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Abstract: This paper presents an optimized implementation of Proximal Policy Optimization (PPO) for 
controlling an AI agent in the Super Mario environment. By introducing enhancements such as adaptive 
clipping, dual-clip objectives, and experience replay, our model addresses common limitations in 
standard PPO, such as unstable updates and sample inefficiency. Experimental results demonstrate that 
the enhanced PPO model achieves a completion rate exceeding 95% across Super Mario levels, utilizing 
fewer samples and exhibiting more stable convergence than baseline models. This study highlights the 
effectiveness of PPO in dynamic decision-making scenarios and provides a foundation for future 
reinforcement learning advancements. 
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1. Introduction 

Reinforcement learning (RL) has advanced significantly, enabling AI agents to perform complex 
tasks across various domains, from autonomous driving to game environments. A cornerstone of these 
advancements is policy optimization, where Proximal Policy Optimization (PPO) has emerged as one of 
the most successful algorithms[1][2]. PPO was developed to address limitations in earlier policy gradient 
methods by maintaining a balance between learning stability and sample efficiency. Unlike traditional 
methods, PPO uses a clipped objective function, which constrains policy updates and enhances stability 
across training iterations. This objective function optimizes the policy within a trust region, allowing the 
agent to make consistent progress without sudden policy shifts[3][4]. 

The effectiveness of PPO has been demonstrated in dynamic environments such as OpenAI’s Dota 2 
and autonomous navigation, where it enables high levels of adaptability and precision[5][6]. As a model-
free algorithm, PPO is particularly useful in real-time applications, where it minimizes computation while 
maximizing learning speed. Its structure, combining an actor-critic architecture with advantage 
estimation, facilitates stable policy updates, even in complex decision-making tasks. 

In this study, we employ PPO to develop an AI agent for the classic Super Mario game, a task 
requiring both precision in navigation and adaptability to complex, sequential challenges. Leveraging 
recent advancements in PPO, we incorporate enhancements such as adaptive clipping and dual-clip 
objectives to further stabilize learning and improve sample efficiency. The following sections detail the 
implementation of PPO in the Super Mario environment, followed by modifications to improve 
robustness and training efficiency. 

This research is organized as follows: Section 2 presents the PPO framework and introduces our 
modified algorithms. Section 3 details the experimental setup, while Section 4 provides results comparing 
the baseline PPO and enhanced models. Finally, Section 5 concludes with insights and future directions.  

2. PPO Algorithm Model Construction 

Compared to the traditional Policy Gradient (PG) algorithm, which updates the gradient after each 
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data sample, the efficiency of PG is notably low due to its incremental update nature. This limitation in 
sample efficiency becomes particularly evident in high-dimensional, complex policy spaces. To address 
this, Schulman et al. introduced the PPO algorithm, which leverages a novel objective function, enabling 
multiple epochs of minibatch updates. This significantly enhances sample efficiency and overall learning 
stability[7][8]. 

Unlike Trust Region Policy Optimization (TRPO), which also constrains policy updates to improve 
stability, PPO achieves a similar effect through a simpler mechanism. TRPO requires complex 
constrained optimization, while PPO employs a clipped objective function that limits the extent of each 
update without compromising stability. Additionally, PPO is fundamentally an “on-policy” algorithm, 
meaning each policy update is based only on data sampled from the latest policy. In contrast, “off-policy” 
algorithms, which can use data from multiple policy versions, are inherently more sample-efficient. 

By incorporating importance sampling, PPO partially achieves off-policy effects within an on-policy 
framework. This allows PPO to make use of data from multiple iterations of the policy, thus accelerating 
convergence—a crucial advantage given that interaction with the environment to collect samples is often 
time-consuming and computationally demanding. The primary objective of PPO is rooted in PG 
optimization, where the basic policy gradient formula is represented as: 

𝑔𝑔 = 𝐸𝐸𝑡𝑡[𝛻𝛻𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡 ∣∣ 𝑠𝑠𝑡𝑡 )𝐴𝐴𝑡𝑡]                             (1) 

Here,πθ denotes the stochastic policy, and Atrepresents the advantage estimate at timestep ttt, often 
calculated using Generalized Advantage Estimation (GAE) to reduce variance. The empirical mean Et 
over batch samples approximates the expected value, thereby avoiding the need for a full population 
gradient computation. The original objective function for standard PG can be expressed as: 

𝐿𝐿𝐿𝐿𝐿𝐿(𝜃𝜃) = 𝐸𝐸𝑡𝑡[𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡 ∣∣ 𝑠𝑠𝑡𝑡 )𝐴𝐴𝑡𝑡]                           (2) 

In standard policy gradient updates, each parameter update yields a new policy πnewand new samples 
must be collected from the environment based on this updated policy. Consequently, data collected with 
the previous policy, πold cannot be reused. In PPO, however, the use of importance sampling allows 
retention of data generated under previous policies, improving sample efficiency and enabling more 
robust policy learning. 

3. PPO Framework for Super Mario AI 

PPO algorithm is an on-policy reinforcement learning method recognized for its stability and 
adaptability across various complex environments. To develop an efficient AI for Super Mario, the PPO 
algorithm must be adapted to account for the sequential decision-making structure inherent to video 
games research, we employ a PPO-based model with an actor-critic framework to balance policy 
exploration and exploitation. The model is updated iteratively using mini-batch stochastic gradient 
descent, which optimizes the policy while maintaining low computational complexity. 

Advantage with Generalized Advantage Estimation (GAE): To improve sample efficiency, we 
incorporate Generalized Advantage Estimation (GAE), which reduces variance in the advantage function 
and stabilizes training. The advantage estimation in GAE is calculated as: 

In standard policy gradient methods, each policy update creates a new policy, denoted as πnew. After 
each update, the agent interacts with the environment based on this updated policy, generating new 
samples, while discarding previous samples generated under πold. Consequently, data from becomes 
unusable, resulting in limited sample efficiency. In PPO, however, importance sampling is utilized to 
partially mitigate this limitation by allowing data from previous policies to be incorporated into the 
current update, provided that the distribution shift between policies is small. 

Importance sampling operates under the assumption x ∼ p, allowing the expectation 𝐸𝐸[𝑓𝑓(𝑥𝑥)] to be 
calculated as follows: 

𝐸𝐸𝐸𝐸 ∼ 𝑝𝑝[𝑓𝑓(𝑥𝑥)] = ∫𝑞𝑞(𝑥𝑥)𝑝𝑝(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑞𝑞(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝐸𝐸𝐸𝐸 ∼ 𝑞𝑞[𝑞𝑞(𝑥𝑥)𝑝𝑝(𝑥𝑥)𝑓𝑓(𝑥𝑥)]          (3) 

where p(x) is the true distribution, and 𝑞𝑞(𝑥𝑥) represents the distribution from which samples x are 
drawn. This formulation ensures that samples drawn from 𝑞𝑞(𝑥𝑥) can approximate 𝑝𝑝(𝑥𝑥) by scaling each 
sample with the importance weight q(x)

𝑝𝑝(𝑥𝑥)
.  

The variance of 𝑓𝑓(𝑥𝑥) under distribution 𝑝𝑝 is given by: 
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𝑉𝑉𝑉𝑉𝑟𝑟𝑥𝑥~𝑞𝑞[𝑓𝑓(𝑥𝑥)] = 𝐸𝐸𝑥𝑥~𝑞𝑞[𝑓𝑓(𝑥𝑥)2] − �𝐸𝐸𝑥𝑥~𝑞𝑞[𝑓𝑓(𝑥𝑥)]�2]                  (4) 

After applying importance sampling, the variance changes to: 

𝑉𝑉𝑉𝑉𝑟𝑟𝑥𝑥~𝑞𝑞[𝑞𝑞(𝑥𝑥)𝑝𝑝(𝑥𝑥)𝑓𝑓(𝑥𝑥)] = 𝐸𝐸𝑥𝑥~𝑞𝑞��𝑞𝑞(𝑥𝑥)𝑝𝑝(𝑥𝑥)𝑓𝑓(𝑥𝑥)�2� − �𝐸𝐸𝑥𝑥~𝑞𝑞[𝑞𝑞(𝑥𝑥)𝑝𝑝(𝑥𝑥)𝑓𝑓(𝑥𝑥)]�2                  (5) 

where large discrepancies between 𝑝𝑝(𝑥𝑥) andq(𝑥𝑥) lead to substantial variance increases, particularly 
when the sample size is small. To mitigate this variance, PPO constrains the deviation between πnew 
and πold by adding a clipping mechanism to the objective function. 

In PPO, the gradient update with importance sampling is expressed as: 

𝒈𝒈 = 𝐸𝐸𝐸𝐸 ∼ 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜[𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝜋𝜋𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻(𝑎𝑎𝑎𝑎 ∣ 𝑠𝑠𝑠𝑠 )𝐴𝐴𝑡𝑡]                                   (6) 

Since 𝜋𝜋𝜃𝜃𝛻𝛻𝒍𝒍𝒍𝒍𝒍𝒍𝜋𝜋𝜃𝜃 = 𝛻𝛻𝜋𝜋𝜃𝜃, this can be simplified to: 

𝑔𝑔 = 𝐸𝐸𝐸𝐸 ∼ 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜[𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝛻𝛻𝛻𝛻𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝑡𝑡]                           (7) 

The objective function then becomes: 

𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝐸𝐸 ∼ 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜[𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝜋𝜋𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜]                       (8) 

A key consideration in importance sampling is that πnew\pi_{new}πnew and πold\pi_{old}πold 
should be sufficiently close to avoid high variance. To achieve this, PPO employs a clipping strategy that 
constrains the policy ratio 𝜋𝜋𝜋𝜋(𝑎𝑎∣𝑠𝑠 )

𝜋𝜋𝜋𝜋 𝒌𝒌(𝑎𝑎∣∣𝑠𝑠 )
 within a specified range, typically 1 –  ϵ to 1 +  ϵ as shown in 

the PPO objective function: 

𝐿𝐿(𝑠𝑠,𝑎𝑎,𝜃𝜃𝑘𝑘,𝜃𝜃) = 𝒎𝒎𝒎𝒎𝒎𝒎� 𝜋𝜋𝜃𝜃(𝑎𝑎∣𝑠𝑠 )
𝜋𝜋𝜃𝜃𝑘𝑘(𝑎𝑎∣𝑠𝑠 )

𝐴𝐴𝜋𝜋𝜃𝜃𝑘𝑘(𝑠𝑠,𝑎𝑎), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 𝜋𝜋𝜃𝜃(𝑎𝑎∣𝑠𝑠 )
𝜋𝜋𝜃𝜃𝑘𝑘(𝑎𝑎∣𝑠𝑠 )

, 1 − 𝜖𝜖, 1 + 𝜖𝜖�𝐴𝐴𝜋𝜋𝜃𝜃𝑘𝑘(𝑠𝑠,𝑎𝑎)�     (9) 

In this expression, the policy ratio represent the probability ratio of action a under the new and old 
policies, respectively. The advantage AAA can be positive or negative, yielding different outcomes: 

Algorithm 1 PPO, Actor-Critic Style 
for iteration = 1, 2, … do 
    for actor = 1, 2, …, N do 
        Run policy 𝜋𝜋𝜃𝜃𝑜𝑜ld in environment for T timesteps 
        Compute advantage estimates Â_1, …, Â_T 
    end for 
    Optimize surrogate L with respect toθ, with K epochs and minibatch size M ≤ NT 
    θ_old ← θ 
end for 

• When A>0A > 0A>0: The goal is to maximize reward, so ratio>1. In this case, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝒎𝒎𝒎𝒎𝒎𝒎(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 1 + 𝜖𝜖) × 𝐴𝐴. 

• When A<0A < 0A<0: The action has a negative return, so ratio<1\text{ratio} < 1ratio<1. To 
minimize variance, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚 𝑛𝑛(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 1 − 𝜖𝜖) × 𝐴𝐴 

This clipping strategy limits the variance between πold and π𝑛𝑛𝑛𝑛𝑛𝑛, effectively maintaining sample 
efficiency without compromising the policy stability of the agent.  

4. Experimental Setup and Result 

4.1 Experimental Setup 

The Super Mario environment was configured using the OpenAI Gym toolkit, providing an 
interactive platform with dynamic states and actions. Training was conducted over multiple episodes, 
with parameters such as learning rate 1e4, discount factor γ = 0.99, and batch size optimized based on 
prior PPO-based implementations. 

To enhance sample efficiency, we introduced Generalized Advantage Estimation (GAE), which 
reduces the variance in advantage estimates, leading to more stable policy updates. Our model also 
incorporates experience replay and dual-clip objectives, which have been shown to improve performance 
in reinforcement learning by utilizing past experience for off-policy learning. 
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4.2 Results 

Experiments demonstrated the PPO agent's proficiency in navigating various levels of Super Mario 
with a high degree of success. Key findings from the experiment include: 

 
Figure 1: Training loss history 

Efficiency in Level Completion: The enhanced PPO model achieved a completion rate of 95% across 
varying difficulty levels in Super Mario, significantly outperforming the baseline PPO model without 
adaptations.    

The training loss history is as Figure 1. The vertical axis represents the loss values, ranging from 0 to 
80, and the horizontal axis represents the number of iterations, ranging from 0 to 200. 

It can be seen from the chart that the loss value is very high at the initial stage, close to around 70. 
However, as the number of iterations increases, the loss value decreases rapidly. At about 50 iterations, 
the loss value has dropped to about 20, and then the decreasing trend becomes gradually slower. Around 
100 iterations, the loss value drops below 10 and continues to decrease slowly. After 150 iterations, the 
loss value tends to stabilize and approaches 0. The decrease in loss values indicates that the model is 
constantly being optimized, and the stabilization of loss values may mean that the model has converged. 

5. Conclusions 

This study presents an optimized PPO-based reinforcement learning model for controlling an AI 
agent in the Super Mario environment. Enhancements such as adaptive clipping, dual-clip objectives, 
and experience replay address common limitations in PPO, such as instability and sample inefficiency. 
Experimental results show that the enhanced PPO model outperforms baseline versions, achieving a high 
success rate in completing game levels and demonstrating robust adaptability across complex tasks. 
These findings contribute to broader applications of PPO in dynamic and variable environments, paving 
the way for further research on advanced reinforcement learning techniques. 

Future work will explore the incorporation of asynchronous learning and multi-agent reinforcement 
setups, as well as testing the model in more diverse environments, to enhance the generalizability of the 
approach. 
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