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Abstract: Diabetes, as a prevalent chronic metabolic disease, imposes a heavy medical burden and 
economic pressure on society. The long-term dysregulation of glucose metabolism leads to multi-system 
(including cardiovascular, renal, neurological, etc.) damage, which constitutes the core pathological 
features of diabetic complications. In recent years, ferroptosis and epigenetic regulation have emerged 
as new research directions, gradually becoming a burgeoning field of study. Increasing evidence 
suggests that epigenetics may play a significant role in regulating the relationship between ferroptosis 
and diabetic complications. Notably, the epigenetics of certain key iron metabolism genes may influence 
the epigenetic “switch” of the ferroptosis pathway. This article systematically reviews the molecular 
mechanisms of ferroptosis and epigenetics in diabetic microvascular complications, neuropathy, and 
other related conditions, while exploring potential therapeutic targets based on epigenetic regulation to 
provide a theoretical basis for the treatment of diabetic complications. 
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1. Introduction 

Diabetes Mellitus (DM) is a systemic metabolic disease characterized primarily by insufficient insulin 
secretion, insulin resistance, and chronic hyperglycemia [1]. According to statistics [2], by 2021, the 
number of people with diabetes globally is expected to exceed 536.6 million, and this number may rise 
to 783.2 million by 2045. This data indicates that diabetes has become a serious public health issue 
worldwide, significantly increasing the burden of diabetes-related healthcare expenditures in various 
countries. Most diabetes patients experience at least one complication [3], which includes microvascular 
complications such as diabetic nephropathy, diabetic neuropathy, and retinopathy, as well as 
macrovascular complications like diabetic cardiovascular disease [4]. These complications severely 
impact the quality of life of patients and significantly increase mortality rates. Therefore, studying the 
underlying mechanisms of diabetic complications and developing potential therapeutic targets has 
become an important issue that urgently needs to be addressed in clinical practice, which is especially 
critical for improving the health status of diabetes patients. 

Ferroptosis is a novel mode of cell death primarily triggered by the accumulation of lipid peroxides 
(such as ROS) caused by iron overload, which subsequently induces mitochondrial damage and oxidative 
stress, ultimately leading to cell death [5]. Dysregulation of glucose and lipid metabolism may be driven 
by ferroptosis [6], while chronic hyperglycemic conditions induce iron overload, triggering oxidative 
stress responses that result in ferroptosis [7]. Therefore, targeting ferroptosis holds promise as an effective 
strategy for treating various metabolic disorders, including type 2 diabetes [8][9]. Research indicates a 
close relationship between iron homeostasis imbalance and diabetes along with a series of related 
complications, which include diabetic kidney injury, endothelial dysfunction, and osteoporosis [10]. 
Therapeutic strategies targeting ferroptosis not only open new avenues for diabetes treatment but also 
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provide novel therapeutic targets for the intervention of diabetic complications. 

Epigenetics refers to the biological processes that regulate gene expression patterns and affect cellular 
functions without altering the DNA sequence. The primary regulatory mechanisms include DNA 
methylation, histone modifications, and non-coding RNA regulation [11]. Recent studies have suggested 
that the pathogenesis of diabetic complications may involve the interaction between epigenetics and 
ferroptosis. Epigenetic modifications may mediate hyperglycemia-induced ferroptosis by regulating the 
transcriptional activity of key ferroptosis marker genes. This article systematically reviews the latest 
research findings in this field, revealing the potential value of the epigenetic regulatory network of 
ferroptosis as a novel therapeutic target, thus providing important reference for treatment strategies of 
diabetic complications. 

2. Mechanisms of ferroptosis and its role in diabetic complications 

2.1. Ferroptosis and Its Core Regulatory Pathways 

In 2012, Dixon et al. [12] discovered a new form of cell death and confirmed that it has a unique 
molecular mechanism: its occurrence relies on the accumulation of reactive oxygen species (ROS) and 
lipid peroxidation generated by the Fenton reaction mediated by intracellular iron ions, and it can be 
specifically blocked by inhibitors such as ferrostatin-1 [13]. Notably, ferroptosis exhibits significant 
morphological changes, typically characterized by abnormal phenomena such as reduced mitochondrial 
volume, increased membrane density, and degradation or even disappearance of mitochondrial cristae 
[14]. These characteristic changes cannot be reversed by inhibitors of other types of cell death, such as 
apoptosis or necrosis [15]. Iron overload is a key factor that triggers ferroptosis. Excess iron catalyzes the 
conversion of hydrogen peroxide (H₂O₂) into highly reactive hydroxyl radicals through the Fenton 
reaction, which subsequently induces non-enzymatic lipid peroxidation, ultimately leading to damage to 
the cell membrane system [16]. The molecular regulatory network of ferroptosis mainly involves the 
following core components: the Xc⁻ system, the glutathione (GSH) biosynthesis pathway, the regulatory 
pathway of glutathione peroxidase 4 (GPX4) activity, as well as the dynamic balance between iron 
metabolism and lipid peroxidation metabolism [17]. In recent years, several studies have systematically 
elucidated the key signaling pathways regulating ferroptosis and their mechanisms of action, including 
prominent regulatory axes such as the p53-SLC7A11 axis, the KEAP1-NRF2 antioxidant stress pathway, 
and the Hippo-YAP/TAZ axis [18]. These pathways collectively form the regulatory network of ferroptosis 
by modulating key biological processes such as redox homeostasis, iron ion transport, and 
polyunsaturated fatty acid metabolism. 

2.2. Ferroptosis and Diabetic Complications 

Diabetic kidney disease (DKD), as the most common microvascular complication of diabetes, has 
become a major cause of end-stage renal disease, with its global prevalence continuing to rise [19]. 
Research indicates that programmed cell death is involved in the pathological processes of DKD, in 
which ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, plays a significant 
role in the pathogenesis of DKD [20]. Podocyte ferroptosis has been confirmed as a critical link in the 
progression of DKD. Pei et al. [21] found that Hirsutine significantly alleviates podocyte ferroptosis by 
activating the P53/GPX4 pathway. The epigenetic regulator PRDM16 has a protective effect against 
DKD. Zheng et al. [22] discovered that PRDM16 inhibits ferroptosis in glomerular epithelial cells and 
improves DKD by activating the NRF2/GPX4 axis or directly regulating GPX4 expression. Diabetic 
retinopathy (DR), another significant microvascular complication, is a major cause of vision impairment 
and blindness in adults [23]. Research by Wang et al. [24] indicated that resveratrol effectively inhibits 
ferroptosis in DR by regulating the Nrf2/GPX4 pathway. Luo et al. [25] further found that Piperine affects 
GPX4 expression by regulating the YAP-mediated Hippo signaling pathway, thereby inhibiting 
ferroptosis and alleviating DR. Regarding diabetic cardiomyopathy (DCM), Wang et al. [26] confirmed 
that fibroblast growth factor 21 (FGF21) plays a critical protective role in DCM by inhibiting 
cardiomyocyte ferroptosis through binding with FTH1 and FTL. The above studies indicate a significant 
relationship between ferroptosis and various diabetic complications. By directly or indirectly regulating 
key targets in the ferroptosis pathway, there is potential to provide new strategies for the treatment of 
diabetic complications. 
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3. Epigenetic Regulatory Mechanisms of Ferroptosis in Diabetes Complications 

3.1. Introduction to Epigenetics 

3.1.1. DNA Methylation 

DNA methylation is the earliest discovered and most extensively studied mechanism, specifically 
referring to the covalent modification of cytosine at the 5-position carbon atom catalyzed by DNA 
methyltransferases (DNMTs) [27]. This modification primarily occurs in regions rich in CpG dinucleotides 
known as "CpG islands" [28]. Research indicates that high methylation levels in CpG islands typically 
lead to gene silencing, while low methylation levels help maintain an open chromatin state, thereby 
promoting gene transcription activation [29]. In mammals, the DNMTs family comprises five members: 
DNMT1, DNMT2, DNMT3a, DNMT3b, and DNMT3L, among which only DNMT1, DNMT3a, and 
DNMT3b possess methyltransferase activity [30]. DNMT1 is the most abundant DNA methyltransferase, 
primarily responsible for maintaining methylation, whereas DNMT3a and DNMT3b are mainly involved 
in de novo methylation [31]. 

3.1.2. m6A Methylation 

N6-methyladenosine (m6A) methylation is a reversible RNA modification process mediated by a 
methyltransferase complex, defined as the selective addition of methyl groups to the N6 position of the 
adenine base in RNA [32]. As the most prevalent type of RNA epigenetic modification, m6A is widely 
found in various RNA molecules [33]. This modification process is regulated by three classes of regulatory 
proteins: methyltransferases (often referred to as "writer" proteins, such as METTL3 and METTL14), 
demethylases (called "eraser" proteins, including FTO and ALKBH5), and recognition proteins (termed 
"reader" proteins, such as YTHDC1/2, YTHDF1/2, and IGF2BP1) [34]. 

3.1.3. Long non-coding RNAs 

Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not possess protein-coding 
capabilities but play crucial regulatory roles. This group includes microRNAs (miRNAs), lncRNAs, and 
circular RNAs (circRNAs) [35]. These molecules participate in regulating key biological processes such 
as cell proliferation, differentiation, and apoptosis through various mechanisms, including epigenetic 
regulation, transcriptional regulation, and post-transcriptional modifications [36]. 

3.1.4. Histone Modifications 

Core histones (H2A, H2B, H3, and H4) assemble precisely with DNA to form the fundamental 
structural unit of chromatin [37]. The N-terminal tails of these histones can undergo a variety of post-
translational modifications, including classical modifications like methylation and acetylation, as well as 
non-classical modifications recently discovered through high-resolution mass spectrometry, such as 
butyrylation (Kbu), crotonylation (Kcr), β-hydroxybutyrylation (Kbhb), succinylation (Ksucc), and 
lactylation (Kla) [38]. These dynamic modification networks play a critical role in epigenetic regulation. 

3.2. Epigenetic Modifications Intervening in Ferroptosis Affecting Diabetic Complications 

3.2.1. DNA Methylation Intervention in Ferroptosis Affecting Diabetic Complications 

Research indicates that DNA methylation plays a significant role in the complications of diabetes by 
influencing key genes associated with ferroptosis-related diseases. KLF4 is a critical gene mediating 
diabetic nephropathy and is essential for maintaining normal kidney function, its downregulation is 
closely correlated with the onset of diabetic nephropathy [39]. A study by Cai et al. [40] found that berberine 
may inhibit ferroptosis and improve the progression of diabetic nephropathy by suppressing the 
hypermethylation of the KLF4 promoter region. Additionally, the Clusterin gene is essential for 
spermatogenesis in mammals [41], and its downregulation can lead to the activation of the AMPK and 
Nrf2 pathways [42]. Research by Xiao et al. [43] showed that DNMT3a is recruited to the Clusterin promoter, 
resulting in the downregulation of Clusterin, which ultimately impacts the AMPK pathway, exacerbating 
ferroptosis and inducing testicular damage caused by diabetes. 

On the other hand, DNA methylation may also directly affect ferroptosis marker genes, thereby 
mediating the ferroptosis pathway. GPX4, as a core regulatory factor, converts lipid peroxides into non-
toxic alcohols through reduction, thereby inhibiting ferroptosis, suppression of GPX4 expression is 
regarded as a hallmark of ferroptosis occurrence [44][45]. Some studies suggest that GPX4 expression may 
be regulated by DNA methylation [46]. In a diabetic osteoporosis (DOP) model, astragaloside VI may 
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influence GPX4 and modulate osteoblast ferroptosis by inhibiting the abnormal elevation of DNMT1 
and DNMT3A in DOP mice [47]. Therefore, the mediating role of DNA methylation in ferroptosis, along 
with its mechanisms and therapeutic targets affecting diabetic complications, requires further exploration 
and research. 

3.2.2. m6A Methylation Intervenes in Ferroptosis Affecting Diabetic Complications 

m6A methylation modification may play a significant role in the occurrence and development of 
diabetic complications by regulating the ferroptosis pathway [48]. For instance, ZHX2, a key liver 
transcription factor, maintains hepatic homeostasis by regulating liver-specific gene expression. In 
studies of diabetic liver injury [49], Meng et al. [50] revealed the important role of the ZHX2-YTHDF2-
ferroptosis axis. It was found that in a diabetic liver injury model, silencing ZHX2 inhibits the 
transcriptional expression of YTHDF2 by binding to the promoter region, and the downregulation of 
YTHDF2 further promotes ferroptosis by decreasing the expression of GPX4 and SLC7A11. In addition, 
Lin et al. discovered in a model of diabetic bone loss that the specific knockout of METTL3 significantly 
reduced the m6A methylation level of ASK1 in osteoblasts, thereby inhibiting the activation of the 
METTL3/ASK1/p38 signaling pathway and ultimately exerting an anti-ferroptotic effect [51]. These 
findings provide new theoretical evidence for the participation of m6A methylation in diabetic 
complications through the ferroptosis pathway. 

3.2.3. Non-coding RNAs Influence Diabetic Complications by Intervening in Ferroptosis 

Non-coding RNAs (ncRNAs) are closely related to the occurrence and development of various 
diseases, such as cancer [52] and diabetic complications [53]. Recent studies suggest that they may play a 
role in the pathological processes of diabetic complications by regulating ferroptosis [54]. In-depth 
research on the specific molecular mechanisms by which ncRNAs influence diabetic complications 
through ferroptosis may provide new molecular targets and intervention strategies for clinical treatment, 
offering significant theoretical and clinical value. p53 is an important transcription factor involved in the 
regulation of ferroptosis, and it has been confirmed to promote ferroptosis by inhibiting the expression 
of SLC7A11 [55]. Fang et al. [56] found that in high-glucose-induced retinal injury cells and mouse models, 
miR-214-3p influences the SLC7A11/GPX4 signaling pathway by regulating the expression of p53, 
thereby promoting ferroptosis, suggesting that miR-214-3p may be a potential therapeutic target for 
diabetic retinopathy. miR-93 is associated with a high risk of diabetic retinopathy [57]. Zhan et al. [58] 
discovered that vitamin D could downregulate the expression of miR-93 in retinal microvascular 
endothelial cells under high-glucose conditions, thereby alleviating oxidative stress and ferroptosis. 
Regarding LncRNA regulation, SNHG1, as a LncRNA, has been shown to influence the pathological 
process of liver cancer by regulating ferroptosis-related genes [59]. In addition, in diabetic nephropathy, 
the knockout of LncRNA SNHG1 can restore its expression by interacting with miR-16-5p, thereby 
downregulating the key ferroptosis gene ASCL4 and exerting an anti-ferroptotic and kidney-protective 
effect [60]. Ni et al. found that in a diabetic cardiomyopathy mouse model, the expression of LncRNA 
ZFAS1 was significantly upregulated, and it could promote ferroptosis by binding to miR-150-5p to 
regulate the expression of CCND2, suggesting that targeting ZFAS1 may be a potential strategy for 
treating diabetic cardiomyopathy [61]. Furthermore, Jin et al. [62] identified a novel circular RNA 
(mmu_circRNA_0000309) that can upregulate GPX4 expression by competitively binding to miR-188-
3p, inhibiting ferroptosis and improving diabetic nephropathy. In summary, non-coding RNAs can play 
important roles in the occurrence and development of diabetic complications by directly regulating key 
ferroptosis genes or interacting with other RNA molecules to influence the ferroptosis signaling pathway. 
Targeting these non-coding RNAs may provide new intervention strategies for the treatment of diabetic 
complications. 

3.2.4. Histone Modifications Intervene in Ferroptosis Affecting Diabetic Complications 

Histone modifications play a crucial role in regulating ferroptosis and intervening in the occurrence 
and development of diabetic complications. Lysine acetyltransferase 2A (KAT2A), as an important 
acetyltransferase, regulates gene transcription by promoting histone acetylation [63]. Research by Zhen et 
al. [64] indicates that KAT2A enhances the enrichment of H3K27ac and H3K9ac in the promoter regions 
of target genes, leading to the upregulation of ferroptosis-related factors Tfrc and Hmox1, which 
ultimately promotes the ferroptosis process. Li et al. [65] found that elevated levels of histone H3K27 
butyrylation in a high-glucose environment suppress SQSTM1 gene transcription, resulting in reduced 
autophagy levels. This suppression of autophagy is associated with the upregulation of ASCL4 
expression, while the activation of the ferroptosis core gene ASCL4 promotes ferroptosis and 
subsequently affects the wound healing process. However, inhibiting H3K27 butyrylation can restore 
SQSTM1 expression and downregulate ASCL4 levels, thereby effectively suppressing ferroptosis. In 
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vitro studies have shown that knockdown of the histone methyltransferase EZH2 in HK-2 cells induced 
by high glucose can alleviate ferroptosis, suggesting that EZH2 may serve as a potential therapeutic target 
for diabetic nephropathy [66]. The molecular mechanisms by which histone modifications regulate 
ferroptosis and subsequently intervene in diabetic complications remain to be further explored. 

4. Conclusions 

This article systematically reviews the epigenetic regulatory mechanisms of ferroptosis and its 
pathological role in diabetic complications. Ferroptosis, a novel iron-dependent form of programmed cell 
death, has been confirmed to be closely associated with various pathological processes, including cancer 
and neurodegenerative diseases, and has received increasing attention in the field of diabetic 
complications in recent years. This review integrates and analyzes, from an epigenetic perspective, the 
regulatory networks of DNA methylation modifications, histone modifications, and non-coding RNA 
regulation in ferroptosis for the first time, elucidating how these epigenetic mechanisms influence the 
pathological processes of complications such as diabetic nephropathy, retinal lesions, and peripheral 
neuropathy. Although current research has revealed some associations between epigenetic regulation and 
key ferroptosis genes (such as GPX4, ACSL4, and SLC7A11), the targeted development of epigenetic 
drugs is still in the exploratory phase. Future research should build intervention strategies based on the 
epigenetic-ferroptosis axis and promote the clinical translation of related drugs, providing new targets 
and ideas for the prevention and treatment of diabetic complications. 
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