a more power-law-like distribution and the 
randomly translated data exhibited a more exponential-like distribution in log-log systems. The distri-
bution of original data in log-log systems can be well fitted by a line which is actually a Power-law 
distribution function with the decay slope of 0.608 in the range of [0.01 0.5] (R2 = 0.925) (Figure 7). 

We then implemented JS experiments over the original and translated images using nearest neigh-
bor search procedure. We randomly chose 600 query images from the total 60,000 images (1%). For 
each query image, we find the top 1,200 (2%) nearest neighbors from the total images according to the 
value of JS. The distribution of JS of nearest neighbor for both original and randomly translated data 
can be well modeled by Gaussian distribution function: original μ = 0.472, 𝜎𝜎2 = 0.008,  𝑅𝑅2 = 0.985; 
translated μ = 0.329, 𝜎𝜎2 = 0.003,  𝑅𝑅2 = 0.992. Experimental results shown that original data which 
has power-law-like properties has significantly higher JS of nearest neighbor than the randomly trans-
lated data which exhibits exponential-like properties (Figure 8). 

 
Figure 7: Probabilistic properties of original and randomly translated data. 

 
Figure 8: Distribution of Jaccard similarity of nearest neighbor for both original and randomly trans-

lated data. 
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5. Conclusion 

Overall, this paper analyzed the efficiency of JS for probabilistic models in several ways. (1) The 
author deduced the generalization form of JS for probabilistic model and determined the calculation 
method of JS for Power-law and exponential distribution. (2) The author found the data with power-law 
probabilistic structure has higher JS comparing to a correspondent exponential distribution. We cross-
validated this observation by analytical and numerical approach. (3) The author applied the generalized 
JS to investigate the probabilistic properties of MNIST database. The author found the original normal-
ized data in MNIST exhibited a more power-law-like distribution and the randomly translated data 
exhibited a more exponential-like distribution. The data which have power-law-like properties have 
higher JS and are more efficient than the randomly translated data which exhibit exponential-like prop-
erties. This study provides possible guidelines for efficient information coding and processing methods. 
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