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Abstract: Under the critical situation of recurrent new crown outbreaks, large-scale full-scale nucleic 
acid testing has become the norm across the country. When the total number of people in a region is 
large and the infection rate is small, mixed testing can greatly improve testing efficiency and save costs 
compared with one-person testing. For the optimization of the mixed testing model, the Group Testing 
strategy is used to analyze the mixed testing method with the minimum number of tests, build a model 
and calculate the results with the help of Matlab, and finally obtain the optimal ratio of mixed testing in 
each region. 

Keywords: Nucleic acid mixing test; Group Testing; Overlap test; Optimization model 

1. Introduction 

The New Coronavirus outbreak was the fastest spreading, most widespread infection, and most 
difficult to prevent and control major public health emergency that has occurred since the founding of 
New China. 

Nucleic acid testing is used to determine if a patient is infected with NCCV by looking for the 
presence of nucleic acids from foreign invasive viruses in the patient's respiratory specimen. If the test is 
"positive" for nucleic acid, it proves the presence of the virus in the patient's body. Nucleic acid testing 
allows for timely detection of confirmed, suspected, and asymptomatic cases of Neoplastic pneumonia, 
and rapidly cuts off the pathway of virus transmission [1]. 

There are two types of mixed tests: sample mixing and swab mixing. Typically, mixed tests are "5-
mix" and "10-mix", where samples from 5 or 10 people are mixed. In the "10-mix" collection technique, 
for example, swabs from 10 individuals are mixed in a single collection tube for nucleic acid testing, and 
if a positive test is found in the mixed collection tube, the department is immediately notified to 
temporarily isolate the 10 subjects in the mixed collection tube and re-collect a single swab for review to 
determine if there is a case among the 10 subjects. subjects to determine if there is a case among them. 
A negative test result from a mixed collection tube means that all ten samples are negative and that the 
mix is safe for the individual. This type of testing maximizes the efficiency of testing, and the results are 
accurate, with no missed or false detections, and isolates patients in advance to reduce transmission and 
save social costs. 

Assuming different incidence rates (𝑟𝑟1,⋯ , 𝑟𝑟6 per 10,000) in six districts of Beijing city, the number 
of people in the region 𝑀𝑀1,⋯ ,𝑀𝑀6 per 10,000 people under different conditions, the optimal mixing 
method 𝑁𝑁1,⋯ ,𝑁𝑁6  is given, assuming that the testing capacity of six districts of Beijing city is 
𝑊𝑊1,⋯ ,𝑊𝑊6 per10,000 tests every 5 hours, and the total time required for one round of testing and three 
rounds of testing in this way is discussed. 

For this problem, we review the literature and find that the Group Testing strategy proposed by 
Dorfman in the 20th century can be a good reference for solving this problem. We modify and build a 
mathematical model based on the Group Testing strategy, we base on the grouping idea of Group Testing 
to group the samples in one dimension, and the grouped samples After the testing, the positive samples 
were tested individually to determine the best way to test the samples in Beijing. We then improved the 
samples on this basis, considering the overlapping samples, we considered grouping the samples by 
columns and rows, testing the samples of columns and rows separately, and then testing the samples of 
crossed rows and columns individually, which may optimize the overall number of tests[2]. After 
obtaining the optimization we then give the total time for one and three rounds of the relevant tests in the 
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two testing orders, respectively, to build the model. 

2. Assumptions and notations 

2.1. Assumptions 

We use the following assumptions [3].  

(1) All the reagents give correct results for the assay. 

(2) The specific data used are kept constant after being given. 

(3) The specified test time is guaranteed to be stable and other relevant factors do not affect the test 
time. 

(4) Nucleic acid testing is performed only in the region and identified positives are not tested again. 

(5) The infection rate is the incidence rate. 

2.2. Notations 

The primary notations used in this paper are listed as Table 1. 

Table 1: Notations 

Symbols Meaning Unit 
𝑀𝑀𝑖𝑖 Number of people in the region 10,000 people 

𝑟𝑟𝑖𝑖  𝑜𝑜𝑜𝑜 𝑝𝑝𝑖𝑖 Morbidity (infection rate) 1 
𝑁𝑁𝑖𝑖 Optimal mixed test method Person/inspection 
𝑊𝑊𝑖𝑖 Testing capacity every five hours 10,000 reagents/five hours 
𝐸𝐸(𝑋𝑋) Mathematical expectations of X 1 
𝑇𝑇𝑖𝑖 The time required for the ith round of detection Hours 
∆ 𝑡𝑡 Time required for a single nucleic acid reagent test Hours/Dose 

3. Model building and solving 

3.1. Model building 

The number of people in the six regions of Beijing is 𝑀𝑀1,⋯ ,𝑀𝑀6 million and the incidence rate is 
𝑟𝑟1,⋯ , 𝑟𝑟6,  per 10,000, thus, let the number of people in each region of Beijing be 𝑀𝑀𝑖𝑖

′' and the infection 
rate in each region be 𝑝𝑝𝑖𝑖(𝑖𝑖 = 1,⋯ ,6) its. 

𝑀𝑀𝑖𝑖
′ = 10000𝑀𝑀𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑟𝑟𝑖𝑖

10000
                          (1) 

In the mixed testing mode, the average number of testing reagents E(X) used per individual is 
independent of the total number of people in the area 𝑀𝑀𝑖𝑖

′. Therefore, we mainly consider the effect of 
infection rate on the optimal mixing method 𝑁𝑁1,⋯ ,𝑁𝑁6. We reviewed the literature and found that this 
grouping method fits better with the Group testing algorithm proposed by Dorfman, and we modified it 
based on this algorithm to make it fit our model better [4]. 

Our strategy is to divide 𝑀𝑀𝑖𝑖 individuals in each region into 𝑁𝑁𝑖𝑖groups and mix each group of samples 
to perform mixed testing, we test all group samples one by one, if there is no virus in the group, we 
exclude everyone in this group, and if there is, we rank all individuals in the sample again. The relevant 
demonstration is shown in Figure 1 below. 

   
Figure 1: Related Demos 
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The specific model is developed as follows. 

If the mixed collection tube in which the sample is located has a negative test result, the average 
number of test reagents used by each individual in the group is 1

𝑁𝑁𝑖𝑖
  , and the random event can be 

considered as the result of 𝑁𝑁𝑖𝑖independent repetitions of the Bernoulli test with probability (1 − 𝑝𝑝𝑖𝑖)𝑁𝑁𝑖𝑖. 

If the mixed collection tube in which the sample is located tests positive, the average number of test 
reagents used per person in the group is 1

𝑁𝑁𝑖𝑖
+ 1 with probability 1 − (1 − 𝑝𝑝𝑖𝑖)𝑁𝑁𝑖𝑖. 

Then the probability distribution of X is. 

𝑋𝑋~�
1
𝑁𝑁𝑖𝑖

 1
𝑁𝑁𝑖𝑖

+ 1

(1 − 𝑝𝑝𝑖𝑖)𝑁𝑁𝑖𝑖 1 − (1 − 𝑝𝑝𝑖𝑖)𝑁𝑁𝑖𝑖
�                          (2) 

Thus the mathematical expectation of X is/ 

(𝑋𝑋) = 1
𝑁𝑁𝑖𝑖
∗ (1 − 𝑝𝑝𝑖𝑖)𝑁𝑁𝑖𝑖 + � 1

𝑁𝑁𝑖𝑖
+ 1� ∗ [1 − (1 − 𝑝𝑝𝑖𝑖)𝑁𝑁𝑖𝑖] = 1 − (1 − 𝑝𝑝𝑖𝑖)𝑁𝑁𝑖𝑖 + 1

𝑁𝑁𝑖𝑖
          (3) 

By calculating the relationship between E(X) and 𝑁𝑁𝑖𝑖, we can obtain the optimal solution for 𝑁𝑁𝑖𝑖 at 
different 𝑝𝑝𝑖𝑖 The optimal solution is obtained by the above equation under the condition of the incidence 
rate of 𝑟𝑟1,⋯ , 𝑟𝑟6 per 10,000 in each area of Beijing urban area given by the question. 

We also assigned specific values to 𝑝𝑝𝑖𝑖 through Matlab and gave feedback on the results to obtain the 
following results, which can be observed that the higher the infection rate, the less this strategy saves, 
while Table 2 can provide a reference for the optimal mixed detection ratio 𝑁𝑁𝑖𝑖 in the case of changing 
incidence rates in various regions of Beijing. 

Table 2: The best number of mixed inspections under non-repetitive mixed inspections 

Infection rate 𝑝𝑝𝑖𝑖 Number of tests per capita𝐸𝐸(𝑋𝑋) Optimal group size 𝑁𝑁𝑖𝑖 
0.84%~1% 0.2 12 

0.7%~0.83% 0.17 13 
0.6%~0.69% 0.15 14 
0.52%~0.59% 0.14 15 
0.45%~0.51% 0.13 16 
0.4%~0.44% 0.12 17 
0.35%~0.39% 0.116 18 
0.31%~0.34% 0.109 19 
0.28%~0.3% 0.105 20 

3.2. Model optimization 

 
Figure 2: Secondary testing 

After obtaining the above results, we consider whether it is possible to reduce the overall number of 
tests again in the case of mixed tests. If we say that multiple rounds of mixed tests can also reduce the 
overall number of tests to some extent, but in fact it will add new troubles during the operation and is 
time-consuming and laborious. In addition, we think of the aforementioned model are not overlapping 
detection, that is, the mixed inspection combination is not affected by each other. We innovate the mixed-
check model, i.e., we consider repeatable mixed-check, as follows. 
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We take all extracts of nucleic acid tests from all subjects, divide 𝑀𝑀𝑖𝑖individuals in each region into 
𝑁𝑁𝑖𝑖 groups by rows and columns, and finally samples missing in columns or rows are filled with negative 
results, mix each group of samples to perform mixed tests, we test all group samples one by one, if there 
is no virus in the group, we exclude everyone in this group, if there is, we perform a second test on the 
relevant crossed rows and columns of All samples are tested twice. This is demonstrated in Figure 2 
below. 

This method can again reduce the number of reagents required to a certain extent, as in the above idea 
where we mix the samples by rows and columns to form. 

𝑄𝑄 = 2 �𝑀𝑀𝑖𝑖
′+𝛼𝛼
𝑁𝑁𝑖𝑖

�                                           (4) 

Since there are multiple possibilities of containing positive patients in all crossover locations, we 
consider the total number of tests in the worst case, and the worst case that positive patients are different 
rows and columns, at this point it is known that we need a total of (𝑝𝑝𝑖𝑖 ∗ 𝑀𝑀𝑖𝑖

′)2 times for nucleic acid 
testing of all possible positive patient locations, and since we need to test a total of Q samples in the first 
round of mixed testing, the number of tests per capita. 

𝐸𝐸 ≤ 𝑄𝑄+�𝑝𝑝𝑖𝑖∗𝑀𝑀𝑖𝑖
′�
2

𝑀𝑀𝑖𝑖
′ = 2𝑁𝑁𝑖𝑖+�𝑝𝑝𝑖𝑖∗𝑁𝑁𝑖𝑖2−𝑝𝑝𝑖𝑖∗𝛼𝛼�

2

𝑁𝑁𝑖𝑖2−𝛼𝛼
                                (5) 

Since the number of negative samples filled in front of a large sample α has a small effect on the 
overall, we omit its effect and take the maximum probability of the number of tests per capita E as the 
value to obtain. 

𝐸𝐸 = 2𝑁𝑁𝑖𝑖+�𝑝𝑝𝑖𝑖∗𝑁𝑁𝑖𝑖2�
2

𝑁𝑁𝑖𝑖2
= 2

𝑁𝑁𝑖𝑖
+ 𝑝𝑝𝑖𝑖2 ∗ 𝑁𝑁𝑖𝑖2                                 (6) 

The relationship between the number of detections per capita and 𝑁𝑁𝑖𝑖  is obtained by applying 
Equation (6) in Matlab, and the relationship between the average number of detections and the infection 
rate 𝑝𝑝𝑖𝑖can be derived, and the specific results are shown in Table 3. 

Table 3: The best number of people under repeated mixed inspections 

Infection rate 𝑝𝑝𝑖𝑖 Number of testing per capita 𝐸𝐸 Optimal group size 𝑁𝑁𝑖𝑖 
0.94%~1% 0.139 23 

0.88%~0.93% 0.133 24 
0.83%~0.87% 0.127 25 
0.78%~0.82% 0.122 26 
0.74%~0.77% 0.117 27 
0.70%~0.73% 0.113 28 
0.66%~0.69% 0.109 29 
0.63%~0.65% 0.102 30 
0.6%~0.62% 0.099 31 

By comparing this data with the results of 3.1, we found that at an infection rate of less than 6%, the 
overlapping mixed test is less than the non-overlapping mixed test per capita, but at an infection rate of 
more than 20%, the overlapping mixed test consumes more reagents than one person per test. 

3.3. Model Solving 

After obtaining the optimal mixed detection ratio 𝑁𝑁𝑖𝑖 for each district in Beijing, we next calculate 
the total time required for one or three rounds of nucleic acid census. Before giving the specific 
calculation process, we first assume that the detection capacity of six districts in Beijing is 𝑊𝑊𝑖𝑖

′every 5 
hours, where 𝑊𝑊𝑖𝑖

′ = 10000𝑊𝑊𝑖𝑖, 𝑖𝑖 = 1,2, … ,6. 

Then it can be considered that each nucleic acid reagent needs to be tested. 

∆ 𝑡𝑡 = 5
𝑊𝑊𝑖𝑖
′     𝑖𝑖 = 1,2, … ,6                                   (7) 

On this basis, the time and dose of nucleic acid testing between regions in Beijing are not affected by 
each other and are not cumulative between regions, i.e., the total time required to perform a round of 
nucleic acid testing is taken as the longest nucleic acid testing time among the six regions. We also assume 
that after a positive patient is detected, we take out the positive patient for isolation and do not count it 
in the next test[5]. 
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Subsequently, we checked the relevant information and learned that one round of nucleic acid testing 
refers to a mixed test plus a one-person test for problematic samples, so we set 𝑇𝑇𝑖𝑖as the time required for 
the i-th round of testing. Therefore, the total number of tests required in each round of nucleic acid testing 
multiplied by the testing time required for each sample is the total time required for each round of nucleic 
acid testing, which gives us. 

𝑇𝑇1 = 𝑚𝑚𝑚𝑚𝑚𝑚 �5∗𝑀𝑀𝑖𝑖
′

𝑊𝑊𝑖𝑖
′ �1 − (1 − 𝑝𝑝𝑖𝑖)𝑁𝑁𝑖𝑖 + 1

𝑁𝑁𝑖𝑖
��                              (8) 

𝑇𝑇2 = 𝑚𝑚𝑚𝑚𝑚𝑚 �5∗𝑀𝑀𝑖𝑖
′

𝑊𝑊𝑖𝑖
′ (1 − 𝑝𝑝𝑖𝑖) �1 − (1 − 𝑝𝑝𝑖𝑖)𝑁𝑁𝑖𝑖 + 1

𝑁𝑁𝑖𝑖
��                       (9) 

𝑇𝑇3 = 𝑚𝑚𝑚𝑚𝑚𝑚 �5∗𝑀𝑀𝑖𝑖
′

𝑊𝑊𝑖𝑖
′ (1 − 𝑝𝑝𝑖𝑖)2 �1 − (1 − 𝑝𝑝𝑖𝑖)𝑁𝑁𝑖𝑖 + 1

𝑁𝑁𝑖𝑖
��                            (10) 

In this case, the value of 𝑁𝑁𝑖𝑖 found in 3.1 is the value that minimizes the total number of detections, 
or the value of. 

𝑇𝑇1 = 𝑚𝑚𝑚𝑚𝑚𝑚 �5∗𝑀𝑀𝑖𝑖
′

𝑊𝑊𝑖𝑖
′ �𝑝𝑝𝑖𝑖2 ∗ 𝑀𝑀𝑖𝑖

′ + 2
𝑁𝑁𝑖𝑖
��                                     (11) 

𝑇𝑇2 = 𝑚𝑚𝑚𝑚𝑚𝑚 �5∗𝑀𝑀𝑖𝑖
′

𝑊𝑊𝑖𝑖
′ (1 − 𝑝𝑝𝑖𝑖) �𝑝𝑝𝑖𝑖2 ∗ 𝑀𝑀𝑖𝑖

′ + 2
𝑁𝑁𝑖𝑖
��                               (12) 

𝑇𝑇3 = 𝑚𝑚𝑚𝑚𝑚𝑚 �5∗𝑀𝑀𝑖𝑖
′

𝑊𝑊𝑖𝑖
′ (1 − 𝑝𝑝𝑖𝑖)2 �𝑝𝑝𝑖𝑖2 ∗ 𝑀𝑀𝑖𝑖

′ + 2
𝑁𝑁𝑖𝑖
��                            (13) 

At this point the value of 𝑁𝑁𝑖𝑖 required to satisfy 3.2 is the value that makes the minimum number of 
total tests, while the time required here is considered as the worst case scenario that all positive patients 
are in different rows and different columns. 

The following is a plot of the total time results with infection rate for our simulation, as shown in 
Figure 3. 

 
Figure 3: Plot of total time outcome with infection rate 

4. Conclusion 

The model is clear, easy to understand, practical and readable, and gives the best "N-in-1" test solution 
for large-scale nucleic acid testing, which greatly reduces the number of samples and provides testing 
efficiency; 

It can be generalized for the selection of testing protocols for similar diseases; 

Extend the conventional Group Testing model to two dimensions to reduce testing costs. 

For large-scale testing, more parameters are introduced to ensure the accuracy of the model results; 

The model formulas are more complex and cumbersome in performing data calculations; 
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Taking one-dimensional Group Testing, the optimal "N-in-1" is not good enough to reduce the 
detection cost. 
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