
Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 11: 150-154, DOI: 10.25236/AJCIS.2024.071120

Published by Francis Academic Press, UK
-150-

Enhanced Proximal Policy Optimization for Complex
Game AI: Applying Reinforcement Learning to
Super Mario

Lei Wang1,a, Bo Li2,b, Shengyu Wang3,c, Tingting Wang4,d,*

1Department of Continuous Education, Chengdu Neusoft University, Chengdu, China
2Department of Intelligent Science and Engineering, Chengdu Neusoft University, Chengdu, China
3Chengdu Shude High School, Chengdu, China
4Department of Elementary Education, Chengdu Neusoft University, Chengdu, China
awanglei@nsu.edu.cn, bli-bo@nsu.edu.cn, cbromo0707@foxmail.com, dwangtingting@nsu.edu.cn
*Corresponding author

Abstract: This paper presents an optimized implementation of Proximal Policy Optimization (PPO) for
controlling an AI agent in the Super Mario environment. By introducing enhancements such as adaptive
clipping, dual-clip objectives, and experience replay, our model addresses common limitations in
standard PPO, such as unstable updates and sample inefficiency. Experimental results demonstrate that
the enhanced PPO model achieves a completion rate exceeding 95% across Super Mario levels, utilizing
fewer samples and exhibiting more stable convergence than baseline models. This study highlights the
effectiveness of PPO in dynamic decision-making scenarios and provides a foundation for future
reinforcement learning advancements.

Keywords: PPO, Super Mario, Reinforcement Learning, Game AI, Sample Efficiency

1. Introduction

Reinforcement learning (RL) has advanced significantly, enabling AI agents to perform complex
tasks across various domains, from autonomous driving to game environments. A cornerstone of these
advancements is policy optimization, where Proximal Policy Optimization (PPO) has emerged as one of
the most successful algorithms[1][2]. PPO was developed to address limitations in earlier policy gradient
methods by maintaining a balance between learning stability and sample efficiency. Unlike traditional
methods, PPO uses a clipped objective function, which constrains policy updates and enhances stability
across training iterations. This objective function optimizes the policy within a trust region, allowing the
agent to make consistent progress without sudden policy shifts[3][4].

The effectiveness of PPO has been demonstrated in dynamic environments such as OpenAI’s Dota 2
and autonomous navigation, where it enables high levels of adaptability and precision[5][6]. As a model-
free algorithm, PPO is particularly useful in real-time applications, where it minimizes computation while
maximizing learning speed. Its structure, combining an actor-critic architecture with advantage
estimation, facilitates stable policy updates, even in complex decision-making tasks.

In this study, we employ PPO to develop an AI agent for the classic Super Mario game, a task
requiring both precision in navigation and adaptability to complex, sequential challenges. Leveraging
recent advancements in PPO, we incorporate enhancements such as adaptive clipping and dual-clip
objectives to further stabilize learning and improve sample efficiency. The following sections detail the
implementation of PPO in the Super Mario environment, followed by modifications to improve
robustness and training efficiency.

This research is organized as follows: Section 2 presents the PPO framework and introduces our
modified algorithms. Section 3 details the experimental setup, while Section 4 provides results comparing
the baseline PPO and enhanced models. Finally, Section 5 concludes with insights and future directions.

2. PPO Algorithm Model Construction

Compared to the traditional Policy Gradient (PG) algorithm, which updates the gradient after each

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 11: 150-154, DOI: 10.25236/AJCIS.2024.071120

Published by Francis Academic Press, UK
-151-

data sample, the efficiency of PG is notably low due to its incremental update nature. This limitation in
sample efficiency becomes particularly evident in high-dimensional, complex policy spaces. To address
this, Schulman et al. introduced the PPO algorithm, which leverages a novel objective function, enabling
multiple epochs of minibatch updates. This significantly enhances sample efficiency and overall learning
stability[7][8].

Unlike Trust Region Policy Optimization (TRPO), which also constrains policy updates to improve
stability, PPO achieves a similar effect through a simpler mechanism. TRPO requires complex
constrained optimization, while PPO employs a clipped objective function that limits the extent of each
update without compromising stability. Additionally, PPO is fundamentally an “on-policy” algorithm,
meaning each policy update is based only on data sampled from the latest policy. In contrast, “off-policy”
algorithms, which can use data from multiple policy versions, are inherently more sample-efficient.

By incorporating importance sampling, PPO partially achieves off-policy effects within an on-policy
framework. This allows PPO to make use of data from multiple iterations of the policy, thus accelerating
convergence—a crucial advantage given that interaction with the environment to collect samples is often
time-consuming and computationally demanding. The primary objective of PPO is rooted in PG
optimization, where the basic policy gradient formula is represented as:

𝑔𝑔 = 𝐸𝐸𝑡𝑡[𝛻𝛻𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡 ∣∣ 𝑠𝑠𝑡𝑡)𝐴𝐴𝑡𝑡] (1)

Here,πθ denotes the stochastic policy, and Atrepresents the advantage estimate at timestep ttt, often
calculated using Generalized Advantage Estimation (GAE) to reduce variance. The empirical mean Et
over batch samples approximates the expected value, thereby avoiding the need for a full population
gradient computation. The original objective function for standard PG can be expressed as:

𝐿𝐿𝐿𝐿𝐿𝐿(𝜃𝜃) = 𝐸𝐸𝑡𝑡[𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡 ∣∣ 𝑠𝑠𝑡𝑡)𝐴𝐴𝑡𝑡] (2)

In standard policy gradient updates, each parameter update yields a new policy πnewand new samples
must be collected from the environment based on this updated policy. Consequently, data collected with
the previous policy, πold cannot be reused. In PPO, however, the use of importance sampling allows
retention of data generated under previous policies, improving sample efficiency and enabling more
robust policy learning.

3. PPO Framework for Super Mario AI

PPO algorithm is an on-policy reinforcement learning method recognized for its stability and
adaptability across various complex environments. To develop an efficient AI for Super Mario, the PPO
algorithm must be adapted to account for the sequential decision-making structure inherent to video
games research, we employ a PPO-based model with an actor-critic framework to balance policy
exploration and exploitation. The model is updated iteratively using mini-batch stochastic gradient
descent, which optimizes the policy while maintaining low computational complexity.

Advantage with Generalized Advantage Estimation (GAE): To improve sample efficiency, we
incorporate Generalized Advantage Estimation (GAE), which reduces variance in the advantage function
and stabilizes training. The advantage estimation in GAE is calculated as:

In standard policy gradient methods, each policy update creates a new policy, denoted as πnew. After
each update, the agent interacts with the environment based on this updated policy, generating new
samples, while discarding previous samples generated under πold. Consequently, data from becomes
unusable, resulting in limited sample efficiency. In PPO, however, importance sampling is utilized to
partially mitigate this limitation by allowing data from previous policies to be incorporated into the
current update, provided that the distribution shift between policies is small.

Importance sampling operates under the assumption x ∼ p, allowing the expectation 𝐸𝐸[𝑓𝑓(𝑥𝑥)] to be
calculated as follows:

𝐸𝐸𝐸𝐸 ∼ 𝑝𝑝[𝑓𝑓(𝑥𝑥)] = ∫𝑞𝑞(𝑥𝑥)𝑝𝑝(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑞𝑞(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝐸𝐸𝐸𝐸 ∼ 𝑞𝑞[𝑞𝑞(𝑥𝑥)𝑝𝑝(𝑥𝑥)𝑓𝑓(𝑥𝑥)] (3)

where p(x) is the true distribution, and 𝑞𝑞(𝑥𝑥) represents the distribution from which samples x are
drawn. This formulation ensures that samples drawn from 𝑞𝑞(𝑥𝑥) can approximate 𝑝𝑝(𝑥𝑥) by scaling each
sample with the importance weight q(x)

𝑝𝑝(𝑥𝑥)
.

The variance of 𝑓𝑓(𝑥𝑥) under distribution 𝑝𝑝 is given by:

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 11: 150-154, DOI: 10.25236/AJCIS.2024.071120

Published by Francis Academic Press, UK
-152-

𝑉𝑉𝑉𝑉𝑟𝑟𝑥𝑥~𝑞𝑞[𝑓𝑓(𝑥𝑥)] = 𝐸𝐸𝑥𝑥~𝑞𝑞[𝑓𝑓(𝑥𝑥)2] − �𝐸𝐸𝑥𝑥~𝑞𝑞[𝑓𝑓(𝑥𝑥)]�2] (4)

After applying importance sampling, the variance changes to:

𝑉𝑉𝑉𝑉𝑟𝑟𝑥𝑥~𝑞𝑞[𝑞𝑞(𝑥𝑥)𝑝𝑝(𝑥𝑥)𝑓𝑓(𝑥𝑥)] = 𝐸𝐸𝑥𝑥~𝑞𝑞��𝑞𝑞(𝑥𝑥)𝑝𝑝(𝑥𝑥)𝑓𝑓(𝑥𝑥)�2� − �𝐸𝐸𝑥𝑥~𝑞𝑞[𝑞𝑞(𝑥𝑥)𝑝𝑝(𝑥𝑥)𝑓𝑓(𝑥𝑥)]�2 (5)

where large discrepancies between 𝑝𝑝(𝑥𝑥) andq(𝑥𝑥) lead to substantial variance increases, particularly
when the sample size is small. To mitigate this variance, PPO constrains the deviation between πnew
and πold by adding a clipping mechanism to the objective function.

In PPO, the gradient update with importance sampling is expressed as:

𝒈𝒈 = 𝐸𝐸𝐸𝐸 ∼ 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜[𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝜋𝜋𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻(𝑎𝑎𝑎𝑎 ∣ 𝑠𝑠𝑠𝑠)𝐴𝐴𝑡𝑡] (6)

Since 𝜋𝜋𝜃𝜃𝛻𝛻𝒍𝒍𝒍𝒍𝒍𝒍𝜋𝜋𝜃𝜃 = 𝛻𝛻𝜋𝜋𝜃𝜃, this can be simplified to:

𝑔𝑔 = 𝐸𝐸𝐸𝐸 ∼ 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜[𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝛻𝛻𝛻𝛻𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝑡𝑡] (7)

The objective function then becomes:

𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝐸𝐸 ∼ 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜[𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝜋𝜋𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜] (8)

A key consideration in importance sampling is that πnew\pi_{new}πnew and πold\pi_{old}πold
should be sufficiently close to avoid high variance. To achieve this, PPO employs a clipping strategy that
constrains the policy ratio 𝜋𝜋𝜋𝜋(𝑎𝑎∣𝑠𝑠)

𝜋𝜋𝜋𝜋 𝒌𝒌(𝑎𝑎∣∣𝑠𝑠)
 within a specified range, typically 1 – ϵ to 1 + ϵ as shown in

the PPO objective function:

𝐿𝐿(𝑠𝑠,𝑎𝑎,𝜃𝜃𝑘𝑘,𝜃𝜃) = 𝒎𝒎𝒎𝒎𝒎𝒎� 𝜋𝜋𝜃𝜃(𝑎𝑎∣𝑠𝑠)
𝜋𝜋𝜃𝜃𝑘𝑘(𝑎𝑎∣𝑠𝑠)

𝐴𝐴𝜋𝜋𝜃𝜃𝑘𝑘(𝑠𝑠,𝑎𝑎), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 𝜋𝜋𝜃𝜃(𝑎𝑎∣𝑠𝑠)
𝜋𝜋𝜃𝜃𝑘𝑘(𝑎𝑎∣𝑠𝑠)

, 1 − 𝜖𝜖, 1 + 𝜖𝜖�𝐴𝐴𝜋𝜋𝜃𝜃𝑘𝑘(𝑠𝑠,𝑎𝑎)� (9)

In this expression, the policy ratio represent the probability ratio of action a under the new and old
policies, respectively. The advantage AAA can be positive or negative, yielding different outcomes:

Algorithm 1 PPO, Actor-Critic Style
for iteration = 1, 2, … do
 for actor = 1, 2, …, N do
 Run policy 𝜋𝜋𝜃𝜃𝑜𝑜ld in environment for T timesteps
 Compute advantage estimates Â_1, …, Â_T
 end for
 Optimize surrogate L with respect toθ, with K epochs and minibatch size M ≤ NT
 θ_old ← θ
end for

• When A>0A > 0A>0: The goal is to maximize reward, so ratio>1. In this case, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝒎𝒎𝒎𝒎𝒎𝒎(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 1 + 𝜖𝜖) × 𝐴𝐴.

• When A<0A < 0A<0: The action has a negative return, so ratio<1\text{ratio} < 1ratio<1. To
minimize variance, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚 𝑛𝑛(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 1 − 𝜖𝜖) × 𝐴𝐴

This clipping strategy limits the variance between πold and π𝑛𝑛𝑛𝑛𝑛𝑛, effectively maintaining sample
efficiency without compromising the policy stability of the agent.

4. Experimental Setup and Result

4.1 Experimental Setup

The Super Mario environment was configured using the OpenAI Gym toolkit, providing an
interactive platform with dynamic states and actions. Training was conducted over multiple episodes,
with parameters such as learning rate 1e4, discount factor γ = 0.99, and batch size optimized based on
prior PPO-based implementations.

To enhance sample efficiency, we introduced Generalized Advantage Estimation (GAE), which
reduces the variance in advantage estimates, leading to more stable policy updates. Our model also
incorporates experience replay and dual-clip objectives, which have been shown to improve performance
in reinforcement learning by utilizing past experience for off-policy learning.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 11: 150-154, DOI: 10.25236/AJCIS.2024.071120

Published by Francis Academic Press, UK
-153-

4.2 Results

Experiments demonstrated the PPO agent's proficiency in navigating various levels of Super Mario
with a high degree of success. Key findings from the experiment include:

Figure 1: Training loss history

Efficiency in Level Completion: The enhanced PPO model achieved a completion rate of 95% across
varying difficulty levels in Super Mario, significantly outperforming the baseline PPO model without
adaptations.

The training loss history is as Figure 1. The vertical axis represents the loss values, ranging from 0 to
80, and the horizontal axis represents the number of iterations, ranging from 0 to 200.

It can be seen from the chart that the loss value is very high at the initial stage, close to around 70.
However, as the number of iterations increases, the loss value decreases rapidly. At about 50 iterations,
the loss value has dropped to about 20, and then the decreasing trend becomes gradually slower. Around
100 iterations, the loss value drops below 10 and continues to decrease slowly. After 150 iterations, the
loss value tends to stabilize and approaches 0. The decrease in loss values indicates that the model is
constantly being optimized, and the stabilization of loss values may mean that the model has converged.

5. Conclusions

This study presents an optimized PPO-based reinforcement learning model for controlling an AI
agent in the Super Mario environment. Enhancements such as adaptive clipping, dual-clip objectives,
and experience replay address common limitations in PPO, such as instability and sample inefficiency.
Experimental results show that the enhanced PPO model outperforms baseline versions, achieving a high
success rate in completing game levels and demonstrating robust adaptability across complex tasks.
These findings contribute to broader applications of PPO in dynamic and variable environments, paving
the way for further research on advanced reinforcement learning techniques.

Future work will explore the incorporation of asynchronous learning and multi-agent reinforcement
setups, as well as testing the model in more diverse environments, to enhance the generalizability of the
approach.

References

[1] Sun Y, Yuan X, Liu W, et al. Model-Based Reinforcement Learning via Proximal Policy Optimization
[C]// 2019 Chinese Automation Congress (CAC). IEEE, 2019.
[2] I. Varshini Devi, B. Natarajan, S. Prabu, R. A. Praba, K. Ushanandhini and K. S. Guruprakash.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 11: 150-154, DOI: 10.25236/AJCIS.2024.071120

Published by Francis Academic Press, UK
-154-

Automated Stock Trading using Reinforcement Learning[J]. 2023 International Conference on
Integrated Intelligence and Communication Systems (ICIICS), Kalaburagi, India, 2023, pp. 1-6.
[3] Piergigli D, Ripamonti L A, Maggiorini D, et al. Deep Reinforcement Learning to train agents in a
multiplayer First Person Shooter: some preliminary results[C]// 2019 IEEE Conference on Games
(CoG). IEEE, 2019.
[4] Zhang D, Bailey C P. Obstacle avoidance and navigation utilizing reinforcement learning with
reward shaping[C]//Artificial intelligence and machine learning for multi-domain operations
applications II. SPIE, 2020, 11413: 500-506.
[5] Wang X, Liu X, Shen T, et al. A greedy navigation and subtle obstacle avoidance algorithm for USV
using reinforcement learning[C]// 2019 Chinese Automation Congress (CAC). IEEE, 2019.
[6] She J. Combining PPO and Evolutionary Strategies for Better Policy Search[J]. Accessed: Nov. 6th,
2021.
[7] Liang Z, Chen H, Zhu J, et al. Adversarial deep reinforcement learning in portfolio management[J].
arXiv preprint arXiv:1808.09940, 2018.
[8] Kargar E, Kyrki V. MACRPO: multi-agent cooperative recurrent policy optimization[J]. arXiv
preprint arXiv:2109.00882, 2021.

