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Abstract: In the field of motor vehicle recognition, the use of neural network models has become the 
standard, and the tuning of hyperparameters and loss functions has been shown to be an effective way to 
improve the performance of these models. However, when using classical convolutional network 
architectures (e.g., ImageNet) and training them on motor vehicle images with random labels, the 
overparameterization problem can lead to suboptimal results and an increased risk of recognition failure. 
P. Ismailova et al. proposed a solution to this problem with the use of weight averaging, which resulted 
in the development of the simple and effective Stochastic Weight Averaging (SWA) optimizer. In this paper, 
we apply the SWA method to optimize the original recognition model and demonstrate significant 
improvements in accuracy through the use of different learning rate schemes with various traditional 
optimizers. We also identify suitable hyperparameter values to enhance the model's generalization 
abilities through several experiments, reducing the waste of resources in the motor vehicle recognition 
task and improving the recognition accuracy of fine-grained images in general, thus increasing the 
efficiency of related fields. 

Keywords: Random Average Weighting, Fine-Grained Recognition, Generalization capability, Computer 
Vision 

1. Introduction 

With the rapid development of urbanization, the traffic system has generated intelligent hardware 
needs, and the probability of accidents is gradually increasing in the face of the increasing urban traffic. 
And more is hanging you bring a huge workload in motor vehicle type identification. Although the 
occurrence of the accident contains human irresistible factors, but the inability to effectively monitor the 
road traffic is the main drawback at present. In the current existing system, the main steps focus on the 
identification and judgment of the captured vehicle, and the judgment of the model is often more accurate 
and effective than the traditional identification based on license plate number. Based on this motivation, 
an accurate and highly automated recognition system is in demand, and fine-grained recognition can be 
more accurate than traditional manual feature extraction methods in such scenarios where the focus is on 
the features of a given object subclass. In the field of vehicle subclass classification, it is relatively easy 
to develop algorithms that achieve high levels of accuracy on the training set, but it is more challenging 
to improve the model's generalization abilities and maintain high levels of performance on unseen data. 
In addition to increasing the sample size, the use of state-of-the-art (SOTA) modules or losses may not 
always improve the model's performance. To address this problem, we need to explore new approaches 
that can improve the model's generalization capabilities. One potential solution is to average multiple 
models, as this has been shown to provide better robustness and generalization performance than using 
a single model. However, this approach comes with a higher computational cost. 

2. Loss Function and Generalization  

In machine learning, a loss function, also known as a cost function, is a special type of function that 
maps the predicted values of a model to non-negative real numbers to indicate the "risk" or "loss" 
associated with those predictions. The loss function is used to evaluate how well the model's predictions 
match the true values, with a better loss function typically leading to a better-performing model. Different 
models may use different loss functions, depending on the specific task they are designed to solve. In 
general, the loss function is an important component of a machine learning model, as it provides a way 
to measure the model's performance and guide its optimization. 

The curvature of a model's loss function can be mathematically quantified using the Hessian matrix, 
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which is a square matrix of second-order partial derivatives that measures the curvature of the function 
in each direction. The figure below shows the loss function for a model, which illustrates how sensitive 
the loss function is to changes in the model's parameters. A low value of Loss indicates that the curvature 
of the loss function is low, and the model's parameters are not very sensitive to changes in the training 
data, leading to better generalization and a lower risk of overfitting. In contrast, a high value of Loss 
indicates that the curvature of the loss function is high, and the model's parameters are very sensitive to 
changes in the training data, which may cause the model to overfit the training data and perform poorly 
on new, unseen data. In general, models whose parameters converge to a flat minimum region, such as 
around the saddle 𝑃𝑃1, Keskar and Nitish Shirish et al. [2] noted that those points tend to have better 
generalization abilities because the low curvature of the flat minimum region makes the model's 
parameters less sensitive to changes in the training data, resulting in a model that does not overfit the 
training data and is more likely to perform well on new, unseen data. (As shown in  Figure 1) 

 
Figure 1: The solution of the loss function located in different regions of the function image has a 

different impact on the generalization ability of models 

3. Stochastic Weight Average 

3.1 SWA Program introduction 

Stochastic Weight Averaging (SWA) is a method for improving the generalization ability of deep 
learning models using stochastic gradient descent, and it does not add additional computational overhead 
during training. The results of the SWA paper [1] show that taking a simple average of multiple points 
along the SGD trajectory at a periodic or constant learning rate leads to better generalization than 
traditional training methods. SWA has been shown to significantly improve the generalization ability of 
common computer vision tasks, including VGG and Dense Nets on the ImageNet and CIFAR 
benchmarks, and it can be a valuable alternative to other optimization methods. This method offers a 
simple and effective way to improve the generalization of deep learning models without requiring 
additional computational resources. 

3.2 Principle of SWA Program 

The idea behind Stochastic Weight Averaging (SWA) is based on the observation that, in many 
experiments, the loss values at the end of each learning cycle tend to accumulate at the edges of the loss 
plane and are generally far from the center. The loss values on these edge regions can be approximated 
as points W1, W2, and W3 on the red regions in the figure below, which are associated with low loss. By 
averaging the set of these values, we can obtain lower loss values with a higher probability and produce 
more uniform generalization results for the experiment, which in turn improves the model's 
generalization ability. This approach offers a simple and effective way to improve the generalization of 
deep learning models, and it has been shown to be effective in a variety of computer vision tasks. (As 
shown in  Figure 2) 
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Figure 2: Illustration of Stochastic Weight Average 

Training deep neural networks (DNNs) typically involves using stochastic gradient descent (SGD) to 
optimize the model weights θ.  

Δθ𝑡𝑡 = −η𝑡𝑡 �
1
𝐵𝐵
∑ ∇θ log𝑝𝑝 � 𝑦𝑦𝑖𝑖 ∣∣ 𝑓𝑓θ(𝑥𝑥𝑖𝑖) �𝐵𝐵
𝑖𝑖=1 − ∇θ log𝑝𝑝(θ)

𝑁𝑁
�    (1) 

Where the learning rate is 𝜂𝜂, The 𝑖𝑖-th input (e.g., a specific image) and the tag can be {𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖} 

The size of the entire training set is denoted as 𝑁𝑁，The size of each Batch is expressed as 𝐵𝐵。  

For a deep neural network (DNN) 𝑓𝑓, with a weight parameter θ.2 

The loss function for this can be expressed as a negative log-likelihood combining the regularizer  
log𝑝𝑝 (θ), expressed as the following function. 

∑ log𝑝𝑝 � 𝑦𝑦𝑖𝑖 ∣∣ 𝑓𝑓θ(𝑥𝑥𝑖𝑖) �𝑖𝑖       (2) 

This type of maximum likelihood training does not represent prediction uncertainty or parameters θ𝑖𝑖. 

The main idea of SWA is to first start with a pre-trained solution, perform SGD with a constant 
learning rate schedule, and average the weights of the models it traverses. The weights of the network 
obtained after the 𝑖𝑖 epoch of SWA training is denoted as θ𝑖𝑖, while the SWA solution after 𝑇𝑇 Epochs is 
given by the following equation. 

So far, we have obtained the weight expressions after SWA processing. 

θSWA = 1
𝑇𝑇
∑ θ𝑖𝑖𝑇𝑇
𝑖𝑖=1     (3) 

3.3 Implementation of SWA method 

In the paper, P. Izmailov provides a pseudo-code [1] for the SAM algorithm, and we have created 
flow chart to represent it more intuitively. (As shown in  Figure 3) 
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Figure 3: The flow chart 
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4. Experimental 

4.1 Experiment purpose 

The SWA method has been shown to be effective in fine-grained classification tasks by allowing us 
to adjust the random weight learning rate (SWALR) to achieve optimal accuracy on the current model. 
Meanwhile, we obtained the source code from SWA's GitHub details page and how to use it to experiment 
with the unchanged version [5]. By using different value strategies, we can average the data from multiple 
states during the training process to find a solution that is centered on a flat region close to the expected 
loss, as well as a specific value. The use of a modified learning rate scheme in conjunction with other 
optimizers has been shown to improve the model's generalization capabilities and maintain consistent 
performance on enhanced test sets that differ significantly from the source images. 

4.2 Experimental equipment 

To verify the effectiveness of the SWA method under different learning rate schedules and SWA_LR 
value settings, we conducted experiments using the Stanford Cars, The Cars dataset contains 16,185 
images of 196 classes of cars. The data is split into 8,144 training images and 8,041 testing images, where 
each class has been split roughly in a 50-50 split [3]. And CIFAR-10, and CIFAR-100 datasets have been 
used with the Resnet-50, Resnet-101, and Resnet-152 models on a test platform consisting of a CPU: i5-
10500F, GPU: RTX-1060 Laptop, RAM: 24 GiB, and CUDA: Version 11.8. We selected a portion of the 
car images from the network that matched the training set labels for training and provided a processed 
test target to increase the test difficulty, allowing us to evaluate the model's performance under non-ideal 
recognition conditions.  

4.3 Result of experiment 

The results of our experiments, including the hyperparameters used, are shown in Table 1. These 
results demonstrate the effectiveness of the SWA method in improving the accuracy of the models on the 
test set. The same networks were trained by the conventional SGD method and SWA method, respectively. 
According to Zhang Xiang's research, random cropping and horizontal flipping of the images in the 
training set before training can achieve data augmentation [7], so a similar method is used for data pre-
processing in this paper. The recognition accuracy of each individual sub-network using different 
methods on the Stanford Car test set is then recorded. All the results reflect a significant improvement 
compared to SGD and run faster for different SWALR values. 

Table 1: SWA enhancement compared to conventional SGD at different SWA LR 

Model Epoch Optimizer SWA LR SGD LR Accuracy 
  SWA+SGD 1.00e-6  83.62 
  SWA+SGD 1.00e-5  83.76 
  SWA+SGD 1.00e-4  83.94 

Resnet-50 20 SWA+SGD 
SWA+SGD 

1.00e-3 
1.00e-2 

0.005 
 

84.04 
84.13 

  SWA+SGD 1.00e-1  84.21 
  SGD N/A  83.16 

4.4 Comparison of test results 

We tested more complex image sets using a migration learning approach. The images in the Craigslist 
dataset [4] and the Stanford Car samples share many common features, making it possible to use existing 
models trained on these datasets to address the problem of specific object classification. We consider two 
strategies for adjusting the learning rate during training. Haoyang et al. summarized the relevant learning 
rate strategies in their study related to SWA [6]. The first is a fixed learning rate schedule, where we use 
learning rates of 0.02, 0.002, and 0.0002, corresponding to the learning rates used in the different training 
phases of the pre-trained model. Table 2 shows the accuracy rates for different models and different 
learning rate strategies. These results demonstrate the effectiveness of the proposed approach in 
improving the performance of the model on the Craigslist dataset. The second strategy is a cyclic learning 
rate schedule, where the learning rate starts at a high value, decreases to a minimum value, and then 
increases again to a maximum value. It is important to note that the learning rate decreases at each 
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iteration, rather than at each epoch. Table 3 reflects the results of different Resnet models after adopting 
the cosine annealing algorithm cosine annealing learning) selected two groups (lrmax, lrmin), i.e. (0.01, 
0.0001), (0.02, 0.0002), (0.03, 0.0003) and selecting 1 epoch as the loop length. 

Table 2: Test results on Resnet network with different fixed learning rates 

Model Epoch Optimizer Strategy AP 
 

Resnet-50 
 
 

Resnet-102 

 
24 

 
 

24 

 
 
 
 

SWA+SGD 

FixedLr=0.02 
FixedLr=0.002 

FixedLr=0.0002 
FixedLr=0.02 
FixedLr=0.002 

81.88 
82.16 
82.98 
78.71 
79.35 

 
 

Resnet-101 
 

 
 

24 

 FixedLr=0.0002 
FixedLr=0.02 
FixedLr=0.002 

FixedLr=0.0002 

79.82 
80.11 
80.96 
81.45 

Table 3: Accuracy results of applying the cyclic learning rate scheme on Resnet 

Model Epoch Optimizer Strategy AP 

   cyclr=0.01, 0.0001 
cyclen=1 81.93 

Resnet-50 48  cyclr=0.02, 0.0002 
cyclen=1 82.14 

   cyclr=0.03, 0.0003 
cyclen=1 81.07 

   cyclr=0.01, 0.0001 
cyclen=1 

 
80.43 

Resnet-102 48 SWA+SGD cyclr=0.02, 0.0002 
cyclen=1 80.84 

   cyclr=0.03, 0.0003 
cyclen=1 80.29 

   cyclr=0.01, 0.0001 
cyclen=1 

 
81.18 

Resnet-101 48  cyclr=0.02, 0.0002 
cyclen=1 81.22 

   cyclr=0.03, 0.0003 
cyclen=1 81.68 

5. Conclusion 

In this paper, we systematically study the effectiveness of SWA in vehicle target detection and model 
recognition. We find that using both SWA and SGD, the accuracy of model recognition can be improved 
by changing only the SWA learning rate while keeping the SGD learning rate constant, and the 
computation time can be significantly reduced. Additionally, training a vehicle classification model with 
a cyclic variable learning rate during the experiment can improve the accuracy of this learning model by 
about 1 percentage point on the Stanford Car test set and the Craigslist test set after averaging the 
computation as the final weights of the model. We achieved an accuracy of 84.2 on the Stanford Car 
dataset and 82.98 on Craigslist and found the most suitable cyclic learning rate pair (0.02, 0.0002), 
respectively. Our experimental results show that this technique is applicable to a variety of network 
models used in image recognition, including Resnet-50, Resnet-101, and Resnet-102. We hope that our 
work will make more computer vision practitioners and car recognition experts aware of this simple yet 
effective method and help them train better neural network models for production. 
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